2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异步时钟下基于信息物理融合的水下潜器协同定位算法

闫敬 张立 罗小元 濮彬 关新平

闫敬, 张立, 罗小元, 濮彬, 关新平. 异步时钟下基于信息物理融合的水下潜器协同定位算法. 自动化学报, 2019, 45(4): 739-748. doi: 10.16383/j.aas.c180377
引用本文: 闫敬, 张立, 罗小元, 濮彬, 关新平. 异步时钟下基于信息物理融合的水下潜器协同定位算法. 自动化学报, 2019, 45(4): 739-748. doi: 10.16383/j.aas.c180377
YAN Jing, ZHANG Li, LUO Xiao-Yuan, PU Bin, GUAN Xin-Ping. Cyber-Physical Cooperative Localization Algorithms for Underwater Vehicle With Asynchronous Time Clock. ACTA AUTOMATICA SINICA, 2019, 45(4): 739-748. doi: 10.16383/j.aas.c180377
Citation: YAN Jing, ZHANG Li, LUO Xiao-Yuan, PU Bin, GUAN Xin-Ping. Cyber-Physical Cooperative Localization Algorithms for Underwater Vehicle With Asynchronous Time Clock. ACTA AUTOMATICA SINICA, 2019, 45(4): 739-748. doi: 10.16383/j.aas.c180377

异步时钟下基于信息物理融合的水下潜器协同定位算法

doi: 10.16383/j.aas.c180377
基金项目: 

国家自然科学基金 61873228

国家自然科学基金 61503320

河北省留学人员归国项目 C201829

浙江省海洋观测——成像试验区重点实验室资助 OOIT2017OP03

河北省教育厅青年拔尖项目 BJ2018050

国家自然科学基金 61873345

河北省军民融合项目 2018B2 20

详细信息
    作者简介:

    闫敬  燕山大学电气工程学院副教授.2014年获得燕山大学控制科学与工程博士学位.主要研究方向为水声传感网络, 水下机器人控制.E-mail:jyan@ysu.edu.cn

    张立  燕山大学电气工程学院硕士研究生.2016年获得长江大学学士学位.主要研究方向为水下机器人定位与控制.E-mail:zlwyyx1@126.com

    濮彬  燕山大学电气工程学院硕士研究生.2016年获得滨州学院学士学位.主要研究方向为水声传感网络定位与追踪.E-mail:ppbbvip@163.com

    关新平  上海交通大学电子信息与电气工程学院教授.1999年获得哈尔滨工业大学控制科学与工程博士学位.主要研究方向为工业信息物理系统, 无线组网及应用, 水下传感器网络.E-mail:xpguan@sjtu.edu.cn

    通讯作者:

    罗小元   燕山大学电气工程学院教授.2004年获得燕山大学控制科学与工程博士学位.主要研究方向为水下信息物理系统, 多智能体协同控制.本文通信作者.E-mail:xyluo@ysu.edu.cn

Cyber-Physical Cooperative Localization Algorithms for Underwater Vehicle With Asynchronous Time Clock

Funds: 

National Natural Science Foundation of China 61873228

National Natural Science Foundation of China 61503320

Returned Overseas Chinese Scholar Foundation for Hebei Province C201829

Key Laboratory of Ocean Observation-Imaging Tested of Zhejiang Province OOIT2017OP03

Youth Talent Support Program of Hebei Education Department BJ2018050

National Natural Science Foundation of China 61873345

Civil-military Integration Foundation of Hebei Province 2018B2 20

More Information
    Author Bio:

     Associate professor at the Institute of Electrical Engineering, Yanshan University. He received his Ph. D. degree in control theory and control engineering from Yanshan University in 2014. His research interests covers underwater acoustic sensor networks, and the control of underwater vehicle

     Master student at the Institute of Electrical Engineering, Yanshan University. He received his bachelor degree from Yangtze University in 2016. His research interest covers localization and control for underwater vehicle

     Master student at the Institute of Electrical Engineering, Yanshan University. He received his bachelor degree from Binzhou University in 2016. His research interest covers localization and tracking for underwater acoustic sensor networks

      Professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University. He received his Ph. D. degree in control theory and control engineering from Harbin Institute of Technology in 1999. His research interest covers industrial cyber-physical systems, wireless networking and applications, and underwater sensor networks

    Corresponding author: LUO Xiao-Yuan  Professor at the Institute of Electrical Engineering, Yanshan University. He received his Ph. D. degree in control theory and control engineering from Yanshan University in 2004. His research interest covers underwater cyber-physical systems, and the cooperative control of multi-agent systems. Corresponding author of this paper
  • 摘要: 在异步时钟下研究了一种基于信息物理融合的水下潜器协同定位问题.首先,构建了由浮标、传感器和潜器组成的水下信息物理融合系统架构.然后,考虑水下异步时钟影响,设计了基于传感器与潜器交互通信的异步定位策略,给出了潜器协同定位问题.为求解上述协同定位问题,分别提出了基于扩展卡尔曼滤波(Extended Kalman filter,EKF)与无迹卡尔曼滤波(Unscented Kalman filter,UKF)的水下潜器协同定位算法.最后,对上述定位算法的有界性以及克拉美罗下界(Cramér-Rao lower bound,CRLB)进行了分析.仿真结果表明,上述算法可有效消除异步时钟对水下定位的影响.同时基于无迹卡尔曼滤波的定位算法可提高定位精度.
    1)  本文责任编委   孟凡利
  • 图  1  水下信息物理融合系统架构

    Fig.  1  Architecture of underwater cyber-physical system

    图  2  传感器与潜器的信息协同过程

    Fig.  2  Cooperation process for the sensors and vehicle

    图  3  同步测量与异步测量距离比较

    Fig.  3  Distance comparison with synchronous and asynchronous measurements

    图  4  同步测量与异步测量距离误差比较

    Fig.  4  Distance error comparison with synchronous and asynchronous measurements

    图  5  穷举法、扩展卡尔曼和无迹卡尔曼定位轨迹

    Fig.  5  Trajectories with exhaustive, EKF-based and UKF-based methods

    图  6  穷举法、扩展卡尔曼与无迹卡尔曼MSE比较

    Fig.  6  Comparison of MSE for exhaustive, EKF and UKF based methods

    图  7  扩展卡尔曼与无迹卡尔曼MSE与CRLB比较

    Fig.  7  Comparison of MSE and CRLB for UKF and EKF-based methods

    图  8  算法仿真定位用时比较

    Fig.  8  Localized trajectories of underwater vehicle different interference intensities

    图  9  不同干扰强度下潜器定位轨迹

    Fig.  9  Positioning trajectories of submersible under different interference intensities

    图  10  不同干扰强度下潜器定位误差

    Fig.  10  Positioning errors of underwater vehicle under different interference intensities

    图  11  误差统计分析

    Fig.  11  Analysis of statistical error

  • [1] Han G J, Xu H H, Duong T Q, Jiang J F, Hara T. Localization algorithms of wireless sensor networks:a survey. Telecommunication Systems, 2013, 52(4):2419-2436 doi: 10.1007/s11235-011-9564-7
    [2] 丁文东, 徐德, 刘希龙, 张大朋, 陈天.移动机器人视觉里程计综述.自动化学报, 2018, 44(3):385-400 http://www.aas.net.cn/CN/abstract/abstract19233.shtml

    Ding Wen-Dong, Xu De, Liu Xi-Long, Zhang Da-Peng, Chen Tian. Review on visual odometry for mobile robots. Acta Automatica Sinica, 2018, 44(3):385-400 http://www.aas.net.cn/CN/abstract/abstract19233.shtml
    [3] He J P, Cheng P, Chen J M, Shi L, Lu R X. Time synchronization for random mobile sensor networks. IEEE Transactions on Vehicular Technology, 2014, 63(8):3935-3946 doi: 10.1109/TVT.2014.2307076
    [4] Wang Y, Ho K C. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Transactions on Wireless Communications, 2018, 17(2):1242-1254 doi: 10.1109/TWC.2017.2777457
    [5] Xu S, Doǧançay K. Optimal sensor placement for 3-D angle-of-arrival target localization. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1196-1211 doi: 10.1109/TAES.2017.2667999
    [6] Wang J, Zhang X, Gao Q H, Ma X R, Feng X Y, Wang H Y. Device-free simultaneous wireless localization and activity recognition with wavelet feature. IEEE Transactions on Vehicular Technology, 2017, 66(2):1659-1669 doi: 10.1109/TVT.2016.2555986
    [7] Liu J, Wang Z H, Peng Z, Cui J H, Fiondella L. Suave: swarm underwater autonomous vehicle localization. In: Proceedings of the 2014 IEEE INFOCOM-IEEE Conference on Computer Communications. Toronto, ON, Canada: IEEE, 2014. 64-72
    [8] Zhou Z, Peng Z, Cui J H, Shi Z J, Bagtzoglou A. Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing, 2011, 10(3):335-348 doi: 10.1109/TMC.2010.158
    [9] Luo H J, Wu K S, Gong Y J, Ni L M. Localization for drifting restricted floating ocean sensor networks. IEEE Transactions on Vehicular Technology, 2016, 65(12):9968-9981 doi: 10.1109/TVT.2016.2530145
    [10] 贺华成, 王磊, 金鑫, 徐胜文.半潜平台锚泊辅助动力定位时域模拟研究.海洋工程, 2016, 34(5):117-124 http://d.old.wanfangdata.com.cn/Periodical/hygc201605014

    He Hua-Cheng, Wang Lei, Jin Xin, Xu Sheng-Wen. Research on time-domain simulations of mooring-assisted dynamic positioning system for a semi-submersible platform. The Ocean Engineering, 2016, 34(5):117-124 http://d.old.wanfangdata.com.cn/Periodical/hygc201605014
    [11] Yan J, Xu Z Q, Wan Y, Chen C L, Luo X Y. Consensus estimation-based target localization in underwater acoustic sensor networks. International Journal of Robust and Nonlinear Control, 2017, 27(9):1607-1627
    [12] Yan J, Xu Z Q, Luo X Y, Chen C L, Guan X P. Feedback-based target localization in underwater sensor networks:a multi-sensor fusion approach. IEEE Transactions on Signal and Information Processing over Networks, 2019, 5(1):168-180 doi: 10.1109/TSIPN.2018.2866335
    [13] 徐博, 白金磊, 郝燕玲, 高伟, 刘亚龙.多AUV协同导航问题的研究现状与进展.自动化学报, 2015, 41(3):445-461 http://www.aas.net.cn/CN/abstract/abstract18624.shtml

    Xu Bo, Bai Jin-Lei, Hao Yan-Ling, Gao Wei, Liu Ya-Long. The research status and progress of cooperative navigation for multiple AUVs. Acta Automatica Sinica, 2015, 41(3):445-461 http://www.aas.net.cn/CN/abstract/abstract18624.shtml
    [14] Yan J, Yang X, Luo X Y, Chen C L. Energy-Efficient data collection over AUV-Assisted underwater acoustic sensor network. IEEE Systems Journal, 2018, 12(4):3519-3530 doi: 10.1109/JSYST.2017.2789283
    [15] Carroll P, Mahmood K, Zhou S L, Zhou H, Xu X K, Cui J H. On-demand asynchronous localization for underwater sensor networks. IEEE Transactions on Signal Processing, 2014, 62(13):3337-3348 doi: 10.1109/TSP.2014.2326996
    [16] Liu J, Wang Z H, Cui J H, Zhou S L, Yang B. A Joint Time synchronization and localization design for mobile underwater sensor networks. IEEE Transactions on Mobile Computing, 2016, 15(3):530-543 doi: 10.1109/TMC.2015.2410777
    [17] Mortazavi E, Javidan R, Dehghani M J, Kavoosi V. A robust method for underwater wireless sensor joint localization and synchronization. Ocean Engineering, 2017, 137:276-286 doi: 10.1016/j.oceaneng.2017.04.006
    [18] Zhang B B, Wang H Y, Zheng L M, Wu J F, Zhuang Z W. Joint synchronization and localization for underwater sensor networks considering stratification effect. IEEE Access, 2017, 5:26932-26943 doi: 10.1109/ACCESS.2017.2778425
    [19] Yan J, Zhang X N, Luo X Y, Wang Y X, Chen C L, Guan X P. Asynchronous localization with mobility prediction for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 2018, 67(3):2543-2556 doi: 10.1109/TVT.2017.2764265
    [20] Caccia M, Veruggio G. Guidance and control of a reconfigurable unmanned underwater vehicle. Control Engineering Practice, 2000, 8(1):21-37 doi: 10.1016/S0967-0661(99)00125-2
    [21] Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems. In: Proceedings of the 1997 SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI. Orlando, FL, USA: SPIE, 1997.
    [22] Julier S, Uhlmann J, Durrant-Whyte H. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3):477-482 doi: 10.1109/9.847726
    [23] Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42(2):261-270 doi: 10.1016/j.automatica.2005.10.004
    [24] Lefebvre T, Bruyninckx H, De Schuller J. Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators"[with authors0 reply]. IEEE Transactions on Automatic Control, 2002, 47(8):1406-1409 doi: 10.1109/TAC.2002.800742
    [25] Reif K, Gunther S, Yaz E, Unbehauen R. Stochastic stability of the discrete-time extended Kalman filter. IEEE Transactions on Automatic Control, 1999, 44(4):714-728 doi: 10.1109/9.754809
    [26] Li W Y, Wei G L, Han F, Liu Y R. Weighted average consensus-based unscented Kalman filtering. IEEE Transactions on Cybernetics, 2016, 46(2):558-567 doi: 10.1109/TCYB.2015.2409373
  • 加载中
图(11)
计量
  • 文章访问数:  2466
  • HTML全文浏览量:  273
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 录用日期:  2018-08-14
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回