2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度的Top-n局部异常点快速检测算法

刘芳 齐建鹏 于彦伟 曹磊 赵金东

刘芳, 齐建鹏, 于彦伟, 曹磊, 赵金东. 基于密度的Top-n局部异常点快速检测算法. 自动化学报, 2019, 45(9): 1756-1771. doi: 10.16383/j.aas.c180425
引用本文: 刘芳, 齐建鹏, 于彦伟, 曹磊, 赵金东. 基于密度的Top-n局部异常点快速检测算法. 自动化学报, 2019, 45(9): 1756-1771. doi: 10.16383/j.aas.c180425
LIU Fang, QI Jian-Peng, YU Yan-Wei, CAO Lei, ZHAO Jin-Dong. A Fast Algorithm for Density-based Top-n Local Outlier Detection. ACTA AUTOMATICA SINICA, 2019, 45(9): 1756-1771. doi: 10.16383/j.aas.c180425
Citation: LIU Fang, QI Jian-Peng, YU Yan-Wei, CAO Lei, ZHAO Jin-Dong. A Fast Algorithm for Density-based Top-n Local Outlier Detection. ACTA AUTOMATICA SINICA, 2019, 45(9): 1756-1771. doi: 10.16383/j.aas.c180425

基于密度的Top-n局部异常点快速检测算法

doi: 10.16383/j.aas.c180425
基金项目: 

山东省自然科学基金 ZR2016FM42

国家自然科学基金 61403328

国家自然科学基金 61703360

国家自然科学基金 61773331

山东省高等学校科技计划 J17KA091

详细信息
    作者简介:

    刘芳   烟台大学计算机与控制工程学院硕士研究生.2017年获得烟台大学计算机科学与技术专业学士学位.主要研究方向为数据挖掘.E-mail:liufang0812@163.com

    齐建鹏  烟台大学计算机与控制工程学院硕士研究生.2015年获得烟台大学计算机科学与技术专业学士学位.主要研究方向为数据挖掘, 分布式计算.E-mail:jianpengqi@126.com

    曹磊   麻省理工学院计算机科学与人工智能实验室博士后.2016年获得伍斯特理工学院计算机科学专业博士学位.主要研究方法为数据挖掘, 机器学习.E-mail:lcao@csail.mit.edu

    赵金东  烟台大学计算机与控制工程学院副教授.2012年获得北京科技大学计算机科学与技术专业博士学位.主要研究方法为无线传感器网络, 分布式计算.E-mail:zhjdong@126.com

    通讯作者:

    于彦伟   烟台大学计算机与控制工程学院副教授, 美国宾夕法尼亚州立大学信息科学与技术学院博士后.2014年获得北京科技大学计算机科学与技术专业博士学位.主要研究方法为数据挖掘, 机器学习, 分布式计算.本文通信作者.E-mail:yuyanwei@ytu.edu.cn

A Fast Algorithm for Density-based Top-n Local Outlier Detection

Funds: 

Shandong Provincial Natural Science Foundation ZR2016FM42

National Natural Science Foundation of China 61403328

National Natural Science Foundation of China 61703360

National Natural Science Foundation of China 61773331

A Project of Shandong Province Higher Educational Science and Technology Program J17KA091

More Information
    Author Bio:

       Master student at the School of Computer and Control Engineering, Yantai University. She received her bachelor degree in computer science from Yantai University in 2017. Her main research interest is data mining

       Master student at the School of Computer and Control Engineering, Yantai University. He received his bachelor degree in computer science from Yantai University in 2015. His research interest covers data mining and distributed computing

       Postdoctor at the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. He received his Ph. D. degree in computer science from Worcester Polytechnic Institute, USA in 2016. His research interest covers data mining and machine learning

       Associate professor at the School of Computer and Control Engineering, Yantai University. He received his Ph. D. degree in computer science from University of Science and Technology Beijing in 2012. His research interest covers wireless sensor networks and distributed computing

    Corresponding author: YU Yan-Wei    Associate professor at the School of Computer and Control Engineering, Yantai University, Postdoctor at the College of Information Sciences and Technology, Pennsylvania State University. He received his Ph. D. degree in computer science from University of Science and Technology Beijing in 2014. His research interest covers data mining, machine learning and distributed computing. Corresponding author of this paper
  • 摘要: 局部异常检测(Local outlier factor,LOF)能够有效解决数据倾斜分布下的异常检测问题,在很多应用领域具有较好的异常检测效果.本文面向大数据异常检测,提出了一种快速的Top-n局部异常点检测算法MTLOF(Multi-granularity upper bound pruning based top-n LOF detection),融合索引结构和多层LOF上界设计了多粒度的剪枝策略,以快速发现Top-n局部异常点.首先,提出了四个更接近真实LOF值的上界,以避免直接计算LOF值,并对它们的计算复杂度进行了理论分析;其次,结合索引结构和UB1UB2上界,提出了两层的Cell剪枝策略,不仅采用全局Cell剪枝策略,还引入了基于Cell内部数据对象分布的局部剪枝策略,有效解决了高密度区域的剪枝问题;再次,利用所提的UB3UB4上界,提出了两个更加合理有效的数据对象剪枝策略,UB3UB4上界更加接近于真实LOF值,有利于剪枝更多数据对象,而基于计算复用的上界计算方法,大大降低了计算成本;最后,优化了初始Top-n局部异常点的选择方法,利用区域划分和建立的索引结构,在数据稀疏区域选择初始局部异常点,有利于将LOF值较大的数据对象选为初始局部异常点,有效提升初始剪枝临界值,使得初始阶段剪枝掉更多的数据对象,进一步提高检测效率.在六个真实数据集上的综合实验评估验证MTLOF算法的高效性和可扩展性,相比最新的TOLF(Top-n LOF)算法,时间效率提升可高达3.5倍.
    1)  本文责任编委 黎铭
  • 图  1  $dist_r(q, o)$与$dist(q, o)$的关系示例

    Fig.  1  The relationships between $dist_r(q, o)$ and $dist(q, o)$

    图  2  $dist_k(p)$与$dist_k(q)$的关系示例

    Fig.  2  The relationships between $dist_k(p)$ and $dist_k(q)$

    图  3  基于Cell索引的剪枝示例

    Fig.  3  An example of pruning based on Cell index

    图  4  区域划分示例

    Fig.  4  An example of area partition

    图  5  总体效率对比评估

    Fig.  5  Comparison evaluation of overall efficiency

    图  6  初始化优化方法有效性评估

    Fig.  6  Effectiveness evaluation of initialization optimization

    图  7  准确率和效率评估

    Fig.  7  Evaluation of precision and efficiency

    图  8  参数$k$对检测时间的影响

    Fig.  8  Impact of parameter $k$ on detection time

    图  9  参数$n$对检测时间的影响

    Fig.  9  Impact of parameter $n$ on detection time

    图  10  多维数据集上的效率评估

    Fig.  10  Efficient evaluation on multi-dimensional datasets

    算法1. MTLOF算法
    输入. Dataset $ D $, the number of nearest neighbors $ k $, top outliers $ n $, parameters $ diff $ and $ t $.
    输出. Top-$ n $ LOF outliers.
    1) $ Set_{\rm area} \leftarrow GenerateArea(D, diff) $.
    2) for $ A_i \in Set_{\rm area} $ do
    3)   if $ |A_i| \geq t\cdot k $
    4)       $ rtree \leftarrow Rtree(A_i, k) $; then
    5)       $ Set_{\rm Rtree} \leftarrow Set_{\rm Rtree} \cup \{rtree\} $;
    6)   else if $ cp_{\rm min}^{A_i} \geq \max\nolimits_{A_j \in Set_{\rm area}\setminus Set_{\rm ini}}\{cp_{\rm min}^{A_j}\} $
    7)       $ Set_{\rm ini} \leftarrow Set_{\rm ini} \cup A_i $
    8) if $ |Set_{\rm ini}|\geq n $ then
    9):    $ Top_{n}, ct \leftarrow Random (Set_{\rm ini}, n) $;
    10) else
    11)    $ Set_{\rm ini} \leftarrow Set_{\rm ini} \cup MaxLeaf(Set_{\rm Rtree}) $
    12)    $ Top_{n}, ct \leftarrow Random(Set_{\rm ini}, n) $;
    13) for $ p \in Set_{\rm ini}-Top_{n} $ do
    14)    if $ {UB}_3(p) \leq ct $ or $ {UB}_4(p) \leq ct $ then
    15)       $ p.st \leftarrow prune $;
    16) else if $ LOF(p) \leq ct $ then
    17)       $ p.st \leftarrow prune $;
    18)    else
    19)       $ Top_{n}.replace(p) $; update $ ct $;
    20) for $ rtree \in Set_{\rm Rtree} $ do
    21)    for $ node \in rtree $ from top to bottom
    22)      if $ node.st = = prune $
    23)          continue;
    24)       else if $ |node| > k \land node.len_{\rm side} \leq {ct\cdot cp_{\rm min}}/{(2\sqrt{d}}) $ then
    25)       $ node.st \leftarrow prune $;
    26)       $ node.allchilden \leftarrow prune $;
    27) else if $ node.len_{\rm side} \leq {ct\cdot \overline{kd}_{\rm min}}/{(2\sqrt{d})} $
    28)       $ node.st \leftarrow prune $;
    29)       $ node.allchilden \leftarrow prune $;
    30)       else
    31)       for $ p \in node $
    32)       if $ {UB}_3(p) \leq ct $ or $ {UB}_4(p) \leq ct $
    33:       $ p.st \leftarrow prune $;
    34)       else if $ {LOF(p)} \leq ct $ then
    35)       $ p.st \leftarrow prune $;
    36)    else
    37)       $ Top_{n}.replace(p) $; update $ ct $;
    38) return $ Top_{n} $.
    下载: 导出CSV

    表  1  实验数据集统计信息

    Table  1  The statistical information of experimental data sets

    数据集 数据对象数量 数据维度 数据大小($\times10^{6}$)
    Mobike 1 082 732 2 43.1
    Gowalla 5 127 211 2 376
    Geolife 11 065 399 2 851
    Massachusetts 31 136 410 2 1 228
    Skinseg 245 057 3 12
    Forestcover 581 012 10 71.6
    Subforestcover 283 402 10 28.3
    下载: 导出CSV

    表  2  MTLOF剪枝数量(%)

    Table  2  The pruning number of MTLOF (%)

    Mobike Gowalla Geolife Mass
    Cell剪枝 26.9 20.9 42.1 30.2
    数据对象剪枝 71.5 40.9 43.8 68.7
    总剪枝数量 98.4 61.8 85.9 98.9
    下载: 导出CSV

    表  3  TOLF剪枝数量(%)

    Table  3  The pruning number of TOLF (%)

    Mobike Gowalla Geolife Mass
    Cell剪枝 0 0 9.2 5.9
    数据对象剪枝 62.3 19.5 52.4 80.1
    总剪枝数量 62.3 19.5 61.6 86
    下载: 导出CSV

    表  4  MTLOF每个上界剪枝数量(%)

    Table  4  The pruning number of each upper bound in MTLOF (%)

    Mobike Gowalla Geolife Mass
    $UB_1$ 6.1 9.4 25.3 16.8
    $UB_1+UB_2$ 26.9 20.2 42.1 30.2
    $UB_1+UB_2+UB_3$ 88.4 50.2 70.5 74.7
    总剪枝数量 98.4 61.8 85.9 98.9
    下载: 导出CSV
  • [1] Du B W, Liu C R, Zhou W J, Hou Z S, Xiong H. Catch me if you can: detecting pickpocket suspects from large-scale transit records. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California: ACM, 2016. 87-96
    [2] Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Computing Surveys (CSUR), 2009, 41(3): Article No. 15
    [3] Gupta M, Gao J, Aggarwal C C, Han J W. Outlier detection for temporal data:a survey. IEEE Transactions on Knowledge & Data Engineering, 2014, 26(9):2250-2267
    [4] Aggarwal C C. Outlier analysis. Data Mining. Switzerland: Springer, 2015. 237-263
    [5] Knorr E M, Ng R T. Algorithms for mining distance-based outliers in large datasets. In: Proceedings of the 24th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1998. 392-403
    [6] Knorr E M, Ng R T, Tucakov V. Distance-based outliers:algorithms and applications. The VLDB Journal, 2000, 8(3-4):237-253 doi: 10.1007/s007780050006
    [7] 王习特, 申德荣, 白梅, 聂铁铮, 寇月, 于戈. BOD:一种高效的分布式离群点检测算法.计算机学报, 2016, 39(1):36-51 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200102003

    Wang Xi-Te, Shen De-Rong, Bai Mei, Nie Tie-Zheng, Kou Yue, Yu Ge. BOD:an efficient algorithm for distributed outlier detection. Chinese Journal of Computers, 2016, 39(1):36-51 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200102003
    [8] Bay S D, Schwabacher M. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C.: ACM, 2003. 29-38
    [9] Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, Texas, USA: ACM, 2000. 427-438
    [10] Angiulli F, Pizzuti C. Fast outlier detection in high dimensional spaces. In: European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Heidelberg: Springer, 2002. 15-27
    [11] Solberg H E, Lahti A. Detection of outliers in reference distributions:performance of Horn's algorithm. Clinical Chemistry, 2005, 51(12):2326-2332 doi: 10.1373/clinchem.2005.058339
    [12] Aggarwal C C, Yu P S. Outlier detection for high dimensional data. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. Santa Barbara, California, USA: ACM, 2001. 37-46
    [13] Aggarwal C C, Yu P S. Outlier detection with uncertain data. In: Proceedings of the 2008 SIAM International Conference on Data Mining. Atlanta, Georgia, USA: SIAM, 2008. 483-493
    [14] Yu D T, Sheikholeslami G, Zhang A D. FindOut:finding outliers in very large datasets. Knowledge and Information Systems, 2002, 4(4):387-412 doi: 10.1007/s101150200013
    [15] He Z Y, Xu X F, Deng S C. Discovering cluster-based local outliers. Pattern Recognition Letters, 2003, 24(9-10):1641-1650 doi: 10.1016/S0167-8655(03)00003-5
    [16] Breunig M M, Kriegel H P, Ng R T, Sander J. LOF: identifying densitybased local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, Texas, USA: ACM, 2000. 93-104
    [17] Lazarevic A, Ertoz L, Kumar V, Ozgur A, Srivastava J. A comparative study of anomaly detection schemes in network intrusion detection. In: Proceedings of the 2003 SIAM International Conference on Data Mining. San Francisco, CA, USA: SIAM, 2003. 25-36
    [18] Campos G O, Zimek A, Sander J, Campello R J G B, Micenková B, Schubert E, et al. On the evaluation of unsupervised outlier detection:measures, datasets, and an empirical study. Data Mining and Knowledge Discovery, 2016, 30(4):891-927 doi: 10.1007/s10618-015-0444-8
    [19] Yan Y Z, Cao L, Rundensteiner E A. Scalable top-n local outlier detection. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada: ACM, 2017. 1235-1244
    [20] Jin W, Tung A K H, Han J W. Mining top-n local outliers in large databases. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California: ACM, 2001. 293-298
    [21] Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Montreal, Quebec, Canada: ACM, 1996. 103-114
    [22] Tang J, Chen Z X, Fu A W C, Cheung D W. Enhancing effectiveness of outlier detections for low density patterns. In: Proceedings of the 2002 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 2002. 535-548
    [23] 朱利, 邱媛媛, 于帅, 原盛.一种基于快速k-!近邻的最小生成树离群检测方法.计算机学报, 2017, 40(12):2856-2870 doi: 10.11897/SP.J.1016.2017.02856

    Zhu Li, Qiu Yuan-Yuan, Yu Shuai, Yuan Sheng. A fast kNN-based MST outlier detection method. Chinese Journal of Computers, 2017, 40(12):2856-2870 doi: 10.11897/SP.J.1016.2017.02856
    [24] Papadimitriou S, Kitagawa H, Gibbons P B, Faloutsos C. Loci: fast outlier detection using the local correlation integral. In: Proceedings of the 19th International Conference on Data Engineering. Bangalore, India: IEEE, 2003. 315-326
    [25] 杨宜东, 孙志挥, 朱玉全, 杨明, 张柏礼.基于动态网格的数据流离群点快速检测算法.软件学报, 2006, 17(8):1796-1803 http://d.old.wanfangdata.com.cn/Periodical/rjxb200608014

    Yang Yi-Dong, Sun Zhi-Hui, Zhu Yu-Quan, Yang Ming, Zhang Bo-Li. A fast outlier detection algorithm for data streams based on dynamic grids. Journal of Software, 2006, 17(8):1796-1803 http://d.old.wanfangdata.com.cn/Periodical/rjxb200608014
    [26] Zhang K, Hutter M, Jin H D. A new local distance-based outlier detection approach for scattered real-world data. In: Proceedings of the 2009 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 2009. 813-822
    [27] Kriegel H P, Kröger P, Schubert E, Zimek A. LoOP: local outlier probabilities. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China: ACM, 2009. 1649-1652
    [28] Schubert E, Zimek A, Kriegel H P. Local outlier detection reconsidered:a generalized view on locality with applications to spatial, video, and network outlier detection. Data Mining and Knowledge Discovery, 2014, 28(1):190-237 doi: 10.1007/s10618-012-0300-z
    [29] Schubert E, Zimek A, Kriegel H P. Generalized outlier detection with flexible kernel density estimates. In: Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, Pennsylvania, USA: SIAM, 2014. 542-550
    [30] Liu J, Deng H F. Outlier detection on uncertain data based on local information. Knowledge-Based Systems, 2013, 51:60-71 doi: 10.1016/j.knosys.2013.07.005
    [31] Cao K Y, Shi L X, Wang G R, Han D H, Bai M. Density-based local outlier detection on uncertain data. In: Proceedings of the 2014 International Conference on Web-Age Information Management. Macau, China: Springer, 2014. 67-71
    [32] 曹科研, 栾方军, 孙焕良, 丁国辉.不确定数据基于密度的局部异常点检测.计算机学报, 2017, 40(10):2231-2244 doi: 10.11897/SP.J.1016.2017.02231

    Cao Ke-Yan, Luan Fang-Jun, Sun Huan-Liang, Ding Guo-Hui. Density-based local outlier detection on uncertain data. Chinese Journal of Computers, 2017, 40(10):2231-2244 doi: 10.11897/SP.J.1016.2017.02231
    [33] Liu F T, Ting K M, Zhou Z H. Isolation forest. In: Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008. 413-422
    [34] Liu F T, Ting K M, Zhou Z H. Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 2012, 6(1): Article No. 3
    [35] Cho E, Myers S A, Leskovec J. Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, California, USA: ACM, 2011. 1082-1090
    [36] Zheng Y, Xie X, Ma W Y. GeoLife:a collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 2010, 33(2):32-40 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234713955/
    [37] Haklay M, Weber P. OpenStreetMap:user-generated street maps. IEEE Pervasive Computing, 2008, 7(4):12-18 doi: 10.1109/MPRV.2008.80
    [38] Bhatt R B, Sharma G, Dhall A, Chaudhury S. Efficient skin region segmentation using low complexity fuzzy decision tree model. In: Proceedings of the 2009 Annual IEEE India Conference. Gujarat, India: IEEE, 2009. 1-4
    [39] Blackard J A, Dean D J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture, 1999, 24(3):131-151 doi: 10.1016/S0168-1699(99)00046-0
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1452
  • HTML全文浏览量:  314
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-13
  • 录用日期:  2018-09-10
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回