2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮式海洋热能转换系统的主动振动控制与扰动观测器设计

何修宇 王雪璇 赵哲惟 张爽

何修宇, 王雪璇, 赵哲惟, 张爽. 浮式海洋热能转换系统的主动振动控制与扰动观测器设计. 自动化学报, 2019, 45(10): 1846-1856. doi: 10.16383/j.aas.c180197
引用本文: 何修宇, 王雪璇, 赵哲惟, 张爽. 浮式海洋热能转换系统的主动振动控制与扰动观测器设计. 自动化学报, 2019, 45(10): 1846-1856. doi: 10.16383/j.aas.c180197
HE Xiu-Yu, WANG Xue-Xuan, ZHAO Zhe-Wei, ZHANG Shuang. Disturbance Rejection and Vibration Control for a Floating Ocean Thermal Energy Conversion System. ACTA AUTOMATICA SINICA, 2019, 45(10): 1846-1856. doi: 10.16383/j.aas.c180197
Citation: HE Xiu-Yu, WANG Xue-Xuan, ZHAO Zhe-Wei, ZHANG Shuang. Disturbance Rejection and Vibration Control for a Floating Ocean Thermal Energy Conversion System. ACTA AUTOMATICA SINICA, 2019, 45(10): 1846-1856. doi: 10.16383/j.aas.c180197

浮式海洋热能转换系统的主动振动控制与扰动观测器设计

doi: 10.16383/j.aas.c180197
基金项目: 

北京科技大学中央高校基本科研业务费专项资金 FRF-TP-15-005C1

国家自然科学基金 61873297

北京科技大学中央高校基本科研业务费专项资金 FRF-TP-19-001C2

中国博士后科学基金 2019T120048

详细信息
    作者简介:

    何修宇  北京科技大学自动化学院控制科学与工程专业博士研究生.2016年获得电子科技大学自动化工程学院控制科学与工程专业工学硕士学位.主要研究方向为分布参数系统, 海洋控制论, 机器人.E-mail:bhilly@163.com

    王雪璇  北京科技大学自动化学院智能科学与技术专业本科生.主要研究方向为机器学习, 智能控制, 柔性结构边界振动控制.E-mail:m17801001261_2@163.com

    赵哲惟  北京科技大学自动化学院智能科学与技术专业本科生.主要研究方向为机器学习, 智能控制, 柔性结构边界振动控制.E-mail:zhaozhewei@hotmail.com

    通讯作者:

    张爽  北京科技大学自动化学院副教授.2012年获得新加坡国立大学博士学位.主要研究方向为机器人控制, 智能控制以及分布参数系统控制.本文通信作者. E-mail:zhangshuang.ac@gmail.com

Disturbance Rejection and Vibration Control for a Floating Ocean Thermal Energy Conversion System

Funds: 

Fundamental Research Funds for China Central Universities of University of Science and Technology Beijing FRF-TP-15-005C1

National Natural Science Foundation of China 61873297

Fundamental Research Funds for China Central Universities of University of Science and Technology Beijing FRF-TP-19-001C2

China Postdoctoral Science Foundation 2019T120048

More Information
    Author Bio:

     Ph. D. candidate at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He received his master degree in control science and engineering from the School of Automation Engineering and Center for Robotics, University of Electronic Science and Technology of China in 2016. His research interest covers distributed parameter system, marine cybernetics, and robotics

     Undergraduated student at the University of Science and Technology Beijing. Her research interest covers machine learning, intelligent control, and boundary vibration control

     Undergraduated student at the University of Science and Technology Beijing. His research interest covers machine learning, intelligent control, and boundary vibration control

    Corresponding author: ZHANG Shuang  Associate professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing (USTB). She received her Ph. D. degree from the Department of Electrical and Computer Engineering, the National University of Singapore (NUS), Singapore, in 2012. Her research interest covers robotics, intelligent control, and distributed parameter systems. Corresponding author of this paper
  • 摘要: 随着化石能源的日渐枯竭,海洋热能转换系统(Ocean thermal energy conversion,OTEC)是可以利用海水间的温差将清洁、可再生的海洋能转换为电能的能源系统,关于该系统的研究已引起了越来越多的关注与研究.在工作过程中,浮式海浪温差发电系统中用于传输深层低温海水的管道会受到外界环境的影响产生振动,而这些振动会直接影响系统的性能.本文将研究该柔性系统的振动控制问题,首先,建立用一个偏微分方程和一组常微分方程组成的模型来描述OTEC系统的动力学特性,并直接基于系统的动力学模型设计主动的边界控制器以及边界扰动观测器,从而消除外界扰动的影响,以及减少OTEC系统中柔性管道的横向形变,抑制系统的振动.此外,本文还考虑了OTEC系统中存在的输出约束问题,并且在所设计边界控制律的作用下,从理论上证明OTEC系统的稳定性,保证OTEC系统中的柔性管道的形变量最终收敛于平衡点附近以及浮式平台固定在初始位置附近.最后,通过选择合适的控制参数来对OTEC系统进行数字仿真,利用所得到的仿真结果验证了所设计控制律的有效性.
    1)  本文责任编委 姚鹏飞
  • 图  1  典型的浮式热能转换系统示意图

    Fig.  1  Floating ocean thermal energy conversion system

    图  2  不加控制器下的柔性输水管道的位移量

    Fig.  2  Displacement of the flexible pipe without control

    图  3  柔性输水管道下端镇重物的位移量

    Fig.  3  Displacement of the ballast

    图  4  上端浮式平台的位移量

    Fig.  4  Displacement of the floating platform

    图  5  施加PD控制器下的柔性输水管道的位移量

    Fig.  5  Displacement of the flexible pipe with PD controllers

    图  6  施加所设计控制器下的柔性输水管道的位移量

    Fig.  6  Displacement of the flexible pipe with the designed controllers

    图  7  设计的主动振动控制力

    Fig.  7  Designed vibration control forces

    表  1  浮式OTEC系统的参数

    Table  1  Parameters of floating OTEC system

    参数 参数值 参数 参数值
    $L$ 1 000 $\rm{m}$ $\rho$ 500 $\rm{kg/m}$
    $EI$ $2.5\times{}10^{4}$ $\rm{N}\small{\cdot}\rm{m}^{2}$ $T$ $1\times10^{7} \rm{N}$
    $M_{s}$ $9.0\times10^{4} \rm{kg}$ $M_{0}$ $9.5\times10^{6} \rm{kg}$
    $c$ 2 $\rm{N}\small{\cdot}\rm{s/m}^{2}$ $d_{s}$ $2.0\times10^{3}$ $\rm{N}\small{\cdot}\rm{s/m}^{2}$
    $d_{0}$ $9.0\times10^{2}$ $\rm{N}\small{\cdot}\rm{s/m}^{2}$
    下载: 导出CSV

    表  2  扰动参数

    Table  2  Parameters of ocean disturbances

    参数 参数值 参数 参数值
    $U'_{1}$ 0.8 $\rm{m/s}$ $\omega_{3}$ 2.946 $\rm{rad/s}$
    $U'_{2}$ 1.0 $\rm{m/s}$ $\omega_{4}$ 4.282 $\rm{rad/s}$
    $U'_{3}$ 1.0 $\rm{m/s}$ $D$ 0.15 $\rm{m}$
    $U'_{4}$ 1.0 $\rm{m/s}$ $\rho_{s}$ 1 024 $\rm{kg/m}^{3}$
    $\bar{U}$ 0.5 $\rm{m/s}$ $S_{t}$ 0.2
    $A_{D}$ 1.0 $C_{D}$ 1.0
    $\omega_{1}$ 0.867 $\rm{rad/s}$ $\omega_{2}$ 1.827 $\rm{rad/s}$
    下载: 导出CSV
  • [1] Yeh R H, Su T Z, Yang M S. Maximum output of an OTEC power plant. Ocean Engineering, 2005, 32(5):685-700 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed0656f1abe705754e3eac1159b539f2
    [2] Straatman P J T, Wilfried G J H M van Sark. A new hybrid ocean thermal energy conversio-offshore solar pond (OTEC-OSP) design:a cost optimization approach. Solar Energy, 2008, 82(6):520-527 doi: 10.1016/j.solener.2007.12.002
    [3] Yuan H, Mei N, Hu S, Wang L, Yang S. Experimental investigation on an ammonia-water based ocean thermal energy conversion system. Applied Thermal Engineering, 2013, 61(2):327-333 doi: 10.1016/j.applthermaleng.2013.07.050
    [4] Tchanche B F, Pétrissans M, Papadakis G. Heat resources and organic rankine cycle machines. Renewable and Sustainable Energy Reviews, 2014, 39:1185-1199 doi: 10.1016/j.rser.2014.07.139
    [5] Rajagopalan K, Nihous G C. Estimates of global ocean thermal energy conversion (OTEC) resources using an ocean general circulation model. Renewable Energy, 2013, 50:532-540 doi: 10.1016/j.renene.2012.07.014
    [6] Nihous G C. An estimate of Atlantic ocean thermal energy conversion (OTEC) resources. Ocean Engineering, 2007, 34(17):2210-2221 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a784f942a52169333fe284482e305024
    [7] Wang L, Huang C B. Dynamic stability analysis of a grid-connected solar-concentrated ocean thermal energy conversion system. IEEE Transactions on Sustainable Energy, 2010, 1(1):10-18 doi: 10.1109/TSTE.2010.2046189
    [8] He W, Ge S S, How B V E, Choo Y S. Dynamics and Control of Mechanical Systems in Offshore Engineering. London, UK:Springer, 2014.
    [9] Wang J M, Ren B, Krstic M. Stabilization and gevrey regularity of a Schrödinger equation in boundary feedback with a heat equation. IEEE Transactions on Automatic Control, 2012, 57(1):179-185 doi: 10.1109/TAC.2011.2164299
    [10] Wu H N, Wang J W. Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems. Automatica, 2014, 50(11):2787-2798 doi: 10.1016/j.automatica.2014.09.006
    [11] Luo B, Wu H N, Li H X. Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(4):684-696 doi: 10.1109/TNNLS.2014.2320744
    [12] Wang J W, Wu H N, L H X. Stochastically exponential stability and stabilization of uncertain linear hyperbolic PDE systems with Markov jumping parameters. Automatica, 2012, 48(3):569-576 doi: 10.1016/j.automatica.2012.01.006
    [13] Endo T, Matsuno F, Jia Y M. Boundary cooperative control by flexible Timoshenko arms. Automatica, 2017, 81:377-389 doi: 10.1016/j.automatica.2017.04.017
    [14] Guo B Z, Jin F F. The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance, Automatica, 2013, 49(9):2911-2918 doi: 10.1016/j.automatica.2013.06.018
    [15] Jin F F, Guo B Z. Lyapunov approach to output feedback stabilization for the Euler-Bernoulli beam equation with boundary input disturbance. Automatica, 2015, 52(1):95-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24130845da1dde25931039a5fdf6b963
    [16] He W, Zhang S, Ge S S. Boundary control of a flexible riser with application to marine installation. IEEE Transactions on Industrial Electronics, 2013, 60(12):5802-5810 doi: 10.1109/TIE.2013.2238873
    [17] Do K D. Stochastic boundary control design for extensible marine risers in three dimensional space. Automatica, 2017, 77(3):184-197 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b4a0296362a5c661c371a769cd898ef8
    [18] Bhikkaji B, Moheimani S O R, Petersen I R. A negative imaginary approach to modeling and control of a collocated structure. IEEE/ASME Transactions on Mechatronics, 2012, 17(4):717-727 doi: 10.1109/TMECH.2011.2123909
    [19] Wang F Y, Gao Y Q. On Frequency sensitivity and mode orthogonality of flexible robotic manipulators. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):394-397 doi: 10.1109/JAS.2016.7510112
    [20] Zhang S. Sliding mode control for an inhomogeneous heat equation with global constraint. Asian Journal of Control, 2017, 19(6):2116-2126 doi: 10.1002/asjc.1607
    [21] He W, He X Y, Ge S S. Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Transactions on Mechatronics, 2016, 21(1):254-265 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c294a19272e13a2abda4b6224a3457f
    [22] Endo T, Sasaki M, Matsuno F, Jia Y M. Contact-force control of a flexible timoshenko arm in rigid/soft environment. IEEE Transactions on Automatic Control. 2016, 62(5):2546-2553
    [23] Do K D, Sasaki M, Matsuno F, Jia Y M. Modeling and boundary control of translational and rotational motions of nonlinear slender beams in three-dimensional space. Journal of Sound and Vibration, 2017, 389:1-23 doi: 10.1016/j.jsv.2016.10.044
    [24] Cai X S, Krstic M. Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary. Automatica, 2016, 68:27-38 doi: 10.1016/j.automatica.2016.01.043
    [25] Paranjape A A, Guan J, Chung S J, Krstic M. PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Transactions on Robotics, 2013, 29(3):625-640 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cac9b0ef5b48000e43b6f8592ddbb2b
    [26] Liu Z J, Liu J K, He W. Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica, 2017, 77:302-310 doi: 10.1016/j.automatica.2016.11.002
    [27] Zhao Z J, Liu Z J, Li Z F, Wang N, Yang J F. Control design for a vibrating flexible marine riser system. Journal of the Franklin Institute, 2017, 354(18):8117-8133 doi: 10.1016/j.jfranklin.2017.10.004
    [28] Zhao Z J, Liu Y, Guo F, Fu Y. Modelling and control for a class of axially moving nonuniform system. International Journal of Systems Science, 2017, 48(4):849-861 doi: 10.1080/00207721.2016.1217099
    [29] Liu Z J, Liu J K, He W. Robust adaptive fault tolerant control for a linear cascaded ODE-beam systems. Automatica, 2018, 98:42-50 doi: 10.1016/j.automatica.2018.09.021
    [30] He X Y, He W, Shi J, Sun C Y. Boundary vibration control of variable length crane systems in two dimensional space with output constraints. IEEE/ASME Transactions on Mechatronics, 2017, 22(5):1952-1962 doi: 10.1109/TMECH.2017.2721553
    [31] Rahn C D. Mechatronic Control of Distributed Noise and Vibration. New York, USA:Springer-Verlag, 2001.
    [32] Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge, UK:Cambridge University Press, 1959.
    [33] Polycarpou M M, Loannou P A. A robust adaptive nonlinear control design. Automatica, 1996, 32(3):423-427 doi: 10.1016/0005-1098(95)00147-6
    [34] Blevins R D. Flow-induced Vibration. New York, USA:Van Nostrand Reinhold, 1977.
    [35] Faltinsen O M. Sea Loads on Ships and Offshore Structures. Cambridge, UK:Cambridge Unversity Press, 1990.
    [36] Skjetne R, Fossen T I, Kokotovimć P V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica, 2005, 41(2):289-298 doi: 10.1016/j.automatica.2004.10.006
    [37] Tee K P, Ge S S. Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Transactions on Control Systems Technology, 2006, 14(4):750-756 doi: 10.1109/TCST.2006.872507
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  258
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-05
  • 录用日期:  2018-09-29
  • 刊出日期:  2019-10-20

目录

    /

    返回文章
    返回