2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时序图像深度学习的电熔镁炉异常工况诊断

吴高昌 刘强 柴天佑 秦泗钊

吴高昌, 刘强, 柴天佑, 秦泗钊. 基于时序图像深度学习的电熔镁炉异常工况诊断. 自动化学报, 2019, 45(8): 1475-1485. doi: 10.16383/j.aas.c180453
引用本文: 吴高昌, 刘强, 柴天佑, 秦泗钊. 基于时序图像深度学习的电熔镁炉异常工况诊断. 自动化学报, 2019, 45(8): 1475-1485. doi: 10.16383/j.aas.c180453
WU Gao-Chang, LIU Qiang, CHAI Tian-You, QIN S. Joe. Abnormal Condition Diagnosis Through Deep Learning of Image Sequences for Fused Magnesium Furnaces. ACTA AUTOMATICA SINICA, 2019, 45(8): 1475-1485. doi: 10.16383/j.aas.c180453
Citation: WU Gao-Chang, LIU Qiang, CHAI Tian-You, QIN S. Joe. Abnormal Condition Diagnosis Through Deep Learning of Image Sequences for Fused Magnesium Furnaces. ACTA AUTOMATICA SINICA, 2019, 45(8): 1475-1485. doi: 10.16383/j.aas.c180453

基于时序图像深度学习的电熔镁炉异常工况诊断

doi: 10.16383/j.aas.c180453
基金项目: 

国家自然科学基金 61490701

国家自然科学基金 61833004

国家自然科学基金 61673097

国家自然科学基金 61490704

详细信息
    作者简介:

    吴高昌   流程工业综合自动化国家重点实验室博士研究生.主要研究方向为图像处理, 计算摄像学, 机器学习和故障诊断.E-mail:ahwgc2009@163.com

    刘强  东北大学副教授, 2014~2016年为美国南加州大学化工系博士后.主要研究方向为基于数据的复杂工业过程建模与故障诊断.E-mail:liuq@mail.neu.edu.cn

    秦泗钊  美国南加州大学教授.IEEEFellow, IFAC Fellow, AIChE Fellow.主要研究方向为统计过程监控, 故障诊断, 模型预测控制, 系统辨识, 建筑能源优化与控制性能监控.E-mail:sqin@usc.edu

    通讯作者:

    柴天佑  中国工程院院士, 东北大学教授.IEEE Fellow, IFAC Fellow, 欧亚科学院院士.主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论、方法与技术.本文通信作者.E-mail:tychai@mail.neu.edu.cn

Abnormal Condition Diagnosis Through Deep Learning of Image Sequences for Fused Magnesium Furnaces

Funds: 

National Natural Science Foundation of China 61490701

National Natural Science Foundation of China 61833004

National Natural Science Foundation of China 61673097

National Natural Science Foundation of China 61490704

More Information
    Author Bio:

    Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers image processing, computational photography, machine learning and fault diagnosis

    Associate professor at Northeastern University, China, and postdoctoral in the Department of Chemical Engineering, University of Southern California, USA from 2014 to 2016. His research interest covers statistical process monitoring and fault diagnosis of complex industrial processes

    Professor at University of Southern California, USA, IEEE Fellow, IFAC Fellow, and AIChE Fellow. His research interest covers statistical process monitoring, fault diagnosis, model predictive control, system identification, building energy optimization, and control performance monitoring

    Corresponding author: CHAI Tian-You Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow, academician of International Eurasian Academy of Sciences. His research interest covers adaptive control, intelligent decoupling control, theories, methods and technology of integrated automation of process industries. Corresponding author of this paper
  • 摘要: 超高温电熔镁炉(Fused magnesium furnace,FMF)生产炉况监测困难,易发生欠烧异常工况,不仅造成产品质量下降,也直接危害生产安全与人员安全.现有的人工巡检方式实时性差,容易发生漏报和误报,甚至导致铁制炉壳烧透、烧漏.针对该问题,本文采用视频信号,利用电熔镁炉欠烧工况的时空特征,即在炉壳表面出现的局部不规则高亮区域的空间特征,以及该高亮区域随时间呈现出亮度增强、面积变大的时序特征,提出一种基于卷积循环神经网络(Convolutional recurrent neural network,CRNN)的电熔镁炉异常工况诊断新方法.该方法包括图像序列一致性变换和时序残差图像提取预处理、基于卷积神经网络(Convolutional neural network,CNN)的空间特征提取、基于循环神经网络(Recurrent neural network,RNN)的时序特征提取、基于加权中值滤波的工况自动标记.最后采用实际的电熔镁炉炉壳的视频信号,进行了所提方法与现有的两种深度学习网络模型的实验比较研究,结果说明了所提方法的优越性.
    1)  本文责任编委 徐德
  • 图  1  电熔镁炉欠烧工况视觉特征分析

    Fig.  1  Analysis of visual features of semimolten condition for an FMF

    图  2  基于CRNN的电熔镁炉欠烧工况诊断策略结构图

    Fig.  2  Framework of the proposed semimolten condition diagnosis based on CRNN for FMF

    图  3  卷积神经网络结构

    Fig.  3  Architecture of the proposed CNN

    图  4  循环神经网络结构

    Fig.  4  Structure of the RNN

    图  5  LSTM单元

    Fig.  5  The LSTM unit

    图  6  基于加权中值滤波的训练集标签生成

    Fig.  6  Generation of training labels based on weighted median filter

    图  7  卷积循环神经网络收敛曲线

    Fig.  7  Convergence curve of the convolutional recurrent network

    图  8  电熔镁炉欠烧工况诊断结果

    Fig.  8  Results of the semimolten condition diagnosis for FMF

    图  9  电熔镁炉欠烧工况诊断结果可视化

    Fig.  9  Visualization of diagnosis result of semimolten condition for FMF

    图  10  卷积神经网络的核函数可视化

    Fig.  10  Visualization of kernels in the trained CNN

    表  1  电熔镁炉欠烧工况的诊断率(%)

    Table  1  Diagnosis rates of semimolten condition for FMF (%)

    漏诊断率 误诊断率 总诊断率
    CNN[21] 5.74 13.22 81.04
    LSTM[12] 8.23 0.50 91.27
    本文方法 4.99 0.00 95.01
    下载: 导出CSV

    表  2  预处理对诊断率的影响(%)

    Table  2  Influences of two preprocessing procedures on diagnosis rates (%)

    漏诊断率 误诊断率 总诊断率
    无预处理 11.47 7.23 81.30
    无预处理1 10.22 6.73 83.04
    无预处理2 7.48 2.74 89.77
    本文方法 4.99 0.00 95.01
    下载: 导出CSV
  • [1] Fuchs A, Kaifer E, Himmel H J. Synthesis and characterization of the new tetrameric magnesium imide compound[(thf)MgNSiPh3]4. European Journal of Inorganic Chemistry, 2008, 2008(1):41-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/ejic.200701155
    [2] Zhang X, Xue D F, Xu D L, Feng X Q, Wang J Y. Growth of large MgO single crystals by an arc-fusion method. Journal of Crystal Growth, 2005, 280(1-2):234-238 doi: 10.1016/j.jcrysgro.2005.03.061
    [3] Zhang X, Xue D F, Wang J Y, Feng X Q. Improved growth technology of large MgO single crystals. Journal of Crystal Growth, 2006, 292(2):505-509 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9bc5b58b1b7edea7a578dc82744b899f
    [4] Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715 doi: 10.1109/TIE.2014.2349479
    [5] Chai T Y, Wu Z W, Wang H. A CPS based optimal operational control system for fused magnesium furnace. IFAC-PapersOnLine, 2017, 50(1):14992-14999 doi: 10.1016/j.ifacol.2017.08.2566
    [6] Maninis K K, Pont-Tuset J, Arbelaez P, van Gool L. Convolutional oriented boundaries:from image segmentation to high-level tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):819-833 doi: 10.1109/TPAMI.2017.2700300
    [7] 孙旭, 李晓光, 李嘉锋, 卓力.基于深度学习的图像超分辨率复原研究进展.自动化学报, 2017, 43(5):697-709 http://www.aas.net.cn/CN/abstract/abstract19048.shtml

    Sun Xu, Li Xiao-Guang, Li Jia-Feng, Zhuo Li. Review on deep learning based image super-resolution restoration algorithms. Acta Automatica Sinica, 2017, 43(5):697-709 http://www.aas.net.cn/CN/abstract/abstract19048.shtml
    [8] 胡长胜, 詹曙, 吴从中.基于深度特征学习的图像超分辨率重建.自动化学报, 2017, 43(5):814-821 http://www.aas.net.cn/CN/abstract/abstract19059.shtml

    Hu Chang-Sheng, Zhan Shu, Wu Cong-Zhong. Image super-resolution based on deep learning features. Acta Automatica Sinica, 2017, 43(5):814-821 http://www.aas.net.cn/CN/abstract/abstract19059.shtml
    [9] 孙晓, 潘汀, 任福继.基于ROI-KNN卷积神经网络的面部表情识别.自动化学报, 2016, 42(6):883-891 http://www.aas.net.cn/CN/abstract/abstract18879.shtml

    Sun Xiao, Pan Ting, Ren Fu-Ji. Facial expression recognition using ROI-KNN deep convolutional neural networks. Acta Automatica Sinica, 2016, 42(6):883-891 http://www.aas.net.cn/CN/abstract/abstract18879.shtml
    [10] Huang C, Li Y N, Loy C C, Tang X O. Learning deep representation for imbalanced classification. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016.5375-5384
    [11] 卢绍文, 王克栋, 吴志伟, 李鹏琦, 郭章.基于深度卷积网络的电熔镁炉欠烧工况在线识别.控制与决策, 2017, 23(9):1-8 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201907026

    Lu Shao-Wen, Wang Ke-Dong, Wu Zhi-Wei, Li Peng-Qi, Guo Zhang. Online detection of semi-molten of fused magnesium furnace based on deep convolutional neural network. Control and Decision, 2017, 23(9):1-8 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201907026
    [12] Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural networks. In: Proceedings of the 31st International Conference on Machine Learning. Beijing, China: JMLR.org, 2014. Ⅱ-1764-Ⅱ-1772
    [13] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014.3104-3112
    [14] Donahue J, Hendricks L A, Rohrbach M, Venugopalan S, Guadarrama S, Saenko K, et al. Long-term recurrent convolutional networks for visual recognition and description. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):677-691 doi: 10.1109/TPAMI.2016.2599174
    [15] Srivastava N, Mansimov E, Salakhutdinov R. Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR.org, 2015.843-852
    [16] Graves A. Generating sequences with recurrent neural networks. arXiv preprint arXiv: 1308.0850, 2013.
    [17] Reinhard E, Adhikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Computer Graphics and Applications, 2001, 21(5):34-41 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb200609009
    [18] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 1994, 5(2):157-166 doi: 10.1109/72.279181
    [19] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [20] Hendricks L A, Venugopalan S, Rohrbach M, Mooney R, Saenko K, Darrell T. Deep compositional captioning: describing novel object categories without paired training data. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016.1-10
    [21] Zhao R, Ouyang W L, Li H S, Wang X G. Saliency detection by multi-context deep learning. In: Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015.1265-1274 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7298731
    [22] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z F, Citro C, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603.04467, 2016.
    [23] Kingma D P, Ba J. Adam: a method for stochastic optimization. arXiv: 1412.6980, 2014.
    [24] Varol G, Laptev I, Schmid C. Long-term temporal convolutions for action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1510-1517 doi: 10.1109/TPAMI.2017.2712608
    [25] Lotter W, Kreiman G, Cox D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv: 1605.08104, 2016.
    [26] Zhao C H, Gao F R. Critical-to-fault-degradation variable analysis and direction extraction for online fault prognostic. IEEE Transactions on Control Systems Technology, 2017, 25(3):842-854 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6c78829e2f13c2931fe7469231efda8
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  556
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-29
  • 录用日期:  2018-09-04
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回