2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层无迹卡尔曼滤波

杨峰 郑丽涛 王家琦 潘泉

杨峰, 郑丽涛, 王家琦, 潘泉. 双层无迹卡尔曼滤波. 自动化学报, 2019, 45(7): 1386-1391. doi: 10.16383/j.aas.c180349
引用本文: 杨峰, 郑丽涛, 王家琦, 潘泉. 双层无迹卡尔曼滤波. 自动化学报, 2019, 45(7): 1386-1391. doi: 10.16383/j.aas.c180349
YANG Feng, ZHENG Li-Tao, WANG Jia-Qi, PAN Quan. Double Layer Unscented Kalman Filter. ACTA AUTOMATICA SINICA, 2019, 45(7): 1386-1391. doi: 10.16383/j.aas.c180349
Citation: YANG Feng, ZHENG Li-Tao, WANG Jia-Qi, PAN Quan. Double Layer Unscented Kalman Filter. ACTA AUTOMATICA SINICA, 2019, 45(7): 1386-1391. doi: 10.16383/j.aas.c180349

双层无迹卡尔曼滤波

doi: 10.16383/j.aas.c180349
基金项目: 

西北工业大学创新创意种子基金 zz2018149

光电控制技术重点实验室和航空科学基金联合 20165153034

中国电子科技集团公司数据链技术重点实验室开放基金 CLDL-20182203

国家自然科学基金 61374159

陕西省自然基金 2018MJ6048

详细信息
    作者简介:

    郑丽涛   西北工业大学硕士研究生.主要研究方向为信息融合, 目标跟踪, 雷达数据处理.E-mail:zhenglitao@mail.nwpu.edu.cn

    王家琦   西北工业大学硕士研究生.主要研究方向为信息融合, 目标跟踪, 雷达数据处理.E-mail:jackwang@mail.nwpu.edu.cn

    潘泉   西北工业大学自动化学院教授.主要研究方向为目标跟踪, 信息融合, 复杂系统估计.E-mail:quanpan@nwpu.edu.cn

    通讯作者:

    杨峰   西北工业大学自动化学院副教授.主要研究方向为多源信息融合, 目标跟踪, 雷达数据处理.本文通信作者.E-mail:yangfeng@nwpu.edu.cn

Double Layer Unscented Kalman Filter

Funds: 

the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University zz2018149

Science and Technology on Electro-optic Control Laboratory, Aviation Science Foundation 20165153034

the Open Foundation of CETC Key Laboratory of Data Link Technology CLDL-20182203

National Natural Science Foundation of China 61374159

Shaanxi Natural Fund 2018MJ6048

More Information
    Author Bio:

      Master student at the School of Automation, Northwestern Polytechnical University. His research interest covers target tracking, information fusion, and radar data processing

      Master student at the School of Automation, Northwestern Polytechnical University. His research interest covers target tracking, information fusion, and radar data processing

      Professor at the School of Automation, Northwestern Polytechnical University. His research interest covers target tracking, information fusion, and hybrid system estimation theory

    Corresponding author: YANG Feng   Associate professor at the School of Automation, Northwestern Polytechnical University. His research interest covers information fusion, target tracking, and radar data processing. Corresponding author of this paper
  • 摘要: 针对无迹卡尔曼滤波(Unscented Kalman fllter,UKF)在强非线性系统中估计效果差的问题,提出了双层无迹卡尔曼滤波(Double layer unscented Kalman filter,DLUKF)算法,该算法用带权值的采样点表征先验分布,而后用内层UKF算法对每个采样点进行更新,最后引入外层UKF算法的更新机制得到估计值和估计协方差.仿真结果表明,相比于传统算法,所提的DLUKF算法可以在较低计算负载下获得较高滤波估计精度.
    1)  本文责任编委 朱纪洪
  • 图  1  DLUKF算法流程图

    Fig.  1  The flow-chart of DLUKF

    图  2  300次蒙特卡洛仿真的RMSE

    Fig.  2  The calculation time and RMSE of each algorithm

    图  3  位置的RMSE

    Fig.  3  The RMSE of position

    表  1  各算法计算时间及RMSE对比分析表

    Table  1  The calculation time and RMSE of each algorithm

    算法 运行时间(s) 平均RMSE
    UKF 0.0002 0.1566
    IUKF 0.0014 0.0881
    RUEKF 0.0006 0.0378
    RUCKF 0.0031 0.0337
    高阶UKF 0.0006 0.1434
    高阶CKF 0.0006 0.1437
    UPF (100) 0.1032 0.1153
    UPF (200) 0.2097 0.0714
    UPF (300) 0.3200 0.0626
    UPF (400) 0.4296 0.0564
    UPF (500) 0.5416 0.0476
    DLUKF 0.0016 0.0297
    下载: 导出CSV

    表  2  仿真参数设置

    Table  2  The Simulation parameters

    参数 $T$ $q$ ${\sigma _{1r}}$ ${\sigma _{1\varepsilon }}$ ${\sigma _{2r}}$ ${\sigma _{2\varepsilon }}$ $\varepsilon $
    数值 1 1 20 m 0.2$^{o}$ 200 m 0.2$^{o}$ 0.1
    下载: 导出CSV

    表  3  各个算法的性能

    Table  3  The performance of each algorithm

    算法 运行时间(s) 平均RMSE
    UKF 0.0059 99.8709
    IUKF 0.0424 85.0107
    RUEKF 0.0150 100.2616
    RUCKF 0.0397 99.8704
    高阶UKF 0.0193 100.4763
    高阶CKF 0.0191 99.7558
    UPF (300) 3.5953 88.2638
    UPF (400) 4.8406 86.5004
    UPF (500) 6.0552 85.8206
    UPF (600) 7.2596 85.1056
    UPF (700) 8.4211 84.6700
    UPF (800) 9.6178 83.2706
    UPF (900) 10.8389 82.9057
    UPF (1 000) 12.0105 82.4258
    DLUKF 0.0757 78.5559
    下载: 导出CSV
  • [1] Song W J, Yang Y, Fu M Y, Kornhauser A, Wang M L. Critical rays self-adaptive particle filtering SLAM. Journal of Intelligent and Robotic Systems, 2018, 92(1):107-124
    [2] Zhang T, Zhu Y Y, Zhou F, Yan Y X, Tong J W. Coarse alignment technology on moving base for SINS based on the improved quaternion filter algorithm. Sensors, 2017, 17(6):1424 doi: 10.3390/s17061424
    [3] 朱书军, 刘伟峰, 崔海龙.基于广义标签多伯努利滤波的可分辨群目标跟踪算法.自动化学报, 2017, 43(12):2178-2189 http://www.aas.net.cn/CN/abstract/abstract19191.shtml

    Zhu Shu-Jun, Liu Wei-Feng, Cui Hai-Long. Multiple resolvable groups tracking using the GLMB filter. Acta Automatica Sinica, 2017, 43(12):2178-2189 http://www.aas.net.cn/CN/abstract/abstract19191.shtml
    [4] 胡艳艳, 金增旺, 薛晓玲, 孙长银.基于异步IMM融合滤波的网络化系统故障诊断.自动化学报, 2017, 43(8):1329-1338 http://www.aas.net.cn/CN/abstract/abstract19107.shtml

    Hu Yan-Yan, Jin Zeng-Wang, Xue Xiao-Ling, Sun Chang-Yin. Fault diagnosis for networked systems by asynchronous IMM fusion filtering. Acta Automatica Sinica, 2017, 43(8):1329-1338 http://www.aas.net.cn/CN/abstract/abstract19107.shtml
    [5] 李军, 万文军, 胡康涛.一种基于点频滤波器的微分信号提取方法.自动化学报, 2017, 43(3):478-486 http://www.aas.net.cn/CN/abstract/abstract19026.shtml

    Li Jun, Wan Wen-Jun, Hu Kang-Tao. A new method for extraction of process difierential signal based on single-frequency-pass fllter. Acta Automatica Sinica, 2017, 43(3):478-486 http://www.aas.net.cn/CN/abstract/abstract19026.shtml
    [6] 申屠晗, 薛安克, 周治利.多传感器高斯混合PHD融合多目标跟踪方法.自动化学报, 2017, 43(6):1028-1037 http://www.aas.net.cn/CN/abstract/abstract19078.shtml

    Shen Tu-Han, Xue An-Ke, Zhou Zhi-Li. Multi-sensor Gaussian mixture PHD fusion for multi-target tracking, Acta Automatica Sinica, 2017, 43(6):1028-1037 http://www.aas.net.cn/CN/abstract/abstract19078.shtml
    [7] Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering Transactions, 1960, 82:35-45 doi: 10.1115/1.3662552
    [8] Arulampalam M S, Maskell S, Gordon N, Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2):174-188 doi: 10.1109/78.978374
    [9] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422 doi: 10.1109/JPROC.2003.823141
    [10] 潘泉, 杨峰, 叶亮, 梁彦, 程咏梅.一类非线性滤波器——UKF综述.控制与决策, 2005, 20(5):481-489 doi: 10.3321/j.issn:1001-0920.2005.05.001

    Pan Quan, Yang Feng, Ye Liang, Liang Yan, Cheng Yong-Mei. Survey of a kind of nonlinear filters——UKF. Control and Decision, 2005, 20(5):481-489 doi: 10.3321/j.issn:1001-0920.2005.05.001
    [11] Peng S, Chen C, Shi H, Yao Z. State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator. IEEE Access, 2017, 13202-13212
    [12] Merwe R V D, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001. 3461-3464 doi: 10.1111-j.1365-2559.2010.03597.x/
    [13] 占荣辉, 郁春来, 万建伟.简化UKF算法在单站无源目标跟踪中的应用.现代雷达, 2007, 29(3):42-46 doi: 10.3969/j.issn.1004-7859.2007.03.012

    Zhan Rong-Hui, Yu Chun-Lai, Wan Jian-Wei. Aplication of simplified UKF algorithm to single observer passive target tracking. Modern Radar, 2007, 29(3):42-46 doi: 10.3969/j.issn.1004-7859.2007.03.012
    [14] Zhan R, Wan J. Iterated unscented Kalman filter for passive target tracking. Aerospace and Electronic Systems IEEE Transactions on, 2007, 43(3):1155-1163 doi: 10.1109/TAES.2007.4383605
    [15] Zanetti. Recursive update filtering for nonlinear estimation. IEEE Transactions on Automatic Control, 2012, 57(6):1481-1490 doi: 10.1109/TAC.2011.2178334
    [16] Huang Y L, Zhang Y G, Li N, Zhao L. Design of sigma-point Kalman filter with recursive updated measurement. Circuits Systems and Signal Processing, 2016, 35(5):1767-1782 doi: 10.1007/s00034-015-0137-y
    [17] Lerner U N. Hybrid Bayesian Networks for Reasoning about Complex Systems.[Ph.D. thesis], Stanford University, USA, 2002.
    [18] 张勇刚, 黄玉龙, 武哲民, 李宁.一种高阶无迹卡尔曼滤波方法.自动化学报, 2014, 40(5):838-848 http://www.aas.net.cn/CN/abstract/abstract18352.shtml

    Zhang Yong-Gang, Huang Yu-Long, Wu Zhe-Min, Li Ning. A high order unscented Kalman filtering method. Acta Automatica Sinica, 2014, 40(5):838-848 http://www.aas.net.cn/CN/abstract/abstract18352.shtml
    [19] Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2):510-518 doi: 10.1016/j.automatica.2012.11.014
    [20] Zhang Y, Huang Y, Li N, Zhao L. Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Processing, 2015, 114(C):112-116 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1baebea928940e67256ccd3de6879aed
    [21] Zhang Y, Huang Y, Li N, Zhao L. Interpolatory cubature Kalman filters. Control Theory and Applications Iet, 2015, 9(11):1731-1739 doi: 10.1049/iet-cta.2014.0873
    [22] Merwe R V D, Doucet A, Freitas N D, Wan E. The unscented particle filter. International Conference on Neural Information Processing Systems. MIT Press, 2000: 563-569
    [23] Wang X, Li T, Sun S, Corchado J M. A survey of recent advances in particle filters and remaining challenges for multi-target tracking, Sensors, 2017, 17(12):2707 doi: 10.3390/s17122707
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  3256
  • HTML全文浏览量:  457
  • PDF下载量:  698
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-26
  • 录用日期:  2018-10-09
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回