2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合推理的仿真实验设计方法智能选择

陆凌云 李伟 杨明 马萍

陆凌云, 李伟, 杨明, 马萍. 基于混合推理的仿真实验设计方法智能选择. 自动化学报, 2019, 45(6): 1055-1064. doi: 10.16383/j.aas.c180177
引用本文: 陆凌云, 李伟, 杨明, 马萍. 基于混合推理的仿真实验设计方法智能选择. 自动化学报, 2019, 45(6): 1055-1064. doi: 10.16383/j.aas.c180177
LU Ling-Yun, LI Wei, YANG Ming, MA Ping. Intelligent Selection of Simulation Experiment Design Methods Based on Hybrid Reasoning. ACTA AUTOMATICA SINICA, 2019, 45(6): 1055-1064. doi: 10.16383/j.aas.c180177
Citation: LU Ling-Yun, LI Wei, YANG Ming, MA Ping. Intelligent Selection of Simulation Experiment Design Methods Based on Hybrid Reasoning. ACTA AUTOMATICA SINICA, 2019, 45(6): 1055-1064. doi: 10.16383/j.aas.c180177

基于混合推理的仿真实验设计方法智能选择

doi: 10.16383/j.aas.c180177
基金项目: 

国家自然科学基金 61627810

国家自然科学基金 61403097

详细信息
    作者简介:

    陆凌云  哈尔滨工业大学博士研究生.主要研究方向为仿真实验设计, 仿真数据分析.E-mail:lulingyun987@163.com

    李伟   哈尔滨工业大学副教授.2009年获得哈尔滨工业大学博士学位.主要研究方向为仿真分析与评估, 分布式仿真, 仿真实验设计.E-mail:frank@hit.edu.cn

    杨明   哈尔滨工业大学教授.1997年获得哈尔滨工业大学博士学位.主要研究方向为飞行器制导与控制, 复杂系统仿真理论与方法.E-mail:myang@hit.edu.cn

    通讯作者:

    马萍  哈尔滨工业大学教授.2003年获得哈尔滨工业大学博士学位.主要研究方向为复杂系统建模与仿真, 仿真可信度评估.本文通信作者.E-mail:pingma@hit.edu.cn

Intelligent Selection of Simulation Experiment Design Methods Based on Hybrid Reasoning

Funds: 

National Natural Science Foundation of China 61627810

National Natural Science Foundation of China 61403097

More Information
    Author Bio:

       Ph.D. candidate at Harbin Institute of Technology (HIT). His research interest covers simulation experiment design and simulation data analysis

      Associate professor at Harbin Institute of Technology (HIT). He received his Ph.D. degree from HIT in 2009. His research interest covers simulation analysis and evaluation, distributed simulation, simulation experiment design

      Professor at Harbin Institute of Technology (HIT). He received his Ph.D. degree from HIT in 1997. His research interest covers vehicle guidance and control, complex system simulation theory and method

    Corresponding author: MA Ping   Professor at Harbin Institute of Technology (HIT). She received her Ph.D. degree from HIT in 2003. Her research interest covers complex system modeling and simulation, simulation credibility evaluation. Corresponding author of this paper
  • 摘要: 针对仿真实验设计方法众多而在实际应用中难以准确选择的问题,提出一种用于仿真实验设计方法智能选择的混合推理方法.首先,给出了基于混合推理的仿真实验智能化设计流程;然后,针对案例检索策略,将仿真实验设计案例的属性分为三种类型,分别给出其属性差异度量模型及特征值归一化方法,并采用训练后的神经网络模型分配属性权重;进一步,当推荐的案例未能满足给定的相似度阈值时,引入属性优先级的概念,提出了一种基于规则的柔性逐层推理方法;在此基础上,设计了案例库和规则库;最后,通过实验验证了所提出方法的有效性.
    1)  本文责任编委 刘艳军
  • 图  1  仿真实验智能化设计流程

    Fig.  1  Flow chart of intelligent design of simulation experiment

    图  2  属性归一化处理函数

    Fig.  2  Normalized processing fuction of attributes

    图  3  基于NN的属性权重分配网络结构

    Fig.  3  Network structure of attribute weight assignment based on neural network

    图  4  RBFLR方法流程图

    Fig.  4  Flow chart of RBFLR method

    图  5  不同分配比例下各推理方法的平均分配准确率

    Fig.  5  Averaging classification accuracy of different assignment proportions

    表  1  案例属性

    Table  1  Attributes of the cases

    ID 属性 属性取值 属性类型
    1 实验目的 $\text{EP}\in\textbf{ N}$ 语义型离散
    2 实验点分布 $\text{ED}\in\textbf{ N}$ 语义型离散
    3 系统复杂度假设 $\text{SC}\in\textbf{ N}$ 语义型离散
    4 二因子交互效应估计 $\text{FI}\in\textbf{ N}$ 语义型离散
    5 模型独立性 $\text{MI}\in\textbf{ N}$ 语义型离散
    6 处理群组因子 $\text{CG}\in\textbf{ N}$ 语义型离散
    7 实验点可扩展性 $\text{EE}\in\textbf{ N}$ 语义型离散
    8 水平数 $\text{FL}\in\textbf{ N}$ 语义型离散
    9 实验次数 $\text{EN}\in\textbf{ N}$ $^{+}$ 实数型离散
    10 因子数 $\text{FN}\in\textbf{ N}$ $^{+}$ 实数型离散
    11 仿真实验设计方法 $\text{EM}\in\textbf{ N}$ $^{+}$ 语义型离散
    下载: 导出CSV

    表  2  规则属性

    Table  2  Attributes of the rules

    ID 属性 属性取值 属性类型 优先级
    1 实验目的 $\text{EP}\in\textbf{ N}$ 语义型离散 ${{k}_{1}}$
    2 实验点分布 $\text{ED}\in\textbf{ N}$ 语义型离散 ${{k}_{2}}$
    3 系统复杂度假设 $\text{SC}\in\textbf{ N}$ 语义型离散 ${{k}_{3}}$
    4 二因子交互效应估计 $\text{FI}\in\textbf{ N}$ 语义型离散 ${{k}_{4}}$
    5 模型独立性 $\text{MI}\in\textbf{ N}$ 语义型离散 ${{k}_{5}}$
    6 处理群组因子 $\text{CG}\in\textbf{ N}$ 语义型离散 ${{k}_{6}}$
    7 实验点可扩展性 $\text{EE}\in\textbf{ N}$ 语义型离散 ${{k}_{7}}$
    8 水平数 $\text{FL}\in\textbf{ N}$ 语义型离散 ${{k}_{8}}$
    9 实验次数 $\text{EN}\in [{s}_{1}, {s}_{2}]$ 实数型区间 ${{k}_{9}}$
    10 因子数 $\text{FN}\in [{n}_{1}, {n}_{2}]$ 实数型区间 ${{k}_{10}}$
    11 仿真实验设计方法 $\text{EM}\in\textbf{ N}$ $^{+}$ 语义型离散 $/$
    备注: EP $\in $ {1)寻找重要因子, 2)寻找稳健参数, 3)优化, 4)不确定性分析, 5)灵敏度分析, 6)方差分析, 7)综合评估}; ED $\in $ {1)均匀性, 2)正交性, 3)空间填充性, 4)随机性, 5)鲁棒性, 6)序贯性}; SC $\in $ {1)一阶多项式(主效应模型), 2)一阶多项式+二因子交互效应, 3)二阶多项式(含完全平方项), 4)高阶交互效应}; FI $\in $ {1)能, 2)否}; MI $\in $ {1)是, 2)否}; CG $\in $ {1)能, 2)否}; EE $\in $ {1)能, 2)否}; FL $\in $ {1) 2$ \sim $3水平为主, 2) 4$ \sim $10水平为主, 3)大于10水平为主, 4)水平较为分散}; EN $\in $ {1) $[1, n)$, 2) $[n, +\infty)$, 3) $[{{2}^{n}}, +\infty)$}, 其中$n$为因子数; FN $\in $ {1) $[2, 13]$, 2) $[14, 50]$, 3) $[51, 100]$, 4) $[101, 500]$, 5) $[501, +\infty)$}; EM $\in $ {1)全面析因设计, 2)分式析因设计, 3)正交设计, 4)均匀设计, 5)拉丁超立方抽样, 6)蒙特卡罗抽样, 7)拟蒙特卡罗抽样, 8)重要性抽样, 9)中心复合设计, 10)稳健设计, 11)顺序分支法, 12)迭代分式析因设计, 13)二阶段组筛选法, 14) Trocine筛选流程}.
    下载: 导出CSV

    表  3  规则库

    Table  3  Rule base

    ID $Pc$ $Cq$
    1 $\text{EP}=2$ $\text{EM}=\left\{ 10 \right\}$
    2 $\text{ED}=3$ $\text{EM}=\left\{ 3, 4, 5 \right\}$
    3 $\text{CG}=1$ $\text{EM}=\left\{ 11, 12, 13, 14 \right\}$
    $\vdots $ $\vdots $ $\vdots $
    60 $\text{FL}=4$, $\text{EN}=2$, $\text{FN}=3$ $\text{EM}=\left\{ 11, 14 \right\}$
    下载: 导出CSV

    表  4  规则的条件属性优先级

    Table  4  Priority of condition attribute for the rules

    EP ED SC FI MI CG EE FL EN FN
    5 2 3 3 4 4 3 1 1 1
    下载: 导出CSV

    表  5  案例库

    Table  5  Case base

    ID EP ED SC FI MI CG EE FL EN FN EM
    1 6 2 2 1 1 2 2 1 32 5 1
    2 5 3 1 1 1 2 2 1 8 7 3
    3 5 3 2 1 1 2 1 3 500 7 5
    $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
    142 3 1 1 1 1 2 2 2 10 8 4
    下载: 导出CSV

    表  6  不同推理方法的平均分类准确率($\%$)

    Table  6  Averaging classification accuracy of different reasoning methods ($\%$)

    推理方法 分配比例
    1 : 1 3 : 2 2 : 1 2 : 3
    MA-CBR 67.61 66.67 72.34 68.24
    NN$\_$Rel-CBR 74.51 72.46 79.57 71.41
    NN$\_$Sal-CBR 73.10 72.63 79.15 71.18
    MA-CBR&RBFLR 80.28 80.70 85.11 ${\bf 80.00}$
    NN$\_$Rel-CBR & RBFLR ${\bf 81.13}$ ${\bf 82.11}$ 85.74 ${\bf 80.00}$
    NN$\_$Sal-CBR & RBFLR 79.58 80.00 ${\bf 86.60}$ 78.59
    下载: 导出CSV
  • [1] Kleijnen J P C[著], 张列刚, 张建康, 刘兴科[译].仿真实验设计与分析.北京: 电子工业出版社, 2010. 1-136

    Kleijnen J P C[Author], Zhang Lie-Gang, Zhang Jian-Kang, Liu Xing-Ke[Translator]. Design and Analysis of Simulation Experiments. Beijing: Publishing House of Electronics Industry, 2010. 1-136
    [2] Wu Y L, Song X, Gong G H. Real-time load balancing scheduling algorithm for periodic simulation models. Simulation Modelling Practice and Theory, 2015, 52:123-134 doi: 10.1016/j.simpat.2015.01.001
    [3] Simpson T W, Booker A J, Ghosh D, Giunta A A, Koch P N, Yang R J. Approximation methods in multidisciplinary analysis and optimization:a panel discussion. Structural and Multidisciplinary Optimization, 2004, 27(5):302-313
    [4] Trocine L, Malone L C. Experimental design and analysis: an overview of newer, advanced screening methods for the initial phase in an experimental design. In: Proceedings of the 33rd Conference on Winter Simulation. Arlington, Virginia: IEEE, 2001. 169-178
    [5] Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007, 129(4):370-380 doi: 10.1115/1.2429697
    [6] Sanchez S M, Wan H. Work smarter, not harder: a tutorial on designing and conducting simulation experiments. In: Proceedings of the 2012 Winter Simulation Conference. Berlin, Germany: IEEE, 2012. 1-15
    [7] Burnaev E, Panin I, Sudret B. Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Annals of Mathematics and Artificial Intelligence, 2017, 81(1-2):187-207 doi: 10.1007/s10472-017-9542-1
    [8] Garud S S, Karimi I A, Kraft M. Design of computer experiments:a review. Computers & Chemical Engineering, 2017, 106:71-95 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b0be64b1b06c0793fe44ccf7da68bb9b
    [9] Fang K T, Lin D K J, Winker P, Zhang Y. Uniform design:theory and application. Technometrics, 2000, 42(3):237-248 doi: 10.1080/00401706.2000.10486045
    [10] Sheldon M R. Simulation (Fifth edition). San Diego:Academic Press, 2012. 153-232
    [11] Husslage B G M, Rennen G, van Dam E R, den Hertog D. Space-filling Latin hypercube designs for computer experiments. Optimization and Engineering, 2011, 12(4):611-630 doi: 10.1007/s11081-010-9129-8
    [12] Damblin G, Couplet M, Iooss B. Numerical studies of space-filling designs:optimization of Latin hypercube samples and subprojection properties. Journal of Simulation, 2013, 7(4):276-289 doi: 10.1057/jos.2013.16
    [13] Tong C. Refinement strategies for stratified sampling methods. Reliability Engineering & System Safety, 2006, 91(10-11):1257-1265 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1df7de336bbf9bd363998586d5bd0ebf
    [14] Li W, Lu L Y, Xie X T, Yang M. A novel extension algorithm for optimized Latin hypercube sampling. Journal of Statistical Computation and Simulation, 2017, 87(13):2549-2559 doi: 10.1080/00949655.2017.1340475
    [15] Williamson D. Exploratory ensemble designs for environmental models using k-extended Latin hypercubes. Environmetrics, 2015, 26(4):268-283 doi: 10.1002/env.2335
    [16] Kleijnen J P C, Sanchez S M, Lucas T W, Cioppa T M. State-of-the-art review:a user's guide to the brave new world of designing simulation experiments. Informs Journal on Computing, 2005, 17(3):263-289 doi: 10.1287/ijoc.1050.0136
    [17] Bursztyn D, Steinberg D M. Comparison of designs for computer experiments. Journal of Statistical Planning and Inference, 2006, 136(3):1103-1119 doi: 10.1016/j.jspi.2004.08.007
    [18] 赵辉, 严爱军, 王普.提高案例推理分类器的可靠性研究.自动化学报, 2014, 40(9):2029-2036 http://www.aas.net.cn/CN/abstract/abstract18475.shtml

    Zhao Hui, Yan Ai-Jun, Wang Pu. On improving reliability of case-based reasoning classifier. Acta Automatica Sinica, 2014, 40(9):2029-2036 http://www.aas.net.cn/CN/abstract/abstract18475.shtml
    [19] 苏锑, 杨明, 王春香, 唐卫, 王冰.一种基于分类回归树的无人车汇流决策方法.自动化学报, 2018, 44(1):35-43 http://www.aas.net.cn/CN/abstract/abstract19202.shtml

    Su Ti, Yang Ming, Wang Chun-Xiang, Tang Wei, Wang Bing. Classification and regression tree based traffic merging for method self-driving vehicles. Acta Automatica Sinica, 2018, 44(1):35-43 http://www.aas.net.cn/CN/abstract/abstract19202.shtml
    [20] 郑文博, 王坤峰, 王飞跃.基于贝叶斯生成对抗网络的背景消减算法.自动化学报, 2018, 44(5):878-890 http://www.aas.net.cn/CN/abstract/abstract19279.shtml

    Zheng Wen-Bo, Wang Kun-Feng, Wang Fei-Yue. Background subtraction algorithm with Bayesian generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):878-890 http://www.aas.net.cn/CN/abstract/abstract19279.shtml
    [21] Richhariya B, Tanveer M. EEG signal classification using universum support vector machine. Expert Systems with Applications, 2018, 106:169-182 doi: 10.1016/j.eswa.2018.03.053
    [22] Deng Y, Ren Z Q, Kong Y Y, Bao F, Dai Q H. A hierarchical fused fuzzy deep neural network for data classification. IEEE Transactions on Fuzzy Systems, 2017, 25(4):1006-1012 doi: 10.1109/TFUZZ.2016.2574915
    [23] 万秋生.复杂仿真实验设计与监控技术研究[硕士学位论文], 哈尔滨工业大学, 中国, 2012. 25-30

    Wan Qiu-Sheng. The Technology of Designing and Monitoring for Complex Simulation Experiments[Master thesis], Harbin Institute of Technology, China, 2012. 25-30
    [24] Li W, Lu L Y, Liu Z Z, Ma P, Yang M. HIT-SEDAES: an integrated software environment for simulation experiment design, analysis and evaluation. International Journal of Modeling, Simulation, and Scientific Computing, 2016, 7(3): Article No.1650027
    [25] Im K H, Park S C. Case-based reasoning and neural network based expert system for personalization. Expert Systems with Applications, 2007, 32(1):77-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43719736fdd3ca8416f853887e59ec35
    [26] Ahn H, Kim K J. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing, 2009, 9(2):599-607 doi: 10.1016/j.asoc.2008.08.002
    [27] Biswas S K, Chakraborty M, Singh H R, Devi D, Purkayastha B, Das A K. Hybrid case-based reasoning system by cost-sensitive neural network for classification. Soft Computing, 2017, 21(24):7579-7596 doi: 10.1007/s00500-016-2312-x
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  2177
  • HTML全文浏览量:  307
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-28
  • 录用日期:  2018-07-02
  • 刊出日期:  2019-06-20

目录

    /

    返回文章
    返回