-
摘要: 针对现代智能交通信息物理融合路网建设中的对象种类复杂、采集数据量大、传输及计算需求高以及实时调度控制能力弱等问题,基于云控制系统理论,以现代智能交通控制网络为研究对象,设计了智能交通信息物理融合云控制系统方案,包括智能交通边缘控制技术和智能交通网络虚拟化技术.基于智能交通流大数据,在云控制管理中心服务器上利用深度学习和超限学习机等智能学习方法对采集的交通流数据进行训练预测计算,能够预测城市道路的短时交通流和拥堵状况.进一步在云端利用智能优化调度算法得到实时的交通流调控策略,用于解决拥堵路段交通流分配难题,提高智能交通控制系统动态运行性能.仿真结果表明了本文方法的有效性.Abstract: Based on the theory of cloud control systems, an intelligent transportation cyber-physical cloud control system is designed due to the problems of complex objects, big data, high demand for transmission and calculation and poor real-time control ability in the modern intelligent transportation cyber-physical network. It includes intelligent transportation edge control technology and intelligent transportation network virtualization technology. Based on the big data of intelligent traffic flow, two intelligent learning methods, deep learning and extreme learning machine, are used to train and predict the traffic flow data on the servers of the cloud control management center. The short time traffic flow and the congestion of roads are predicted accurately. Then the real-time traffic flow control strategy is obtained by intelligent optimization scheduling algorithm in the cloud. The problem of traffic flow distribution in congested roads is solved and the dynamic performance of intelligent transportation control systems can be improved. The simulation results show the effectiveness of the proposed method.
-
-
表 1 三种预测模型的性能比较
Table 1 Performance comparison of three prediction models
模型 MSE MAPE (%) DBN-SVR 0.05999 1.68051 BP-BELM 0.34084 10.7250 LSTM 0.37157 105.6117 -
[1] 王中杰, 谢璐璐.信息物理融合系统研究综述.自动化学报, 2011, 37(10):1157-1166 http://www.aas.net.cn/CN/abstract/abstract17604.shtmlWang Zhong-Jie, Xie Lu-Lu. Review on information physics fusion system. Acta Automatica Sinica, 2011, 37(10):1157-1166 http://www.aas.net.cn/CN/abstract/abstract17604.shtml [2] Xia Y. Cloud control systems. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2):134-142 doi: 10.1109/JAS.2015.7081652 [3] 夏元清.云控制系统及其面临的挑战.自动化学报, 2016, 42(1):1-12 doi: 10.3969/j.issn.1003-8930.2016.01.001Xia Yuan-Qing. Cloud control systems and its challenges. Acta Automatica Sinica, 2016, 42(1):1-12 doi: 10.3969/j.issn.1003-8930.2016.01.001 [4] Xia Y. From networked control systems to cloud control systems. In:Proceedings of the 31st Chinese Control Conference (CCC). Hefei, China, 2012. 5878-5883 http://www.researchgate.net/publication/261129459_From_networked_control_systems_to_cloud_control_systems [5] 马庆禄, 斯海林, 郭建伟.物联网环境下城市交通区域联动的云控制策略.计算机应用研究, 2013, 30(9):2711-2714 doi: 10.3969/j.issn.1001-3695.2013.09.038Ma Qing-Lu, Si Hai-Lin, Guo Jian-Wei. Cloud control strategy for urban traffic area linkage under the environment of Internet of things. Application Research of Computers, 2013, 30(9):2711-2714 doi: 10.3969/j.issn.1001-3695.2013.09.038 [6] Wang F Y, Zheng N N, Cao D, Martinez C M, Li L, Liu T. Parallel driving in CPSS:a unified approach for transport automation and vehicle intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4):577-587 doi: 10.1109/JAS.2017.7510598 [7] Chan K Y, Dillon T S, Singh J, Chang E. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2):644-654 doi: 10.1109/TITS.2011.2174051 [8] Meng D, Jia Y. Finite-time consensus for multi-agent systems via terminal feedback iterative learning. IET Control Theory & Applications, 2011, 5(8):2098-2110 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d19fb99fae3b04d7e99faaa0550cdb1 [9] Nascimento J C, Silva J G, Marques J S, Lemos J M. Manifold learning for object tracking with multiple nonlinear models. IEEE Transactions on Image Processing, 2014, 23(4):1593-1604 doi: 10.1109/TIP.2014.2303652 [10] Xue J, Shi Z. Short-time traffic flow prediction based on chaos time series theory. Journal of Transportation Systems Engineering and Information Technology, 2014, 8(5):68-72 http://www.sciencedirect.com/science/article/pii/S1570667208600409 [11] Polson N G, Sokolov V O, Deep learning for short-term traffic flow prediction. Transportation Research Part C Emerging Technologies, 2017, 79, 1-17 doi: 10.1016/j.trc.2017.02.024 [12] Kumar S V, Traffic flow prediction using Kalman filtering technique. Procedia Engineering, 2017, 187, 582-587 doi: 10.1016/j.proeng.2017.04.417 [13] 罗向龙, 焦琴琴, 牛力瑶, 孙壮文.基于深度学习的短时交通流预测.计算机应用研究, 2017, 34(1):91-93 doi: 10.3969/j.issn.1001-3695.2017.01.018Luo Xiang-Long, Jiao Qin-Qin, Niu Li-Yao, Sun Zhuang-Wen. Short term traffic flow prediction based on deep learning. Application Research of Computers, 2017, 34(1):91-93 doi: 10.3969/j.issn.1001-3695.2017.01.018 [14] Xu Y, Kong Q, Klette R, Liu Y, Accurate and interpretable bayesian MARS for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6):2457-2469 doi: 10.1109/TITS.2014.2315794 [15] Oh S, Kim Y, Hong J, Urban traffic flow prediction system using a multifactor pattern recognition model. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2744-2755 doi: 10.1109/TITS.2015.2419614 [16] Moretti F, Pizzuti S, Panzieri S, Annunziato M, Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing, 2015, 167(C):3-7 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235390321/ [17] Jeong Y S, Byon Y J, Castro-Neto M M, Easa S M, Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1700-1707 doi: 10.1109/TITS.2013.2267735 [18] Chan K Y, Dillion T S. On-road sensor configuration design for traffic flow prediction using fuzzy neural networks and taguchi method. IEEE Transactions on Instrumentation and Measurement, 2013, 62(1):50-59 doi: 10.1109/TIM.2012.2212506 [19] 满瑞君, 梁雪春.基于多尺度小波支持向量机的交通流预测.计算机仿真, 2013, 30(11):156-159 doi: 10.3969/j.issn.1006-9348.2013.11.035Man Rui-Jun, Liang Xue-Chun. Traffic flow forecasting based on multi-scale wavelet support vector machine. Computer Simulation, 2013, 30(11):156-159 doi: 10.3969/j.issn.1006-9348.2013.11.035 [20] Huang W H, Song G J, Hong H K, Xie K. Deep architecture for traffic flow prediction:deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2191-2201 doi: 10.1109/TITS.2014.2311123 [21] Koesdwiady A, Soua R, Karray F. Improving traffic flow prediction with weather information in connected cars:a deep learning approach. IEEE Transactions on Vehicular Technology, 2016, 65(12):9508-9517 doi: 10.1109/TVT.2016.2585575 [22] Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neurocomputing, 2006, 18(7):1527-1554 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b66e97177e8ce3590f5b9369eb533e53 [23] Kuremoto T, Kimura S, Kobayashi K, Obayashi M. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 2014, 137(15):47-56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=716bafba78199bab1f5dc7ff8e6838db [24] 谭娟, 王胜春.基于深度学习的交通拥堵预测模型研究.计算机应用研究, 2015, 32(10):2951-2954 doi: 10.3969/j.issn.1001-3695.2015.10.016Tan Juan, Wang Sheng-Chun. Traffic congestion prediction model based on deep learning. Application Research of Computers, 2015, 32(10):2951-2954 doi: 10.3969/j.issn.1001-3695.2015.10.016 [25] Lv Y, Duan Y, Wang W, Li Z, Wang F, Traffic flow prediction with big data:a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873 http://www.researchgate.net/publication/273564489_traffic_flow_prediction_with_big_data_a_deep_learning_approach [26] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4):879-892 doi: 10.1109/TNN.2006.875977 [27] Huang G B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems Man and Cybernetics, 2012, 42(2):513-529 doi: 10.1109/TSMCB.2011.2168604 [28] Huang W H, Song G J, Hong H K, Xie K. Deep architecture for traffic flow prediction:deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2191-2201 doi: 10.1109/TITS.2014.2311123 [29] Xia Y, Qin Y, Zhai D H, Chai S. Further results on cloud control systems. Science China Information Sciences, 2016, 59(7):073201 doi: 10.1007/s11432-016-5586-9 [30] 夏元清, Mahmoud M S, 李慧芳, 张金会.控制与计算理论的交互:云控制.指挥与控制学报, 2017, 3(2):99-118 doi: 10.3969/j.issn.2096-0204.2017.02.0099Xia Yuan-Qing, Mahmoud M S, Li Hui-Fang, Zhang Jin-Hui. Interaction between control and computation theory:cloud control. Journal of Command and Control, 2017, 3(2):99-118 doi: 10.3969/j.issn.2096-0204.2017.02.0099 [31] Kang D, Lv Y, Chen Y. Short-term traffic flow prediction with LSTM recurrent neural network. In:Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama, Japan:IEEE, 2017. 1-6 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_af8df0c3cad045255a265484eebd5503 期刊类型引用(45)
1. 王璐瑶,曹渊,刘博涵,曾恩,刘坤,夏元清. 时间序列分类模型的集成对抗训练防御方法. 自动化学报. 2025(01): 144-160 . 本站查看
2. 夏元清,王晁,高润泽,詹玉峰,孙中奇,戴荔,翟弟华. 云网边端协同云控制研究进展及挑战. 信息与控制. 2024(03): 273-286 . 百度学术
3. 赵静,梁浩,徐天啸,肖雅月,姜博文. 面向智能汽车赛博物理系统的领域特定建模语言研究. 汽车工程. 2024(08): 1370-1381 . 百度学术
4. 孔耀棕,张沛露. 基于AP聚类和CNN-BILSTM模型的建筑能耗预测. 电脑与电信. 2024(07): 26-30 . 百度学术
5. 李峥嵘,金雨佳,朱晗. 基于生成对抗网络的地铁站台人员密度数据涌现. 暖通空调. 2024(S2): 430-436 . 百度学术
6. 李慧芳,黄姜杭,徐光浩,夏元清. 基于多维度特征融合的云工作流任务执行时间预测方法. 自动化学报. 2023(01): 67-78 . 本站查看
7. 黄捷. 元宇宙下的控制与决策综述. 模式识别与人工智能. 2023(02): 143-159 . 百度学术
8. 夏元清,谢超,高寒,詹玉峰,孙中奇,戴荔,柴润祺,崔冰,张元,翟弟华,刘坤,杨辰,吴楚格,高润泽. 天空地一体化网络环境下多运动体系统跨域协同控制与智能决策综述. 控制与决策. 2023(05): 1176-1199 . 百度学术
9. 李杰,贺莹莹,杨矿利. 基于基因搜索算法的短时交通流预测. 平顶山学院学报. 2023(02): 47-52 . 百度学术
10. 叶丹,靳凯净,张天予. 网络攻击下的信息物理系统安全性研究综述. 控制与决策. 2023(08): 2243-2252 . 百度学术
11. 张淇瑞,刘坤,李江荣,代伟,夏元清. 基于互信息的云控制系统的最优隐私保护机制设计. 指挥与控制学报. 2023(03): 245-252 . 百度学术
12. 吴潇,赖旭芝,陆承达,黄恒宇,吴敏. 基于地质钻探智能云监控系统的钻速优化决策. 指挥与控制学报. 2023(03): 274-282 . 百度学术
13. 张雯阳,唐明珠,郭胜辉. 信息物理系统的鲁棒攻击检测器设计. 系统科学与数学. 2023(08): 1982-1992 . 百度学术
14. 徐天啸,梁浩,赵静,高小栋,闫涵. 基于MBSE的智能汽车信息物理系统建模方法(英文). 汽车文摘. 2023(10): 1-16 . 百度学术
15. 赵旭,李艳梅,罗建,罗金梅. 基于云预存储技术的Docker在线迁移方法. 自动化学报. 2023(11): 2426-2436 . 本站查看
16. 赵娜,王旭东,雷聪聪. 国内外智能交通系统研究热点及演化趋势分析. 交通科学与工程. 2023(05): 122-138 . 百度学术
17. 赵兴林. 基于计算机网络的智能配电网信息物理融合保护系统. 云南电力技术. 2023(06): 31-36 . 百度学术
18. 李博,梁竹关,尧跃华,官铮,丁洪伟. 基于FPGA的非对称轮询控制的智能交通灯系统优化设计. 现代电子技术. 2022(05): 139-145 . 百度学术
19. 李瑞敏,王长君. 智能交通管理系统发展趋势. 清华大学学报(自然科学版). 2022(03): 509-515 . 百度学术
20. 赵学良,郭迎九,刘亚军,周波. 物联网机器人核心课程体系探索. 物联网技术. 2022(03): 136-137+140 . 百度学术
21. 李远哲,胡纪滨. 强化学习在无人车领域的应用与展望. 信息与控制. 2022(02): 129-141 . 百度学术
22. 王寿光,赵玉美,尤丹,冉宁. 离散事件系统框架下信息物理系统攻击问题综述. 控制与决策. 2022(08): 1934-1944 . 百度学术
23. 李丽,张艺,强嘉萍. 混合攻击下多智能体系统的一致性控制. 控制工程. 2022(06): 1040-1048 . 百度学术
24. 张敏. 智能配电网信息物理融合保护系统. 信息技术. 2022(06): 79-85 . 百度学术
25. LI Shuyan,WAN Keke,GAO Bolin,LI Rui,WANG Yue,LI Keqiang. Predictive cruise control for heavy trucks based on slope information under cloud control system. Journal of Systems Engineering and Electronics. 2022(04): 812-826 . 必应学术
26. 关守平,王梁. 云控制系统不确定性分析与控制器设计方法. 自动化学报. 2022(11): 2677-2687 . 本站查看
27. 杨珊珊. 基于信息物理系统的智慧物业服务模式研究. 中国高新科技. 2022(20): 28-30 . 百度学术
28. 卢立阳,朱丽丽,刘楠,刘博. 基于云边端协同的高速公路云控系统能力验证研究. 公路交通科技. 2022(S1): 154-160 . 百度学术
29. 龙云霄,刘金兴,杨治利,袁尔会,夏俊凤. 智慧高速公路伴随式信息交互策略. 公路交通科技. 2022(S2): 161-167 . 百度学术
30. 倪俊,姜旭,熊周兵,周波. 无人车大数据与云控制技术综述. 北京理工大学学报. 2021(01): 1-8 . 百度学术
31. 吕书玉,马中,戴新发,高毅,胡哲琨. 云控制系统研究现状综述. 计算机应用研究. 2021(05): 1287-1293 . 百度学术
32. 刘坤,马书鹤,马奥运,张淇瑞,夏元清. 基于机器学习的信息物理系统安全控制. 自动化学报. 2021(06): 1273-1283 . 本站查看
33. 李怡然,夏元清. 基于云控制的闭环OBE在线教学模式探索. 实验室研究与探索. 2021(07): 149-153 . 百度学术
34. 伍锡如,邱涛涛,王耀南. 改进Mask R-CNN的交通场景多目标快速检测与分割. 仪器仪表学报. 2021(07): 242-249 . 百度学术
35. 张文聪,姚奕,郑潇,潘佳怡,仇翔,余世明. 基于云计算的智能装备远程运维管控系统设计. 科技创新与应用. 2021(28): 54-56 . 百度学术
36. 才智. 辽宁省智慧高速公路智慧核心的研究与设计. 辽宁省交通高等专科学校学报. 2021(04): 10-13 . 百度学术
37. 杨挺,刘亚闯,刘宇哲,王成山. 信息物理系统技术现状分析与趋势综述. 电子与信息学报. 2021(12): 3393-3406 . 百度学术
38. 邹晓明,荣美,蒋成龙. 人工智能在智慧高速中的应用探索. 企业科技与发展. 2020(02): 120-122 . 百度学术
39. 孙显强,崔鹏,李增润,高林郁,刘基宏,薛元. 环锭纺纱集成化智能控制系统构建及其应用. 纺织导报. 2020(07): 49-53 . 百度学术
40. 陈勇,李猛,裴峥. 执行器被攻击下不确定信息物理融合系统的超螺旋控制. 西华大学学报(自然科学版). 2020(04): 1-8 . 百度学术
41. 顾航,詹德佑. 车联网视频交换系统的测试平台研究. 中国计量大学学报. 2020(02): 208-214 . 百度学术
42. 夏元清,高润泽,林敏,任延明,闫策. 绿色能源互补智能电厂云控制系统研究. 自动化学报. 2020(09): 1844-1868 . 本站查看
43. 岑晏青,宋向辉,王东柱,孙玲,刘楠. 智慧高速公路技术体系构建. 公路交通科技. 2020(07): 111-121 . 百度学术
44. 邹伟东,夏元清. 基于压缩动量项的增量型ELM虚拟机能耗预测. 自动化学报. 2019(07): 1290-1297 . 本站查看
45. 王荣巍,何锋,周璇,鲁俊,李二帅. 面向无人机蜂群的航电云多层任务调度模型. 航空学报. 2019(11): 221-232 . 百度学术
其他类型引用(47)
-