-
摘要: 人-机器人技能传递(Human-robot skill transfer,HRST)是指人将操作技能传授给机械臂使得机器人具备类人化的作业能力,以达到高效示教编程的目的.相对于传统的机器人编程技术,人机技能传递具有高效率、低成本、不依赖机器本体平台等显著优点,是人-信息-机器人融合系统(Human-cyber-robot-systems,HCRS)中重要环节之一,应当给予足够的重视.本文首先介绍了人机技能传递技术的研究背景,接着简述了该技术在人机接口、建模、仿生自适应控制等方面的发展现状,并对未来的研究方向做出了展望.Abstract: Human-robot skill transfer (HRST) is a general method to transfer human's skills to robots in order that robots can perform tasks in a human-like way. With this method, robots can be programmed efficiently. Comparing with conventional program methods, HRST has a number of significant advantages such as high efficiency, low cost and independent of robotic platforms. It is one of the most important parts in human-cyber-robotic systems (HCRS), which should be paid much attention to. In this paper, we firstly introduce the background of HRST, then introduce human robot interface, modelling and control domain. Finally we show some potential research lines in future.1) 本文责任编委 穆朝絮
-
表 1 HRST与传统方式的比较
Table 1 Comparation between HRST and the conventional methods
传统编程方式 人机技能传递 交互方式 人机隔离 共融交互 交互感受 编程不直观 自然、直观 编程人员 需要专业工程师 不依赖专业人员 机器人平台 针对具体机器人平台 技能不受限于特定平台 工作空间 受限于作业环境 受限程度小 任务情况 任务具体、固定 适应于不同任务, 可优化 编程效率 效率低下, 耗时多 效率较高, 便于重配置 表 2 DMP、GMM、HMM模型特点总结
Table 2 The summary of DMP、GMM、HMM models
模型 常见变种 基本特点 技能示例 DMP - 模型简单; 拓展性好; 学习单次示教; 计算效率高$^{1}$. Tennis swings[75] Bio-inpisred DMP 可以克服跨过零点问题, 可在线动态避障. Pick-and-place[34] PDMP 适用高维$^{2}$、连续系统; 对多种运动灵活表达. Walking[36] GDMP 可实现多种控制策略, 起到意图预测等作用. Grasping[37] AL-DMP 空间与时间信息分别表示, 更好地表达运动速度. Reaching positions[39] SDMP 可从多次差异较大的示教结果中学习技能特征$^{3}$. Table tennis[41] ProMP$^{4}$ 对运动原语概率化表示; 可有机混合不同运动原语. Robot hockey[76] Coupling DMP 耦合双臂运动信息, 适宜双臂、协作操作任务. Bimanual tasks[35] DMP-based RL 通过强化学习方法对DMP轨迹优化. Ball-in-a-cup[43] GMM - 可表达不同维度的关联信息; 可表征多次示教; 计算效率相对低. Gripper assembly[77] ILO-GMM 局部耦合运动信息; 增量学习运动技能. Moving[54] TP-GMM 耦合任务参数到模型中; 对参数化轨迹在线调节. Rolling out a pizza[56] TP-GMM on RM$^{5}$ 用黎曼流形表示GMM, 有效表达末端位姿分布信息. Bimanual pouring[59] HMM - 相比GMM对运动的信息表达能力更强; 计算效率相比较低. Ball-in-box[78] HMM-GMR 用GMR做回归模型, 可在线生成运动控制命令; 鲁棒性好. Feeding[67] HMM-LPV 保证每个子状态的稳定性, 适宜复杂任务建模. Reach-Peel-retractg[69] HSMM 可表达状态驻留时间, 相比HMM抗外界干扰能力强. Button pushing[12] ADHSMM 自适应调节状态驻留时间, 对时间信息表达能力更强. Pouring[73] 1 计算效率高是指离线下模型学习时间短, 这里不包括基于DMP的强化学习算法.
2 指对多个自由度个数, 如对7-DOF的机械臂同时学习位置与速度, 则维度为14.
3 指多次示教的轨迹重合度小, 难于对齐, 如打乒乓球时的运动轨迹.
4 概率化运动原语(Probabilistic movement primitives, ProMP).
5 指黎曼流形(Riemannian manifolds, RM). -
[1] 周济, 李培根, 周艳红, 王柏村, 臧冀原, 孟柳.走向新一代智能制造.工程, 2018, 4(1):11-20 http://d.old.wanfangdata.com.cn/Periodical/zgkjcy201806008Zhou Ji, Li Pei-Gen, Zhou Yan-Hong, Wang Bai-Cun, Zang Ji-Yuan, Meng Liu. Toward new-generation intelligent manufacturing. Engineering, 2018, 4(1):11-20 http://d.old.wanfangdata.com.cn/Periodical/zgkjcy201806008 [2] Argall B D, Chernova S, Veloso M, Browning B. A survey of robot learning from demonstration. Robotics and Autonomous Systems, 2009, 57(5):469-483 doi: 10.1016/j.robot.2008.10.024 [3] Liang P D, Yang C G, Li Z J, Li R F. Writing skills transfer from human to robot using stiffness extracted from sEMG. In: Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China: IEEE, 2015. 19-24 https://www.researchgate.net/publication/308859401_Writing_skills_transfer_from_human_to_robot_using_stiffness_extracted_from_sEMG [4] Yang C G, Zeng C, Liang P D, Li Z J, Li R F, Su C Y. Interface design of a physical human-robot interaction system for human impedance adaptive skill transfer. IEEE Transactions on Automation Science and Engineering, 2018, 15(1):329-340 doi: 10.1109/TASE.2017.2743000 [5] Lin H C, Tang T, Fan Y X, Zhao Y, Tomizuka M, Chen W J. Robot learning from human demonstration with remote lead through teaching. In: Proceedings of the 2016 European Control Conference. Aalborg, Denmark: IEEE, 2016. 388-394 https://www.researchgate.net/publication/312401661_Robot_learning_from_human_demonstration_with_remote_lead_hrough_teaching [6] Vakanski A, Mantegh I, Irish A, Janabi-Sharifi F. Trajectory learning for robot programming by demonstration using hidden Markov model and dynamic time warping. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(4):1039-1052 doi: 10.1109/TSMCB.2012.2185694 [7] Niekum S, Osentoski S, Konidaris G, Barto A G. Learning and generalization of complex tasks from unstructured demonstrations. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 5239-5246 [8] Shadmehr R, Moussavi Z M. Spatial generalization from learning dynamics of reaching movements. Journal of Neuroscience, 2000, 20(20):7807-7815 doi: 10.1523/JNEUROSCI.20-20-07807.2000 [9] Tang T, Lin H C, Zhao Y, Fan Y X, Chen W J, Tomizuka M. Teach industrial robots peg-hole-insertion by human demonstration. In: Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics. Banff, Canada: IEEE, 2016. 488-494 [10] Ajoudani A, Fang C, Tsagarakis N G, Bicchi A. A reduced-complexity description of arm endpoint stiffness with applications to teleimpedance control. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 1017-1023 https://www.researchgate.net/publication/308584248_A_reduced-complexity_description_of_arm_endpoint_stiffness_with_applications_to_teleimpedance_control [11] Webb J, Ashley J. Beginning Kinect Programming with the Microsoft Kinect SDK. New York:Apress, 2012. [12] Liang P D, Ge L Z, Liu Y H, Zhao L J, Li R F, Wang K. An augmented discrete-time approach for human-robot collaboration. Discrete Dynamics in Nature and Society, 2016, 2016: Article ID 9126056 [13] Xu Y, Yang C G, Zhong J P, Wang N, Zhao L J. Robot teaching by teleoperation based on visual interaction and extreme learning machine. Neurocomputing, 2018, 275:2093-2103 doi: 10.1016/j.neucom.2017.10.034 [14] Yang Y Z, Li Y, Fermüller C, Aloimonos Y. Robot learning manipulation action plans by "watching" unconstrained videos from the world wide web. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. Texas, USA: AAAI, 2015. 3686-3693 https://www.researchgate.net/publication/273818079_Robot_Learning_Manipulation_Action_Plans_by_Watching_Unconstrained_Videos_from_the_World_Wide_Web [15] Tung H Y, Harley A W, Huang L K, Fragkiadaki K. Reward learning from narrated demonstrations. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018. 7004-7013 [16] Yang C, Wang X, Cheng L, Ma H. Neural-learning-based telerobot control with guaranteed performance. IEEE transactions on cybernetics, 2016, 47(10):3148-3159 http://www.ncbi.nlm.nih.gov/pubmed/27337731 [17] Yang C G, Wang X J, Li Z J, Li Y, Su C Y. Teleoperation control based on combination of wave variable and neural networks. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):2125-2136 doi: 10.1109/TSMC.2016.2615061 [18] Yang C G, Luo J, Pan Y P, Liu Z, Su C Y. Personalized variable gain control with tremor attenuation for robot teleoperation. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(10):1759-1770 doi: 10.1109/TSMC.2017.2694020 [19] Duan J, Ou Y, Xu S, Liu, M. Sequential learning unification controller from human demonstrations for robotic compliant manipulation. Neurocomputing, 2019. https://doi.org/10.1016/j.neucom.2019.07.081 doi: 10.1016/j.neucom.2019.07.081 [20] Rozo L, Calinon S, Caldwell D G, Jimenez P, Torras C. Learning physical collaborative robot behaviors from human demonstrations. IEEE Transactions on Robotics, 2016, 32(3):513-527 doi: 10.1109/TRO.2016.2540623 [21] Yang C G, Liang P D, Li Z J, Ajoudani A, Su C Y, Bicchi A. Teaching by demonstration on dual-arm robot using variable stiffness transferring. In: Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai, China: IEEE, 2015. 1202-1208 [22] Yang C G, Liang P D, Ajoudani A, Li Z J, Bicchi A. Development of a robotic teaching interface for human to human skill transfer. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016. 710-716 [23] Tanwani A K, Calinon S. Learning robot manipulation tasks with task-parameterized semitied hidden semi-Markov model. IEEE Robotics and Automation Letters, 2016, 1(1):235-242 doi: 10.1109/LRA.2016.2517825 [24] Racca M, Pajarinen J, Montebelli A, Kyrki V. Learning in-contact control strategies from demonstration. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016. 688-695 [25] Yang C G, Zeng C, Fang C, He W, Li Z J. A dmps-based framework for robot learning and generalization of humanlike variable impedance skills. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1193-1203 doi: 10.1109/TMECH.2018.2817589 [26] Calinon S, Pistillo A, Caldwell D G. Encoding the time and space constraints of a task in explicit-duration hidden Markov model. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011. 3413-3418 [27] Ijspeert A J, Nakanishi J, Schaal S. Trajectory formation for imitation with nonlinear dynamical systems. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, USA: IEEE, 2001. 752-757 [28] Ijspeert A J, Nakanishi J, Schaal S. Learning rhythmic movements by demonstration using nonlinear oscillators. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002. 958-963 [29] Ijspeert A J, Nakanishi J, Shibata T, Schaal S. Nonlinear dynamical systems for imitation with humanoid robots. In: Proceedings of the 2001 IEEE/RAS International Conference on Humanoid Robots. Tokyo, Japan: IEEE, 2001. 219-226 [30] Schaal S, Mohajerian P, Ijspeert A. Dynamics systems vs. optimal control-a unifying view. Progress in Brain Research, 2007, 165:425-445 doi: 10.1016/S0079-6123(06)65027-9 [31] Ijspeert A J, Nakanishi J, Hoffmann H, Pastor P, Schaal S. Dynamical movement primitives:learning attractor models for motor behaviors. Neural computation, 2013, 25(2):328-373 doi: 10.1162/NECO_a_00393 [32] Ude A, Gams A, Asfour T, Morimoto J. Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 2010, 26(5):800-815 doi: 10.1109/TRO.2010.2065430 [33] Muelling K, Kober J, Peters J. Learning table tennis with a mixture of motor primitives. In: Proceedings of the 10th IEEE/RSJ International Conference on Humanoid Robots. Nashville, USA: IEEE, 2010. 411-416 [34] Hoffmann H, Pastor P, Park D H, Schaal S. Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 2587-2592 [35] Rückert E, d'Avella A. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems. Frontiers in Computational Neuroscience, 2013, 7:138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003587748 [36] Krug R, Dimitrov D. Model predictive motion control based on generalized dynamical movement primitives. Journal of Intelligent and Robotic Systems, 2015, 77(1):17-35 doi: 10.1007/s10846-014-0100-3 [37] Meier F, Schaal S. A probabilistic representation for dynamic movement primitives. arXiv preprint, arXiv: 1612.05932, 2016. [38] Gašpar T, Nemec B, Morimoto J, Ude A. Skill learning and action recognition by arc-length dynamic movement primitives. Robotics and Autonomous Systems, 2018, 100:225-235 doi: 10.1016/j.robot.2017.11.012 [39] Gams A, Nemec B, Ijspeert A J, Ude A. Coupling movement primitives:interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 2014, 30(4):816-830 doi: 10.1109/TRO.2014.2304775 [40] Yin X C, Chen Q J. Learning nonlinear dynamical system for movement primitives. In: Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics. San Diego, USA: IEEE, 2014. 3761-3766 [41] Matsubara T, Hyon S H, Morimoto J. Learning stylistic dynamic movement primitives from multiple demonstrations. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 1277-1283 [42] Kober J. Reinforcement Learning for Motor Primitives. Citeseer, 2018. [43] Kober J, Mohler B, Peters J. Learning perceptual coupling for motor primitives. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008. 834-839 [44] Theodorou E, Buchli J, Schaal S. A generalized path integral control approach to reinforcement learning. Journal of Machine Learning Research, 2010, 11:3137-3181 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/001100007100300102 [45] Buchli J, Stulp F, Theodorou E, Schaal S. Learning variable impedance control. The International Journal of Robotics Research, 2011, 30(7):820-833 doi: 10.1177/0278364911402527 [46] Li Z J, Zhao T, Chen F, Hu Y B, Su C Y, Fukuda T. Reinforcement learning of manipulation and grasping using dynamical movement primitives for a humanoidlike mobile manipulator. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):121-131 doi: 10.1109/TMECH.2017.2717461 [47] Stulp F, Theodorou E A, Schaal S. Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Transactions on Robotics, 2012, 28(6):1360-1370 doi: 10.1109/TRO.2012.2210294 [48] Stulp F, Sigaud O. Robot skill learning:from reinforcement learning to evolution strategies. Paladyn, Journal of Behavioral Robotics, 2013, 4(1):49-61 [49] Calinon S, Bruno D. A Programming by Demonstration Model Combining Statistics, Dynamical Systems and Optimal Control, Technical Report, IDIAP Research Institute, Martigny, Switzerland, 2014. [50] Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2):286-298 doi: 10.1109/TSMCB.2006.886952 [51] Muhlig M, Gienger M, Hellbach S, Steil J J, Goerick C. Task-level imitation learning using variance-based movement optimization. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 1177-1184 [52] Gribovskaya E, Khansari-Zadeh S M, Billard A. Learning non-linear multivariate dynamics of motion in robotic manipulators. International Journal of Robotics Research, 2011, 30(1):80-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=711db58151744e9da01f83c8343aaa84 [53] Khansari-Zadeh S M, Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, 2011, 27(5):943-957 doi: 10.1109/TRO.2011.2159412 [54] Cederborg T, Li M, Baranes A, Oudeyer P Y. Incremental local online Gaussian Mixture Regression for imitation learning of multiple tasks. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 267-274 [55] Calinon S, Billard A. Statistical learning by imitation of competing constraints in joint space and task space. Advanced Robotics, 2009, 23(15):2059-2076 doi: 10.1163/016918609X12529294461843 [56] Calinon S, Alizadeh T, Caldwell D G. On improving the extrapolation capability of task-parameterized movement models. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013. 610-616 [57] Alizadeh T, Calinon S, Caldwell D G. Learning from demonstrations with partially observable task parameters. In: Proceedings of the IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 3309-3314 [58] Huang Y L, Silvério J, Rozo L, Caldwell D G. Generalized task-parameterized skill learning. arXiv preprint arXiv: 1707.01696, 2017. [59] Zeestraten M J A, Havoutis I, Silério J, Calinon S, Caldwell D G. An approach for imitation learning on riemannian manifolds. IEEE Robotics and Automation Letters, 2017, 2(3):1240-1247 doi: 10.1109/LRA.2017.2657001 [60] Reiley C E, Plaku E, Hager G D. Motion generation of robotic surgical tasks: learning from expert demonstrations. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina: IEEE, 2010. 967-970 [61] Chen J, Lau H Y K, Xu W J, Ren H L. Towards transferring skills to flexible surgical robots with programming by demonstration and reinforcement learning. In: Proceedings of the 8th International Conference on Advanced Computational Intelligence. Chiang Mai, Thailand: IEEE, 2016. 378-384 [62] Wang H Q, Chen J, Lau H Y K, Ren H L. Motion planning based on learning from demonstration for multiple-segment flexible soft robots actuated by electroactive polymers. IEEE Robotics and Automation Letters, 2016, 1(1):391-398 doi: 10.1109/LRA.2016.2521384 [63] Kinugawa J, Kanazawa A, Arai S, Kosuge K. Adaptive task scheduling for an assembly task coworker robot based on incremental learning of human's motion pattern. IEEE Robotics and Automation Letters, 2017, 2(2):856-863 doi: 10.1109/LRA.2017.2655565 [64] Goil A, Derry M, Argall B D. Using machine learning to blend human and robot controls for assisted wheelchair navigation. In: Proceedings of IEEE 13th International Conference on Rehabilitation Robotics. Seattle, USA: IEEE, 2013. 1-6 [65] Calinon S, Lee D. Learning control. Humanoid Robotics: a Reference. Dordrecht: Springer, 2016. 1-52 [66] Asfour T, Azad P, Gyarfas F, Dillmann R. Imitation learning of dual-arm manipulation tasks in humanoid robots. International Journal of Humanoid Robotics, 2008, 5(2):183-202 doi: 10.1142/S0219843608001431 [67] Calinon S, D'Halluin H, Sauser E L, Caldwell D G, Billard A G. Learning and reproduction of gestures by imitation. IEEE Robotics and Automation Magazine, 2010, 17(2):44-54 doi: 10.1109/MRA.2010.936947 [68] Vuković N, Mitić M, Miljković Z. Trajectory learning and reproduction for differential drive mobile robots based on GMM/HMM and dynamic time warping using learning from demonstration framework. Engineering Applications of Artificial Intelligence, 2015, 45:388-404 doi: 10.1016/j.engappai.2015.07.002 [69] Medina J R, Billard A. Learning stable task sequences from demonstration with linear parameter varying systems and hidden Markov models. In: Proceedings of the 1st Annual Conference on Robot Learning. Mountain View, USA: IEEE, 2017. 175-184 [70] Hollmann R, Rost A, Hägele M, Verl A. A HMM-based approach to learning probability models of programming strategies for industrial robots. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE, 2010. 2965-2970 [71] Rafii-Tari H, Liu J D, Payne C J, Bicknell C, Yang G Z. Hierarchical HMM based learning of navigation primitives for cooperative robotic endovascular catheterization. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer International Publishing, 2014. 496-503 [72] Pignat E, Calinon S. Learning adaptive dressing assistance from human demonstration. Robotics and Autonomous Systems, 2017, 93:61-75 doi: 10.1016/j.robot.2017.03.017 [73] Rozo L, Silvério J, Calinon S, Caldwell D G. Learning controllers for reactive and proactive behaviors in human-robot collaboration. Frontiers in Robotics and AI, 2016, 3:30 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004610587 [74] Amor H B, Neumann G, Kamthe S, Kroemer O, Peters J. Interaction primitives for human-robot cooperation tasks. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 2831-2837 [75] Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington D.C., USA: IEEE, 2002. 1398-1403 [76] Paraschos A, Daniel C, Peters J, Neumann G. Probabilistic movement primitives. In: Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2013. 2616-2624 [77] Kyrarini M, Haseeb M A, Ristić-Durrant D, Gräser A. Robot learning of industrial assembly task via human demonstrations. Autonomous Robots, 2019, 43(1):239-257 doi: 10.1007/s10514-018-9725-6 [78] Rozo L, Jiménez P, Torras C. A robot learning from demonstration framework to perform force-based manipulation tasks. Intelligent Service Robotics, 2013, 6(1):33-51 http://dl.acm.org/citation.cfm?id=2429645 [79] Fox E B, Hughes M C, Sudderth E B, Jordan M I. Joint modeling of multiple time series via the beta process with application to motion capture segmentation. Annals of Applied Statistics, 2013, 8(3):1281-1313 [80] Niekum S, Osentoski S, Konidaris G, Chitta S, Marthi B, Barto A G. Learning grounded finite-state representations from unstructured demonstrations. International Journal of Robotics Research, 2015, 34(2):131-157 doi: 10.1177/0278364914554471 [81] Chi M S, Yao Y F, Liu Y X, Teng Y Q, Zhong M. Learning motion primitives from demonstration. Advances in Mechanical Engineering, 2017, 9(12), DOI: 10.1177/1687814017737260 [82] Lioutikov R, Neumann G, Maeda G, Peters J. Learning movement primitive libraries through probabilistic segmentation. International Journal of Robotics Research, 2017, 36(8):879-894 doi: 10.1177/0278364917713116 [83] Schweighofer N, Arbib M A, Kawato M. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. European Journal of Neuroscience, 1998, 10(1):86-94 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1460-9568.1998.00006.x [84] Shadmehr R, Mussa-Ivaldi F A. Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 1994, 14(5):3208-3224 doi: 10.1523/JNEUROSCI.14-05-03208.1994 [85] Burdet E, Osu R, Franklin D W, Milner T E, Kawato M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 2001, 414(6862):446-449 doi: 10.1038/35106566 [86] Mitrovic D, Klanke S, Osu R, Kawato M, Vijayakumar S. A computational model of limb impedance control based on principles of internal model uncertainty. PLoS One, 2010, 5(10):e13601 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003247923 [87] He W, Dong Y T. Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1174-1186 doi: 10.1109/TNNLS.2017.2665581 [88] He W, Dong Y T, Sun C Y. Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(3):334-344 doi: 10.1109/TSMC.2015.2429555 [89] Steinmetz F, Montebelli A, Kyrki V. Simultaneous kinesthetic teaching of positional and force requirements for sequential in-contact tasks. In: Proceedings of IEEE/RAS 15th International Conference on Humanoid Robots. Seoul, South Korea: IEEE, 2015. 202-209 [90] Rozo L, Calinon S, Caldwell D G, Jimenez P, Torras C. Learning collaborative impedance-based robot behaviors. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence. Washington, USA: AAAI, 2013. 1422-1428 [91] Ajoudani A, Tsagarakis N, Bicchi A. Tele-impedance:Teleoperation with impedance regulation using a body-machine interface. The International Journal of Robotics Research, 2012, 31(13):1642-1656 doi: 10.1177/0278364912464668 [92] Li Z J, Huang Z C, He W, Su C Y. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Transactions on Industrial Electronics, 2017, 64(2):1664-1674 doi: 10.1109/TIE.2016.2538741 [93] Howard M, Braun D J, Vijayakumar S. Transferring human impedance behavior to heterogeneous variable impedance actuators. IEEE Transactions on Robotics, 2013, 29(4):847-862 doi: 10.1109/TRO.2013.2256311 [94] Peternel L, Tsagarakis N, Ajoudani A. A human-robot co-manipulation approach based on human sensorimotor information. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(7):811-822 doi: 10.1109/TNSRE.2017.2694553 [95] Yang C G, Zeng C, Cong Y, Wang N, Wang M. A learning framework of adaptive manipulative skills from human to robot. IEEE Transactions on Industrial Informatics, 2019, 15(2):1153-1161 doi: 10.1109/TII.2018.2826064 [96] Zeng C, Yang C G, Chen Z P, Dai S L. Robot learning human stiffness regulation for hybrid manufacture. Assembly Automation, 2018, 38(5):539-547 doi: 10.1108/AA-02-2018-019 [97] Fang C, Ajoudani A, Bicchi A, Tsagarakis N G. Online model based estimation of complete joint stiffness of human arm. IEEE Robotics and Automation Letters, 2018, 3(1):84-91 doi: 10.1109/LRA.2017.2731524 [98] Di Gironimo G, Matrone G, Tarallo A, Trotta M, Lanzotti A. A virtual reality approach for usability assessment:case study on a wheelchair-mounted robot manipulator. Engineering with Computers, 2013, 29(3):359-373 doi: 10.1007/s00366-012-0274-x [99] Wen R, Tay W L, Nguyen B P, Chng C B, Chui C K. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Computer Methods and Programs in Biomedicine, 2014, 116(2):68-80 doi: 10.1016/j.cmpb.2013.12.018 [100] Liu A A, Nie W Z, Gao Y, Su Y T. View-based 3-D model retrieval:a benchmark. IEEE Transactions on Cybernetics, 2018, 48(3):916-928 http://www.ncbi.nlm.nih.gov/pubmed/28212106 [101] Cong Y, Tian D Y, Feng Y, Fan B J, Yu H B. Speedup 3-D texture-less object recognition against self-occlusion for intelligent manufacturing. IEEE Transactions on Cybernetics, 2019, 49(11):3887-3897 doi: 10.1109/TCYB.2018.2851666 [102] Liu H S, Cong Y, Wang S, Fan H J, Tian D Y, Tang Y D. Deep learning of directional truncated signed distance function for robust 3D object recognition. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017. 5934-5940 [103] Xu B, Yang D P, Shi Z K, Pan Y P, Chen B D, Sun F C. Online recorded data-based composite neural control of strict-feedback systems with application to hypersonic flight dynamics. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8):3839-3849 doi: 10.1109/TNNLS.2017.2743784 [104] Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X Y, et al. Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv preprint, arXiv: 1703.09312, 2017. [105] Xie J, Dai G X, Zhu F, Shao L, Fang Y. Deep nonlinear metric learning for 3-D shape retrieval. IEEE Transactions on Cybernetics, 2018, 48(1):412-422 doi: 10.1109/TCYB.2016.2638924 [106] Bohg J, Hausman K, Sankaran B, Brock O, Kragic D, Schaal S, et al. Interactive perception:leveraging action in perception and perception in action. IEEE Transactions on Robotics, 2017, 33(6):1273-1291 doi: 10.1109/TRO.2017.2721939