2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分的CT图像环形伪影校正

霍其润 李建武 陆耀 秦明

霍其润, 李建武, 陆耀, 秦明. 基于变分的CT图像环形伪影校正. 自动化学报, 2019, 45(9): 1713-1726. doi: 10.16383/j.aas.c180258
引用本文: 霍其润, 李建武, 陆耀, 秦明. 基于变分的CT图像环形伪影校正. 自动化学报, 2019, 45(9): 1713-1726. doi: 10.16383/j.aas.c180258
HUO Qi-Run, LI Jian-Wu, LU Yao, QIN Ming. Variation-based Ring Artifact Correction in CT Images. ACTA AUTOMATICA SINICA, 2019, 45(9): 1713-1726. doi: 10.16383/j.aas.c180258
Citation: HUO Qi-Run, LI Jian-Wu, LU Yao, QIN Ming. Variation-based Ring Artifact Correction in CT Images. ACTA AUTOMATICA SINICA, 2019, 45(9): 1713-1726. doi: 10.16383/j.aas.c180258

基于变分的CT图像环形伪影校正

doi: 10.16383/j.aas.c180258
基金项目: 

北京市教委科研计划 KM201810028016

详细信息
    作者简介:

    霍其润 博士, 首都师范大学信息工程学院讲师.主要研究方向为图像处理, 计算机视觉, 机器学习.E-mail:huoqirun@cnu.edu.cn

    陆耀 北京理工大学计算机学院教授.主要研究方向为图像和信号处理, 模式识别, 神经网络.E-mail:vis_yl@bit.edu.cn

    秦明 博士, 中国电力科学研究院有限公司工程师.主要研究方向为图像与信号处理, 机器学习, 模式识别.E-mail:qinming@epri.sgcc.com.cn

    通讯作者:

    李建武 北京理工大学计算机学院副教授.主要研究方向为图像处理, 超分辨率图像重建技术.本文通信作者.E-mail:ljw@bit.edu.cn

Variation-based Ring Artifact Correction in CT Images

Funds: 

Scientific Research Program of Beijing Educational Committee KM201810028016

More Information
    Author Bio:

    Ph.D., lecturer at the College of Information Engineering, Capital Normal University. Her research interest covers image processing, computer vision and machine learning

    Professor at the School of Computer Science, Beijing Institute of Technology. His research interest covers image and signal processing, pattern recognition and neural network

    Ph.D., engineer of China Electric Power Research Institute. His research interest covers image and signal processing, machine learning and pattern recognition

    Corresponding author: LI Jian-Wu Associate professor at the School of Computer Science, Beijing Institute of Technology. His research interest covers image processing and super-resolution image reconstruction. Corresponding author of this paper
  • 摘要: 有效去除CT图像中环形伪影是医学图像处理领域的一个重要研究方向,现有的方法在去除环形伪影的同时,对CT图像的边缘及细节保留存在困难和挑战.本文采用变分优化的思想,将环形伪影的去除问题建模为一个能量最小化问题,来缓解保持图像信息和去除伪影之间的矛盾,提出了一种后处理的伪影校正算法.根据环形伪影产生机理和特性表现构造有针对性的变分模型,一是从环形伪影的几何特性入手,设计更为合理的梯度保真形式,增强模型对图像细节信息的保护;二是从环形伪影的边缘特性入手,构建具有伪影辨识能力的相对全变分正则项,降低模型对图像结构性信息的影响.基于构造的变分模型,采用高效的优化求解算法,实现环形伪影的有效去除.对比实验表明,无论在视觉观察还是定量分析方面,本文算法均体现出了较好的性能.
    1)  本文责任编委 张道强
  • 图  1  本文的校正算法流程示意图

    Fig.  1  The flow chart of the proposed method

    图  2  极坐标转换

    Fig.  2  Polar coordinate transformation

    图  3  边缘剖面示意图

    Fig.  3  Edge profile diagram

    图  4  两类边缘产生的梯度效果示意图

    Fig.  4  Gradient diagram of two types of edges

    图  5  Shepp-Logan图像处理结果

    Fig.  5  Experimental results on the Shepp-Logan phantom

    图  6  Lena图像处理结果

    Fig.  6  Experimental results on the Lena image

    图  7  脑部CT图像处理结果

    Fig.  7  Experiments on a brain CT image

    图  8  颈部CT图像处理结果

    Fig.  8  Experiments on a neck CT image

    图  9  脑部CT图像中的ROI选取

    Fig.  9  A brain CT image with ROIs

    图  10  图像伪影去除效果对比

    Fig.  10  Comparison of artifact removal effects on the Lena image

    图  11  颈部CT图像伪影去除效果对比

    Fig.  11  Comparison of artifact removal effects on the neck CT image

    图  12  Lena图像上TV和RTV的约束效果对比

    Fig.  12  Comparison of constraint effects between TV and RTV on the Lena image

    图  13  颈部CT图像上TV和RTV的约束效果对比

    Fig.  13  Comparison of constraint effects between TV and RTV on neck CT image

    图  14  算法迭代的收敛性趋势

    Fig.  14  Convergence of iteration algorithm

    表  1  各算法结果的图像质量评价指标值

    Table  1  Quantitative comparison for the different methods

    算法 Shepp-Logan图像 Lena图像
    PSNR MSSIM PSNR MSSIM
    WF算法 36.4504 0.8841 36.0376 0.9897
    RCP算法 42.5464 0.8925 36.0161 0.9888
    VDM算法 43.7735 0.9010 37.0608 0.9945
    本文算法 49.0341 0.9679 37.9287 0.9966
    下载: 导出CSV

    表  2  各算法结果相应局部区域(图 9)的LSNR值

    Table  2  LSNRs of the ROIs circled in Fig. 9 for different methods

    图像 LSNR
    ROI1 ROI2 ROI3
    原始图像 39.3519 46.1822 46.5832
    WF算法结果 45.0595 49.1965 47.6961
    RCP算法结果 44.4747 48.4365 47.3001
    VDM算法结果 45.4732 46.7967 48.7736
    本文算法结果 49.8897 49.8348 49.6774
    下载: 导出CSV
  • [1] Szyszko T A, Gjr C. PET/CT and PET/MRI in head and neck malignancy. Clinical Radiology, 2018, 73(1):60-69 https://www.ncbi.nlm.nih.gov/pubmed/29029767
    [2] 韩光辉, 刘峡壁, 郑光远.肺部CT图像病变区域检测方法.自动化学报, 2017, 43(12):2071-2090 http://www.aas.net.cn/CN/abstract/abstract19182.shtml

    Han Guang-Hui, Liu Xia-Bi, Zheng Guang-Yuan. Automated detection of lesion regions in lung computed tomography images:a review. Acta Automatica Sinica, 2017, 43(12):2071-2090 http://www.aas.net.cn/CN/abstract/abstract19182.shtml
    [3] 江孝国, 张开志, 李成刚, 王远.图像平场校正方法的扩展应用研究.光子学报, 2007, 36(9):1587-1590 http://d.old.wanfangdata.com.cn/Periodical/gzxb200709006

    Jiang Xiao-Guo, Zhang Kai-Zhi, Li Cheng-Gang, Wang Yuan. Extended applications of image flat-field correction method. Acta Photonica Sinica, 2007, 36(9):1587-1590 http://d.old.wanfangdata.com.cn/Periodical/gzxb200709006
    [4] 傅健, 路宏年.扇束X射线ICT中环状伪影的一种校正方法.光学精密工程, 2002, 10(6):542-546 doi: 10.3321/j.issn:1004-924X.2002.06.002

    Fu Jian, Lu Hong-Nian. Correcting method for ring artifacts in fan-beam X-ray ICT. Optics and Precision Engineering, 2002, 10(6):542-546 doi: 10.3321/j.issn:1004-924X.2002.06.002
    [5] Raven C. Numerical removal of ring artifacts in microtomography. Review of scientific instruments, 1998, 69(8):2978-2980 doi: 10.1063/1.1149043
    [6] Münch B, Trtik P, Marone F, et al. Stripe and ring artifact removal with combined wavelet-Fourier filtering. Optics Express, 2009, 17(10):8567-8591 doi: 10.1364/OE.17.008567
    [7] Ashrafuzzaman A N M, Lee S Y, Hasan M K. A self-adaptive approach for the detection and correction of stripes in the sinogram:suppression of ring artifacts in CT imaging. EURASIP Journal on Advances in Signal Processing, 2011, 2011(1):1-13 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a074aeaf4d859728152788be8a7939c6
    [8] Hasan M K, Sadi F, Lee S Y. Removal of ring artifacts in micro-CT imaging using iterative morphological filters. Signal, Image and Video Processing, 2012, 6(1):41-53 doi: 10.1007/s11760-010-0170-z
    [9] Anas E M, Lee S Y, Hasan K. Classification of ring artifacts for their effective removal using type adaptive correction schemes. Computers in Biology and Medicine, 2011, 41(6):390-401 doi: 10.1016/j.compbiomed.2011.03.018
    [10] Rashid S, Lee S Y, Hasan M K. An improved method for the removal of ring artifacts in high resolution CT imaging. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1):93 doi: 10.1186/1687-6180-2012-93
    [11] Kim Y, Baek J, Hwang D. Ring artifact correction using detector line-ratios in computed tomography. Optics express, 2014, 22(11):13380-13392 doi: 10.1364/OE.22.013380
    [12] Miqueles E X, Rinkel J, O'Dowd F, et al. Generalized Titarenko's algorithm for ring artefacts reduction. Journal of Synchrotron Radiation, 2014, 21(6):1333-1346 doi: 10.1107/S1600577514016919
    [13] Titarenko V. Analytical formula for two-dimensional ring artefact suppression. Journal of Synchrotron Radiation, 2016, 23(6):1447-1461 doi: 10.1107/S160057751601479X
    [14] Paleo P, Mirone A. Ring artifacts correction in compressed sensing tomographic reconstruction. Journal of Synchrotron Radiation, 2015, 22(5):1268-1278 doi: 10.1107/S1600577515010176
    [15] Sijbers J, Postnov A. Reduction of ring artefacts in high resolution. Physics in Medicine and Biology, 2004, 49(14):N247 doi: 10.1088/0031-9155/49/14/N06
    [16] Prell D, Kyriakou Y, Kalender W A. Comparison of ring artifact correction methods for flat-detector CT. Physics in medicine and biology, 2009, 54(12):3881-3895 doi: 10.1088/0031-9155/54/12/018
    [17] Wei Z, Wiebe S, Chapman D. Ring artifacts removal from synchrotron CT image slices. Journal of Instrumentation, 2013, 8(06):C06006 doi: 10.1088/1748-0221/8/06/C06006
    [18] Yan L, Wu T, Zhong S, Zhang Q. A variation-based ring artifact correction method with sparse constraint for flat-detector CT. Physics in medicine and biology, 2016, 61(3):1278-1292 doi: 10.1088/0031-9155/61/3/1278
    [19] Huo Q, Li J, Lu Y, Yan Z. Removing ring artifacts in CBCT images using smoothing based on relative total variation. In:Proceedings of the 2016 International Conference on Neural Information Processing. Kyoto, Japan:Springer, Cham, 2016. 501-509
    [20] Huo Q, Li J, Lu Y, Yan Z. Removing ring artifacts in CBCT images via L0 smoothing. International Journal of Imaging Systems and Technology, 2016, 26(4):284-294 doi: 10.1002/ima.22200
    [21] Liang X, Zhang Z, Niu T, Yu S, Wu S, Li Z, et al. Iterative image-domain ring artifact removal in cone-beam CT. Physics in Medicine and Biology, 2017, 62(13):5276-5292 doi: 10.1088/1361-6560/aa7017
    [22] Tang S, Gong W, Li W, Wang W. Non-blind image deblurring method by local and nonlocal total variation models. Signal Processing, 2014, 94(1):339-349 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=39e15af175cb22de05ca634f1611d3e6
    [23] 李权合, 毕笃彦, 许悦雷, 查宇飞.雾霾天气下可见光图像场景再现.自动化学报, 2014, 40(4):744-750 http://www.aas.net.cn/CN/abstract/abstract18340.shtml

    Li Quan-He, Bi Du-Yan, Xu Yue-Lei, Zha Yu-Fei. Haze degraded image scene rendition. Acta Automatica Sinica, 2014, 40(4):744-750 http://www.aas.net.cn/CN/abstract/abstract18340.shtml
    [24] Kim Y, Vese L A. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2017, 3(1):43-68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=662bb3848cc767c2bb159a4e62148848
    [25] 张桂梅, 孙晓旭, 刘建新, 等.基于分数阶微分的TV-L1光流模型的图像配准方法研究.自动化学报, 2017, 43(12):2213-2224 http://www.aas.net.cn/CN/abstract/abstract19194.shtml

    Zhang Gui-Mei, Sun Xiao-Xu, Liu Jian-Xin, et al. Research on TV-L1 optical flow model for image registration based on fractional-order differentiation. Acta Automatica Sinica, 2017, 43(12):2213-2224 http://www.aas.net.cn/CN/abstract/abstract19194.shtml
    [26] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena, 1992, 60(1-4):259-268 doi: 10.1016/0167-2789(92)90242-F
    [27] Bouali M, Ladjal S. Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Transactions on geoscience and remote sensing, 2011, 49(8):2924-2935 doi: 10.1109/TGRS.2011.2119399
    [28] Zhang H, He W, Zhang L, Shen H, Yuan Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4729-4743 doi: 10.1109/TGRS.2013.2284280
    [29] Chang Y, Yan L, Fang H, Luo C. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Transactions on Image Processing, 2015, 24(6):1852-1866 doi: 10.1109/TIP.2015.2404782
    [30] Chan T F. Aspects of total variation regularized L1 function approximation. Siam Journal on Applied Mathematics, 2005, 65(5):1817-1837 doi: 10.1137/040604297
    [31] Micchelli C A. Proximity algorithms for image models Ⅱ:L1/TV denoising. Advances in Computational Mathematics, 2011, 38:401-426 doi: 10.1007/s10444-011-9243-y
    [32] Xu L, Yan Q, Xia Y, Jia J. Structure extraction from texture via relative total variation. ACM Transactions on Graphics, 2012, 31(6):139-148 http://d.old.wanfangdata.com.cn/Periodical/dbch201901051
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1824
  • HTML全文浏览量:  604
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 录用日期:  2018-10-06
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回