2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式光纤传感的热网膨胀节膨胀量测量方法

杨汉瑞 李勇勇 徐士博 张经纬 栾宁

杨汉瑞, 李勇勇, 徐士博, 张经纬, 栾宁. 基于分布式光纤传感的热网膨胀节膨胀量测量方法. 自动化学报, 2019, 45(11): 2171-2177. doi: 10.16383/j.aas.c180465
引用本文: 杨汉瑞, 李勇勇, 徐士博, 张经纬, 栾宁. 基于分布式光纤传感的热网膨胀节膨胀量测量方法. 自动化学报, 2019, 45(11): 2171-2177. doi: 10.16383/j.aas.c180465
YANG Han-Rui, LI Yong-Yong, XU Shi-Bo, ZHANG Jing-Wei, LUAN Ning. Measurement Method of Expansion in the Expansion Joint of Heat Supply Network Based on Distributed Optical Fiber Sensing. ACTA AUTOMATICA SINICA, 2019, 45(11): 2171-2177. doi: 10.16383/j.aas.c180465
Citation: YANG Han-Rui, LI Yong-Yong, XU Shi-Bo, ZHANG Jing-Wei, LUAN Ning. Measurement Method of Expansion in the Expansion Joint of Heat Supply Network Based on Distributed Optical Fiber Sensing. ACTA AUTOMATICA SINICA, 2019, 45(11): 2171-2177. doi: 10.16383/j.aas.c180465

基于分布式光纤传感的热网膨胀节膨胀量测量方法

doi: 10.16383/j.aas.c180465
基金项目: 

分布式光纤热网泄露监测技术研发项目 CDTWHCP-F-16160

国家自然科学基金 61703090

详细信息
    作者简介:

    李勇勇  东北电力大学自动化工程学院硕士研究生.主要研究方向为光纤传感技术及其应用.E-mail:liyongyong1103@163.com

    徐士博  博士,东北电力大学自动化工程学院讲师.主要研究方向为光纤传感及光电检测技术.E-mail:4685133@163.com

    张经纬  东北电力大学自动化工程学院硕士研究生.主要研究方向为分布式光纤温度传感器技术.E-mail:jwzhang0515@163.com

    栾宁  东北电力大学自动化工程学院硕士研究生.主要研究方向为分布式光纤温度传感器技术.E-mail:18604328657@163.com

    通讯作者:

    杨汉瑞   东北电力大学自动化工程学院副教授.2013获哈尔滨工程大学自动化学院博士学位.主要研究方向为光纤传感技术和光电检测技术, 特种光纤及器件.本文通信作者.E-mail:yanghanrui1208@163.com

Measurement Method of Expansion in the Expansion Joint of Heat Supply Network Based on Distributed Optical Fiber Sensing

Funds: 

Research and Development of Distributed Optical Fiber Technology for Monitoring Network Leakage CDTWHCP-F-16160

National Natural Science Foundation of China 61703090

More Information
    Author Bio:

      Master student at the College of Automation Engineering, Northeast Electric Power University. His research interest covers optical fiber sensing technology and its application

      Ph. D., lecturer at the College of Automation Engineering, Northeast Electric Power University. His research interest covers optical fiber sensing and photoelectric detection technology

      Master student at the College of Automation Engineering, Northeast Electric Power University. His main research interest is distributed optical fiber temperature sensor technology

     Master student at the College of Automation Engineering, Northeast Electric Power University. His main research interest is distributed optical fiber temperature sensor technology

    Corresponding author: YANG Han-Rui   Associate professor at the College of Automation Engineering, Northeast Electric Power University. She received her Ph. D. degree from Harbin Engineering University in 2013. Her research interest covers optical fiber sensing technology and photoelectric detection technology, special optical fiber and devices. Corresponding author of this paper
  • 摘要: 在热力管网中,膨胀节作为缓冲管道的关键部分,极易因变形扭曲引发泄漏故障,进而致使热网瘫痪.实时准确测量膨胀节的膨胀是评估管网健康状态的有效途径.对此,本文提出一种基于分布式光纤传感技术的膨胀节膨胀量的新型检测方法,建立了膨胀量检测模型,并通过实验验证了方法的有效性.研究结果表明,测量误差随着光纤绕制圈数增大而减小,通过调节绕制圈数,可以将误差范围控制在3%以内.这不仅为热网膨胀节的膨胀量检测提出了一种新思路,同时也为分布式光纤传感技术在热网健康状态检测领域的应用奠定了一定的理论基础.
    Recommended by Associate Editor MENG Fan-Li
    1)  本文责任编委 孟凡利
  • 图  1  系统组成图

    Fig.  1  System composition diagram

    图  2  膨胀节半剖图

    1波纹管, 2、3接管, 4垫环, 5内衬筒(导流筒), 6耳板, 7双头螺柱, 8螺母

    Fig.  2  Semi caesarean section of expansion joint

    图  3  测试系统示意图

    1分布式光纤传感系统, 2光纤线缆, 3柱形绝热体, 4导热体, 5端板, 6管道, 7双头螺柱, 8螺母, 9小波纹管, 10膨胀节环板, 11大波纹管, 12钢筋, 13光纤线缆切面, 14支撑架, 15地面, 16右侧管道, 17光纤的尾端

    Fig.  3  The diagram of test system

    图  4  检测原理图

    Fig.  4  The detection schematic diagram

    图  5  膨胀量测量相对误差分布图

    Fig.  5  Distribution of relative error in measurement of expansion

    图  6  不同载体膨胀量测量相对误差分布图

    Fig.  6  Distribution diagram of the expansion relative error in different carriers

    表  1  实验器材表

    Table  1  Experimental equipment table

    名称 型号 直径(mm) 长度(mm) 温度范围(℃)
    光纤线缆 GJFJKZH-1A1B 3.3 62 800 $-40\sim 120$
    柱形绝缘体 PVC 250 600 $\setminus$
    抽水泵 RS-2688 2 700 $\setminus$
    恒温水浴箱 HH600 $\setminus$ $\setminus$ $0\sim100$
    下载: 导出CSV

    表  2  实验数据表

    Table  2  Experimental data table

    圈数 光纤线缆长度(mm) 显示距离(mm) 实际膨胀量(mm) 计算膨胀量(mm) 相对误差
    0 0 0 0 0 0
    1 785 1 000 3.3 4.2 0.27
    5 3 925 4 000 16.5 16.82 0.0194
    10 7 850 8 000 33.0 33.63 0.0191
    15 11 775 12 000 49.5 50.45 0.0192
    20 15 700 16 000 66.0 67.26 0.0191
    25 19 625 20 000 82.5 84.08 0.0192
    30 23 550 24 000 99.0 96.69 0.0233
    35 27 475 27 000 115.5 113.50 0.0173
    40 31 400 31 000 132.0 130.32 0.0127
    45 35 325 35 000 148.5 147.13 0.0092
    50 39 250 39 000 165.0 163.95 0.0064
    55 43 175 43 000 181.5 180.76 0.0041
    60 47 100 47 000 198.0 197.57 0.0022
    65 51 025 51 000 214.5 214.39 0.0005
    70 54 950 55 000 231.0 231.2 0.0008
    75 58 875 59 000 247.5 248.02 0.0021
    下载: 导出CSV
  • [1] 李艳珍, 邓志丹.波纹管补偿器在供热管网工程设计中的应用.化工设计通讯, 2017, 43(02):139-140 doi: 10.3969/j.issn.1003-6490.2017.02.112

    Li Yan-Zhen, Deng Zhi-Dan. Application of bellows compensator in engineering hesign of heating pipe network. Chemical Engineering Design Communications, 2017, 43(02):139-140 doi: 10.3969/j.issn.1003-6490.2017.02.112
    [2] Chugunov M V, Polunina I N. Optimum design of the metal bellows on the SolidWorks platform. Mordovia University Bulletin, 2017, 27(2):169-177 doi: 10.15507/0236-2910.027.201702.169-177
    [3] Zhang X, Ma Y, Zou H Y, Tao S, Zhang Q C, Zhang E Q. Experimental study:correcting the calculation formula for a welded metal bellows' effective diameter. Sealing Technology, 2016, 2016(10):7-12 doi: 10.1016/S1350-4789(16)30326-9
    [4] Snedden N W. Analysis and design guidance for the lateral stiffness of bellows expansion joints. Thin-Walled Structures, 1985, 3(2):145-162 doi: 10.1016/0263-8231(85)90030-8
    [5] Park D J, Yu J M, Han S Y, Yoon K B, Ji Y K. A study on system stress analysis of high temperature plant piping with expansion joints and load hangers. Journal of Energy Engineering, 2014, 23(3):116-124 doi: 10.5855/ENERGY.2014.23.3.116
    [6] 崔亚飞, 刘英, 朱庆南, 王一宁, 杨雨图, 缑斌丽.波纹管膨胀节波形曲线拟合及波距检测算法研究.北京化工大学学报(自然科学版), 2018, 45(01):84-90 http://d.old.wanfangdata.com.cn/Periodical/bjhgdxxb201801014

    Cui Ya-Fei, Liu Ying, Zhu Qing-Nan, Wang Yi-Ning, Yang Yu-Tu, Gou Bin-Li. Research on the algorithm for fitting wave curve and calculating wave distance of bellows expansion joints. Journal of Beijing University of Chemical Technology, 2018, 45(01):84-90 http://d.old.wanfangdata.com.cn/Periodical/bjhgdxxb201801014
    [7] 王晓嘉, 高隽, 王磊.激光三角法综述.仪器仪表学报, 2004, s2(8):601-604, 60 http://d.old.wanfangdata.com.cn/Periodical/yqyb2004z3185

    Wang Xiao-Jia, Gao Jun, Wang Lei. Survey on the laser triangulation. Chinese Journal of Scientific Instrument, 2004, s2(8):601-604, 60 http://d.old.wanfangdata.com.cn/Periodical/yqyb2004z3185
    [8] 陈喜锋, 王国利, 郭雪梅.实现目标跟踪的光纤传感网络及其优化设计.自动化学报, 2014, 40(7):1348-1354 http://www.aas.net.cn/CN/abstract/abstract18406.shtml

    Chen Xi-Feng, Wang Guo-Li, Guo Xue-Mei. A fiber sensor network and its optimization design for target tracking. Acta Automatica Sinica, 2014, 40(7):1348-1354 http://www.aas.net.cn/CN/abstract/abstract18406.shtml
    [9] 刘铁根, 于哲, 江俊峰, 等.分立式与分布式光纤传感关键技术研究进展.物理学报, 2017, 66(07):60-76 http://d.old.wanfangdata.com.cn/Periodical/wlxb201709041

    Liu Tie-Gen, Yu Zhe, Jiang Jun-Feng, et al. Advances of some critical technologies in discrete and distributed optical fiber sensing research. Acta Physica Sinica, 2017, 66(07):60-76 http://d.old.wanfangdata.com.cn/Periodical/wlxb201709041
    [10] Kuznetsov A G, Kharenko D S, Babin S A, Tsydenzhapov I B, Shelemba I S. Ultralong fibre-optic distributed Raman temperature sensor. Quantum Electronics, 2017, 47(10):976-970 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9375309
    [11] Saxena M K, Raju S D V S J, Arya R, et al. Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals. Optics & Laser Technology, 2015, 65(1):14-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddc2b70c9094496bf7d7d7c048ff2376
    [12] 张明江, 李健, 刘毅, 等.面向分布式光纤拉曼测温的新型温度解调方法.中国激光, 2017, 44(03):219-226 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201703030

    Zhang Ming-Jiang, Li Jian, Liu Yi, et al. Temperature demodulation method for distributed fiber raman temperature measurement. Chinese Journal of Lasers, 2017, 44(03):219-226 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201703030
    [13] Cangialosi C, Ouerdane Y, Girard S, et al. Development of a temperature distributed monitoring system based on Raman scattering in harsh environment. IEEE Transactions on Nuclear Science, 2014, 61(6):3315-3322 doi: 10.1109/TNS.2014.2368787
    [14] Kashyap R, Loranger S, Iezzi V L. High sensitivity distributed temperature fiber sensor using stimulated Brillouin scattering. Optics Express, 2017, 25(26):32591 doi: 10.1364/OE.25.032591
    [15] Ding Z, Yang D, Liu K, et al. Long-range OFDR-based distributed vibration optical fiber sensor by multicharacteristics of rayleigh scattering. Procedia Engineering, 2017, 9(5):1-10
    [16] Amira Z, Mohamed B, Tahar E. Monitoring of temperature in distributed optical sensor:Raman and Brillouin spectrum. Optik-International Journal for Light and Electron Optics, 2016, 127(8):4162-4166 doi: 10.1016/j.ijleo.2016.01.073
    [17] 佟敬阔, 靳宝全, 王东, 王宇, 余辉, 白亮.面向管道安全监测的R-OTDR分布式光纤测温系统.传感技术学报, 2018, 31(01):158-162 doi: 10.3969/j.issn.1004-1699.2018.01.026

    Tong Jing-Kuo, Jin Bao-Quan, Wang Dong, Wang Yu, Yu Hui, Bai Liang. Distributed optical fiber temperature measurement system for pipeline safety monitoring based on R-OTDR. Chinese Journal of Sensors & Actuators, 2018, 31(01):158-162 doi: 10.3969/j.issn.1004-1699.2018.01.026
    [18] 杨汉瑞, 李勇勇, 闫爱军, 孙佰仲, 葛粤, 纪克亮, 等.一种基于分布式光纤温度传感系统的供热管道膨胀节的状态监测装置及其方法.中国专利: CN108896203A, 2018年11月27日

    Yang Han-Rui, Li Yong-Yong, Yan Ai-Jun, Sun Bai-Zhong, Ge-Yue, Ji Ke-Liang, et al. The Monitoring Device And Method for the Expansion Joint of Heating Pipeline Based on Distributed Optical Fiber Temperature Sensing System. China Patent CN108896203A, issued November 27, 2018
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1919
  • HTML全文浏览量:  394
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 录用日期:  2018-09-10
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回