2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免疫多域特征融合的多核学习SVM运动想象脑电信号分类

张宪法 郝矿荣 陈磊

张宪法, 郝矿荣, 陈磊. 免疫多域特征融合的多核学习SVM运动想象脑电信号分类. 自动化学报, 2020, 46(11): 2417-2426 doi: 10.16383/j.aas.c180247
引用本文: 张宪法, 郝矿荣, 陈磊. 免疫多域特征融合的多核学习SVM运动想象脑电信号分类. 自动化学报, 2020, 46(11): 2417-2426 doi: 10.16383/j.aas.c180247
Zhang Xian-Fa, Hao Kuang-Rong, Chen Lei. Motor imagery EEG classiflcation based on immune Multidomain-feature fusion and multiple kernel learning SVM. Acta Automatica Sinica, 2020, 46(11): 2417-2426 doi: 10.16383/j.aas.c180247
Citation: Zhang Xian-Fa, Hao Kuang-Rong, Chen Lei. Motor imagery EEG classiflcation based on immune Multidomain-feature fusion and multiple kernel learning SVM. Acta Automatica Sinica, 2020, 46(11): 2417-2426 doi: 10.16383/j.aas.c180247

免疫多域特征融合的多核学习SVM运动想象脑电信号分类

doi: 10.16383/j.aas.c180247
基金项目: 

国家自然科学基金 61806051

国家自然科学基金 61903078

上海市扬帆计划 17YF1426100

上海市自然科学基金 19ZR1402300

上海市自然科学基金 20ZR1400400

详细信息
    作者简介:

    张宪法  东华大学信息科学与技术学院硕士研究生.主要研究方向为脑-机BCI系统, 模式识别, 机器学习. E-mail:xianfazw@163.com

    陈磊  博士, 东华大学信息科学与技术学院副教授.主要研究方向为过程控制, 系统辨识, 工业大数据分析. E-mail: leichen@dhu.edu.cn

    通讯作者:

    郝矿荣  博士, 东华大学信息科学与技术学院教授. 1995年获法国国立路桥工程师大学科研中心博士学位.主要研究方向为机器视觉和图像处理, 机器人控制, 智能控制, 数字化纺织技术.本文通信作者. E-mail: krhao@dhu.edu.cn

Motor Imagery EEG Classification Based on Immune Multi-domain-feature Fusion and Multiple Kernel Learning SVM

Funds: 

National Natural Science Foundation of China 61806051

National Natural Science Foundation of China 61903078

Shanghai Sailing Program 17YF1426100

Natural Science Foundation of Shanghai 19ZR1402300

Natural Science Foundation of Shanghai 20ZR1400400

More Information
    Author Bio:

    ZHANG Xian-Fa  Master student at the College of Information Science and Technology, Donghua University. His research interest covers BCI system, pattern recognition, machine learning

    CHEN Lei  Ph. D., associate professor at the College of Information Science and Technology, Donghua University. Her research interest covers process control, system identification, industrial big data analysis

    Corresponding author: HAO Kuang-Rong  Ph. D., professor at the College of Information Science and Technology, Donghua University. She received her Ph. D. degree in mathematics and computer science from Ecole Nationale des Ponts et Chaussées, Paris, France in 1995. Her research interest covers machine vision and image processing, robot control, intelligent control, digitized textile technology. Corresponding author of this paper
  • 摘要: 针对多通道四类运动想象(Motor imagery, MI)脑电信号(Electroencephalography, EEG)的分类问题, 提出免疫多域特征融合的多核学习SVM (Support vector machine)运动想象脑电信号分类算法.首先, 通过离散小波变换(Discrete wavelet transform, DWT)提取脑电信号的时频域特征, 并利用一对多公共空间模式(One versus the rest common spatial patterns, OVR-CSP)提取脑电信号的空域特征, 融合时频空域特征形成特征向量.其次, 利用多核学习支持向量机(Multiple kernel learning support vector machine, MKL-SVM)对提取的特征向量进行分类.最后, 利用免疫遗传算法(Immune genetic algorithm, IGA)对模型的相关参数进行优化, 得到识别率更高的脑电信号分类模型.采用BCI2005desc-Ⅲa数据集进行实验验证, 对比结果表明, 本文所提出的分类模型有效地解决了传统单域特征提取算法特征单一、信息描述不足的问题, 更准确地表达了不同受试者个性化的多域特征, 取得了94.21%的识别率, 优于使用相同数据集的其他方法.
    Recommended by Associate Editor DONG Feng
    1)  本文责任编委  董峰
  • 图  1  不同小波函数的SVM分类正确率

    Fig.  1  Classification accuracies of different wavelets using the SVM classifier

    图  2  不同种类核函数MKL-SVM分类正确率

    Fig.  2  Classification accuracy of different kinds of kernel functions MKL-SVM

    图  3  不同基核个数的训练耗时对比

    Fig.  3  Training time-consuming obtained by different number of kernel

    图  4  免疫多域特征融合的多核学习SVM运动想象脑电信号分类算法流程图

    Fig.  4  Flow chart of multi-class motion imaging EEG classification based on immune multi-domain-feature fusion and multiple kernel learning SVM

    图  5  六种算法进化图

    Fig.  5  Evolution graph with six algorithms

    图  6  四种算法下每位受试者进化图

    Fig.  6  Evolution graph of each subject with four algorithms

    图  7  四种算法下K3b受试者进化图

    Fig.  7  Evolution graph of K3b subject with four algorithms

    图  8  不同数量的训练集分类正确率

    Fig.  8  Classification accuracy of different numbers of training sets

    表  1  DWT分解250 Hz采样频率所对应各层的频率

    Table  1  Frequencies corresponding to different levels of DWT decomposition with a 250 Hz sampling rate

    分解信号频率范围(Hz)
    A10$\sim$62.5
    D162.5$\sim$125
    D231.25$\sim$62.5
    D315.625$\sim$31.25
    D47.8125$\sim$15.625
    下载: 导出CSV

    表  2  免疫遗传算法参数设置

    Table  2  IGA parameter settings

    参数说明参数说明参数说明
    编码方式二进制编码选择轮盘赌选择适应度值偏差$1\times 10^{-7}$
    初始种群随机产生0、1矩阵交叉低位交叉, 交叉率0.9种群多样性参数$ps=0.95$
    种群大小30变异高位变异, 变异率0.1抗体浓度阈值$ t=0.6 $
    记忆库大小10停止方式停止代数和适应度偏差适应度测试集识别率
    个体大小151停止代数20
    下载: 导出CSV

    表  3  四种算法识别率对比

    Table  3  Recognition rate comparison of four algorithms

    方法识别率(%)
    K3bK6bL1b三者
    本文方法98.2193.9192.6394.21
    CSP-SVM88.7182.5576.1383.21
    DWT-SVM82.2174.2478.0077.11
    CSP+DWT-SVM87.1474.7083.1382.69
    下载: 导出CSV

    表  4  四种算法下K3b受试者识别率对比

    Table  4  Recognition rate comparison of four algorithms for K3b

    方法识别率(%)
    123平均
    本文方法92.3694.4493.0693.29
    CSP-SVM81.9483.3382.6482.64
    DWT-SVM78.4779.8679.1779.17
    CSP+DWT-SVM80.5681.9479.8680.79
    下载: 导出CSV

    表  5  本文方法与其他方法分类正确率对比

    Table  5  Comparison of the accuracy of the proposed method with other methods

    方法识别率(%)
    本文方法94.21
    文献[17]91.46
    文献[18]93.30
    文献[19]86.80
    BCI竞赛[20]86.67
    下载: 导出CSV
  • [1] Wang X Y, Jin J, Zhang Y, et al. Brain control: human-computer integration control based on brain-computer interface approach. Acta Automatica Sinica, 2013, 39(3): 208-221 http://www.sciencedirect.com/science/article/pii/S1874102913600233
    [2] 王行愚, 金晶, 张宇, 等.脑控:基于脑-机接口的人机融合控制.自动化学报, 2013, 39(3): 208-221 doi: 10.3724/SP.J.1004.2013.00208

    Wang Xing-Yu, Jin Jing, Zhang Yu, et al. Brain control: human-computer integration control based on brain-computer interface approach. Acta Automatica Sinica, 2013, 39(3): 208-221 doi: 10.3724/SP.J.1004.2013.00208
    [3] Zeng H, Song A, Yan R, et al. EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition. Sensors, 2013, 13(11): 14839-14859 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sensors-13-14839
    [4] Nicolas-Alonso L F, Corralejo R, Gomez-Pilar J, et al. Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces. Neurocomputing, 2015, 159(C): 186-196 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df6f82b648cd42eba72270dea70a5097
    [5] Li M, Lin L, Jia S. Multi-class imagery EEG recognition based on adaptive subject-based feature extraction and SVM-BP classifier. In: Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation. Beijing, China: IEEE, 2011. 1184-1189
    [6] Wang H. Optimizing spatial filters for single-trial EEG classification via a discrimin-ant extension to CSP: The Fisher crit-erion. Medical & Biological Engineering & Computing, 2011, 49(9): 997-1001 http://europepmc.org/abstract/MED/21437733
    [7] Berta R, Bellotti F, Gloria A D, et al. Electroencephalogram and physiological signal analysis for assessing flow in games. Computational Intelligence & AI in Games, 2013, 5(2): 164-175 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c6c19c1cdf9e7875dbbd5202d828662
    [8] Sun H, Xiang Y, Sun Y, et al. On-line EEG classification for brain-computer interface based on CSP and SVM. In: Proceedings of the 2010 International Congress on Image and Signal Processing. IEEE, 2010. 4105-4108
    [9] Kevric J, Subasi A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomedical Signal Processing & Control, 2017, 31: 398-406 http://www.sciencedirect.com/science/article/pii/S1746809416301331
    [10] 陈魁. CSP算法在多任务下的扩展及在脑-机接口中的应用[博士论文].南昌大学, 中国, 2010

    Chen Kui. The Extended CSP Algorithm in Multi-task and in BCI Application[Ph. D dissertation], Nanchang University, China, 2010
    [11] 李德强, 吴永国, 罗海波.基于冗余离散小波变换的信号配准及分类.自动化学报, 2011, 37(1): 61-66 doi: 10.3724/SP.J.1004.2011.00061

    Li De-Qiang, Wu Yong-Guo, Luo Hai-Bo. Redundant DWT based signal registration and classification. Acta Automatica Sinica, 2011, 37(1): 61-66 doi: 10.3724/SP.J.1004.2011.00061
    [12] 杨默涵, 陈万忠, 李明阳.基于总体经验模态分解的多类特征的运动想象脑电识别方法研究.自动化学报, 2017, 43(5): 743-752 doi: 10.16383/j.aas.2017.c160175

    Yang Mo-Han, Chen Wan-Zhong, Li Ming-Yang. Multiple feature extraction based on ensemble empirical mode decomposition for motor imagery EEG recognition tasks. Acta Automatica Sinica, 2017, 43(5): 743-752 doi: 10.16383/j.aas.2017.c160175
    [13] 孟明, 朱俊青, 佘青山, 马玉良, 罗志增.多类运动想象脑电信号的两级特征提取方法.自动化学报, 2016, 42(12): 1915-1922 doi: 10.16383/j.aas.2016.c160122

    Meng Ming, Zhu Jun-Qing, She Qing-Shan, Ma Yu-Liang, Luo Zhi-Zeng. Two-level feature extraction method for multi-class motor imagery EEG. Acta Automatica Sinica, 2016, 42(12): 1915-1922 doi: 10.16383/j.aas.2016.c160122
    [14] Rakotomamonjy A, Bach F R, Canu S, et al. Simplemkl. Journal of Machine Learning Research, 2008, 9(3): 2491-2521 http://www.ams.org/mathscinet-getitem?mr=2460891
    [15] 郝矿荣, 原博炜, 陈磊, 丁永生.基于免疫堆叠降噪自编码机网络的运动想象脑电信号识别.控制与决策, 2018, 33(4): 719-723 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201804019

    Hao Kuang-Rong, Yuan Bo-Wei, Chen Lei, Ding Yong-Sheng. Recognition of motor imagery EEG based on immune stacked denoising auto-encoders network. Control and Decision, 2018, 33(4): 719-723 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201804019
    [16] Schlogl A, Lee F, Bischof H, et al. Char-acterization of four-class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2005, 2(4): L14 http://europepmc.org/abstract/MED/16317224
    [17] 曾庆山, 范明莉, 宋庆祥.基于CSP与卷积神经网络算法的多类运动想象脑电信号分类.科学技术与工程, 2017, (27): 144-149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201727023

    Zeng Qing-Shan, Fan Ming-Li, Song Qing-Xiang. Multi -- Kinematics Imaging EEG Signal Classification Based on CSP and Convolutional Neural Network. Science Technology and Enginee-ring, 2017, (27): 144-149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201727023
    [18] Li M, Zhang M, Luo X, et al. Combined long short-term memory based network employing wavelet coefficients for MI-EEG recognition. In: Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation. IEEE, 2016. 1971-1976
    [19] 张焕, 乔晓艳.多任务运动想象脑电特征的融合分类研究.传感技术学报, 2016, 29(6): 802-807 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb201606003

    Zhang Huan, Qiao Xiao-Yan. Study on the classification of EEG characteristics of multi task motor imagery. Journal of Sensor Technology, 2016, 29(6): 802-807 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb201606003
    [20] Dornhege G, Blankertz B, Curio G, Muller K R. Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Transactions on Biomedical Engineering, 51(6): 993-1002 http://www.ncbi.nlm.nih.gov/pubmed/15188870?dopt=AbstractPlus
    [21] Li Y Q, Long J Y, Yu J Y, et al. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2495-2505 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e4e42a15887929d0811bc93fbfb7b64
    [22] Brunner C, Allison B Z, Krusienski D J, et al. Improved signal processing approaches in an offline simulation of a hybrid brain-computer interface. Journal of Neuroscience Methods, 2010, 188(1): 165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53edfb1850872e410a69ebd3ff255598
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  2166
  • HTML全文浏览量:  301
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-24
  • 录用日期:  2018-10-11
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回