-
摘要: 研究传感器未建模动态对Buck变换器滑模控制系统的性能影响, 提出一种基于奇异摄动理论的稳定性和输出电压谐波分析的新方法.给出滑模控制器的参数整定方法, 选取传感器的上升时间作为摄动时间, 建立其未建模动态的奇异摄动模型, 在多时间尺度框架下, 揭示传感器稳定输出与摄动时间的影响关系.在此基础上, 构造一个类Lyapunov函数分析未建模动态对整个闭环控制系统的稳定性影响, 证明未建模动态诱发谐波的必然性.针对输出电压的谐波, 在频域内利用描述函数法推导出未建模动态摄动时间与其谐波幅值和频率的数学影响关系.仿真结果验证所提方法的正确性和有效性.Abstract: This paper investigates the influence of unmodeled dynamics from the sensor in a sliding mode controlled (SMC) Buck converter, and presents a quantitative analysis approach for the stability and output voltage harmonics on the basis of singular perturbation theory. The design parameter of SMC is first given. Taking the rise time of sensor as a perturbed parameter, the buck converter is modeled as a singularly perturbed system. Then in the frame of multiple-time scale, the influence relationship of stable sensor and the time constant is deduced, and further the stability of the whole closed-loop buck converter system is given by constructing a Lyapunov-like function, proving the existence of harmonics induced by unmodeled dynamics. The describing function method is introduced to analyze the frequency and amplitude of the output voltage harmonics. Simulations validate the proposed method.
-
Key words:
- Sliding mode control /
- unmodeled dynamics /
- sensor /
- singular perturbation /
- describing function method
1) 本文责任编委 李鸿一 -
表 1 Buck变换器的电路参数
Table 1 Circuit parameters of Buck converter
电路参数 数值 电感 $L=50$ mH 电容 $C=100$ ${\rm{ \mathsf{ μ} }}$F 负载电阻 $R=10\, \Omega $ 输入电压 $E=10$ V 给定输出电压 $V_{ref}=5$ V 表 2 $\psi $取不同值时的输出电压$v_{c}$性能对比
Table 2 Different values of $\psi $ and their influence on the output voltage $v_{c}$
时间常数 谐波幅值 谐波频率 稳态误差 相对误差 $\psi\, ({\rm{ \mathsf{ μ} }}$s) (mV) (Hz) (mV) (%) 6.647 0.24 1000 0.12 0.0024 32.09 2.8 4515 1.4 0.028 291.26 224 526.31 112 2.24 623.02 842 263.2 421 8.42 -
[1] 王艳敏, 曹雨晴, 夏红伟. Buck变换器的电压电流双闭环终端滑模控制.电机与控制学报, 2016, 20(08): 92-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djykzxb201608012Wang Yan-Min, Cao Yu-Qing, Xia Hong-Wei. Terminal sliding mode control for Buck converter with structure of voltage and current double closed loop. Electric Machines and Control, 2016, 20(08): 92-97 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djykzxb201608012 [2] Krishnamurthy P, Khorrami F. A general dynamic scaling based control redesign to handle input unmodeled dynamics in uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(9): 4719-4726 [3] 杨天皓, 李健, 贾瑶, 刘腾飞, 柴天佑.虚拟未建模动态补偿驱动的双率自适应控制.自动化学报, 2017, 44(1): 299-310 doi: 10.16383/j.aas.2018.c160623Yang Tian-Hao, Li Jian, Jia Yao, Liu Teng-Fei, Chai Tian-You. Dual-rate adaptive control driven by virtual unmodeled dynamics compensation in industrial heat exchange process. Acta Automatica Sinica, 2017, 44(1): 299-310 doi: 10.16383/j.aas.2018.c160623 [4] 柴天佑, 张亚军.基于未建模动态补偿的非线性自适应切换控制方法, 自动化学报. 2011, 37(7): 773-786 doi: 10.3724/SP.J.1004.2011.00773Chai Tian-You, Zhang Ya-Jun. Nonlinear adaptive switching control method based on unmodeled dynamics compensation. Acta Automatica Sinica, 2011, 37(7): 773-786 doi: 10.3724/SP.J.1004.2011.00773 [5] Levant A. Chattering analysis. IEEE Transactions on Automatic Control, 2010, 55(6): 1380-1389 [6] Boiko I, Fridman L, Iriarte R, Pisano A, Usai E. Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica. 2006, 42(7): 677-683 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4968355d3bc45b64ef9002990e68fa8 [7] Goncalves J M, Megretski A, Dahleh M A. Global stability of relay feedback systems. IEEE Transactions on Automatic Control. 2011, 46(4): 550-562 [8] Boiko I. Oscillations and transfer properties of relay servo systems-the locus of a perturbed relay system approach. Automatica. 2005, 41(7): 677-683 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5b9ba81e1a5872c78312b1b261df1f4 [9] 杨晨, 程盈盈, 都海波, 王金平, 何怡刚. Buck型变换器自适应有限时间降压控制算法研究.自动化学报, 2016, 42(1): 315-320 doi: 10.16383/j.aas.2016.c150446Yang Chen, Cheng Ying-Ying, Du Hai-Bo, Wang Jin-Ping, He Yi-Gang. An adaptive finite-time control algorithm for buck converter systems. Acta Automatica Sinica, 2016, 42(1): 315-320 doi: 10.16383/j.aas.2016.c150446 [10] Lee H, Utkin I V. Chattering suppression methods in sliding mode control systems. Annual Reviews in Control, 2007, 31(5): 179-188 [11] Komurcugil H. Non-singular terminal sliding-mode control of DC-DC buck converters. Control Engineering Practice. 2013, 21(5): 321-332 [12] ACS712 Datasheet (PDF)-Allegro MicroSystem[Online], available: https://www.alldatasheet.com/datasheet-pdf/pdf/168326/ALLEGRO/ACS712.htm, August 1, 2018