2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于星凸形随机超曲面模型多扩展目标多伯努利滤波器

陈辉 杜金瑞 韩崇昭

陈辉, 杜金瑞, 韩崇昭. 基于星凸形随机超曲面模型多扩展目标多伯努利滤波器. 自动化学报, 2020, 46(5): 909-922. doi: 10.16383/j.aas.c180130
引用本文: 陈辉, 杜金瑞, 韩崇昭. 基于星凸形随机超曲面模型多扩展目标多伯努利滤波器. 自动化学报, 2020, 46(5): 909-922. doi: 10.16383/j.aas.c180130
CHEN Hui, DU Jin-Rui, HAN Chong-Zhao. A Multiple Extended Target Multi-Bernouli Filter Based on Star-convex Random Hypersurface Model. ACTA AUTOMATICA SINICA, 2020, 46(5): 909-922. doi: 10.16383/j.aas.c180130
Citation: CHEN Hui, DU Jin-Rui, HAN Chong-Zhao. A Multiple Extended Target Multi-Bernouli Filter Based on Star-convex Random Hypersurface Model. ACTA AUTOMATICA SINICA, 2020, 46(5): 909-922. doi: 10.16383/j.aas.c180130

基于星凸形随机超曲面模型多扩展目标多伯努利滤波器

doi: 10.16383/j.aas.c180130
基金项目: 

国家自然科学基金 61873116

国家自然科学基金 51668039

甘肃省科技计划项目 18YF1GA065

甘肃省科技计划项目 18JR3RA137

国防基础科研项目 JCKY2018427C002

详细信息
    作者简介:

    杜金瑞  兰州理工大学电气工程与信息工程学院硕士研究生.主要研究方向为扩展目标跟踪. E-mail: djr62@sina.com

    韩崇昭  西安交通大学电子与信息工程学院教授.主要研究方向为多源信息融合, 随机控制与自适应控制, 非线性频谱分析. E-mail: czhan@mail.xjtu.edu.cn

    通讯作者:

    陈辉  兰州理工大学电气工程与信息工程学院教授.主要研究方向为目标跟踪和传感器管理.本文通信作者. E-mail: huich78@hotmail.com

A Multiple Extended Target Multi-Bernouli Filter Based on Star-convex Random Hypersurface Model

Funds: 

National Natural Science Foundation of China 61873116

National Natural Science Foundation of China 51668039

Gansu Provincial Science and Technology Planning of China 18YF1GA065

Gansu Provincial Science and Technology Planning of China 18JR3RA137

National Defense Basic Research Project JCKY2018427C002

More Information
    Author Bio:

    DU Jin-Rui  Master student at the School of Electrical and Information Engineering, Lanzhou University of Technology. Her main research interest is extended target tracking

    HAN Chong-Zhao  Professor at the School of Electronic and Information Engineering, Xi'an Jiaotong University. His research interest covers multi-source information fusion, stochastic control and adaptive control, and nonlinear spectral analysis

    Corresponding author: CHEN Hui  Professor at the School of Electrical and Information Engineering, Lanzhou University of Technology. His research interest covers target tracking and sensor management. Corresponding author of this paper
  • 摘要: 针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题, 提出了一种基于星凸形随机超曲面模型(Star-convex RHM)的多扩展目标多伯努利滤波算法.首先, 在有限集统计(Finite set statistics, FISST)理论框架下, 采用多伯努利随机有限集(MBer-RFS)和泊松RFS (Possion-RFS)分别描述多扩展目标的状态和观测, 并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次, 利用RHM去描述任意星凸形扩展目标的量测源分布, 提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外, 本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后, 通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.
    Recommended by Associate Editor GUO Ge
    1)  本文责任编委 郭戈
  • 图  1  星凸形的径向函数描述

    Fig.  1  Radius function representation of star-convex shape

    图  2  星凸形扩展目标的随机超曲面模型

    Fig.  2  RHM of extended target with star-convex shape

    图  3  目标真实运动轨迹

    Fig.  3  Actual target trajectories

    图  4  扩展目标形状及量测分布

    Fig.  4  Shape and measurements of the extended target

    图  5  两种滤波器对多扩展目标的跟踪效果图

    Fig.  5  The tracking result of the two filters (ET)

    图  6  两种滤波器的形状估计局部放大图

    Fig.  6  The partial enlarged effect of the two filters for shape estimation (ET)

    图  7  两种滤波器下扩展目标的势估计

    Fig.  7  Cardinality estimation of the two filters (ET)

    图  8  扩展目标质心位置估计的OSPA

    Fig.  8  OSPA statistics of the centroid position estimation (ET)

    图  9  扩展目标形状估计的拟Jaccard距离

    Fig.  9  Quasi-Jaccard distance of the shape estimation (ET)

    图  10  群目标形状及量测分布

    Fig.  10  Shape and measurements of the group target

    图  11  两种滤波器对群目标的跟踪效果图

    Fig.  11  The tracking result of the two filters (GT)

    图  12  两种滤波器的对群目标的形状估计局部放大图

    Fig.  12  The partial enlarged effect of the two filters for shape estimation (GT)

    图  13  两种滤波器下群目标的势估计

    Fig.  13  Cardinality estimation statistics of the two filters (GT)

    图  14  群目标位置估计的OSPA

    Fig.  14  OSPA statistics of the position estimation (GT)

    图  15  群目标形状估计的拟Jaccard距离

    Fig.  15  Quasi-Jaccard distance of the shape estimation (GT)

    表  1  多目标初始参数

    Table  1  Initial parameters of multi-target

    目标 新生时刻(s) 消亡时刻(s) 位置(m) 速度(m/s)
    目标1 1 35 $[10, -50]^{\rm T}$ $[10, 2]^{\rm T}$
    目标2 11 50 $[10, 10]^{\rm T}$ $[8, 5]^{\rm T}$
    目标3 26 50 $[10, 50]^{\rm T}$ $[12, 2]^{\rm T}$
    下载: 导出CSV
  • [1] Vo B N, Vo B T, Hoang H G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2017, 65(8): 1975-1987 doi: 10.1109/TSP.2016.2641392
    [2] Gostar A K, Hoseinnezhad R, Bab-Hadiashar A, et al. Sensor-management for multitarget filters via minimization of posterior dispersion. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2877-2884 doi: 10.1109/TAES.2017.2718280
    [3] Xia Y X, Granström K, Svensson L, Fatemi M. Extended target Poisson Multi-Bernoulli filter. arXiv: 1801.01353, 2018.
    [4] Cao W, Lan J, Li X R. Extended object tracking and classification using radar and ESM sensor data. IEEE Signal Processing Letters, 2018, 25(1): 90-94 doi: 10.1109/LSP.2017.2757920
    [5] Granström K, Baum M, Reuter S. Extended object tracking: introduction, overview, and applications. Journal of Advances in Information Fusion, 2017, 12(2): 139-174 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026837439/
    [6] Sun L F, Lan J, Li X R. Joint tracking and classification of extended object based on support functions. IET Radar, Sonar & Navigation, 2018, 12(7): 685-693 http://cn.bing.com/academic/profile?id=f0ee724952593df098352f581578ff5d&encoded=0&v=paper_preview&mkt=zh-cn
    [7] Aftab W, De Freitas A, Arvaneh M, Mihaylova L. A Gaussian process approach for extended object tracking with random shapes and for dealing with intractable likelihoods. In: Proceedings of the 22nd International Conference on Digital Signal Processing (DSP). London, UK: IEEE, 2017. 1-5
    [8] Beard M, Reuter S, Granström K, Vo B T, Vo B N, Scheel A. Multiple extended target tracking with labeled random finite sets. IEEE Transactions on Signal Processing, 2016, 64(7): 1638-1653 doi: 10.1109/TSP.2015.2505683
    [9] Mahler R P S. Advances in Statistical Multisource-Multitarget Information Fusion. Boston, USA: Artech House, 2014.
    [10] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Boston, USA: Artech House, Inc., 2007.
    [11] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178 doi: 10.1109/TAES.2003.1261119
    [12] Mahler R. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543 doi: 10.1109/TAES.2007.4441756
    [13] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423 doi: 10.1109/TSP.2008.2007924
    [14] Vo B T, Vo B N, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567 doi: 10.1109/TSP.2014.2364014
    [15] Vo B N, Vo B T. An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling. In: Proceedings of the 20th International Conference on Information Fusion. Xi'an, China: IEEE, 2017: 1-8
    [16] Vo B N, Vo B T, Beard M. Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2019, 67(23): 5952-5967 doi: 10.1109/TSP.2019.2946023
    [17] Hoseinnezhad R, Vo B N, Vo B T, Suter D. Bayesian integration of audio and visual information for multi-target tracking using a CB-MeMBer filter. In: Proceedings of the 2011 International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011. 2300-2303
    [18] Chong N, Nordholm S, Vo B T, Murray I. Tracking and separation of multiple moving speech sources via cardinality balanced multi-target multi Bernoulli (CBMeMBer) filter and time frequency masking. In: Proceedings of the 2016 International Conference on Control, Automation and Information Sciences (ICCAIS). Ansan, South Korea: IEEE, 2016. 88-93
    [19] Hoang H G, Vo B T. Sensor management for multi-target tracking via multi-Bernoulli filtering. Automatica, 2014, 50(4): 1135-1142 doi: 10.1016/j.automatica.2014.02.007
    [20] 陈辉, 韩崇昭.机动多目标跟踪中的传感器控制策略的研究.自动化学报, 2016, 42(4): 512-523 doi: 10.16383/j.aas.2016.c150529

    Chen Hui, Han Chong-Zhao. Sensor control strategy for maneuvering multi-target tracking. Acta Automatica Sinica, 2016, 42(4): 512-523 doi: 10.16383/j.aas.2016.c150529
    [21] Gilholm K, Salmond D. Spatial distribution model for tracking extended objects. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 364-371 doi: 10.1049/ip-rsn:20045114
    [22] Gilholm K, Godsill S, Maskell S, Salmond D. Poisson models for extended target and group tracking. In: Proceedings of SPIE 5913, Signal and Data Processing of Small Targets 2005. San Diego, USA: SPIE, 2005. 230-241
    [23] Lan J, Li X R. Tracking of extended object or target group using random matrix—Part Ⅱ: irregular object. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 2185-2192
    [24] Lan J, Li X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Transactions on Signal Processing, 2014, 62(9): 2450-2463 doi: 10.1109/TSP.2014.2309561
    [25] Feldmann M, Franken D. Tracking of extended objects and group targets using random matrices—a new approach. In: Proceedings of the 11th International Conference on Information Fusion. Cologne, Germany: IEEE, 2008. 1-8
    [26] Feldmann M, Fränken D, Koch W. Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420 doi: 10.1109/TSP.2010.2101064
    [27] Orguner U. A variational measurement update for extended target tracking with random matrices. IEEE Transactions on Signal Processing, 2012, 60(7): 3827-3834 doi: 10.1109/TSP.2012.2192927
    [28] Baum M, Hanebeck U D. Extended object tracking with random hypersurface models. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149-159 doi: 10.1109/TAES.2013.120107
    [29] Baum M, Hanebeck U D. Shape tracking of extended objects and group targets with star-convex RHMs. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 338-345
    [30] Zea A, Faion F, Baum M, Hanebeck U D. Level-set random hypersurface models for tracking nonconvex extended objects. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2990-3007 doi: 10.1109/TAES.2016.130704
    [31] Yao G, Dani A. Image moment-based random hypersurface model for extended object tracking. In: Proceedings of the 20th International Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1-7
    [32] Han Y L, Zhu H Y, Han C. A Gaussian-mixture PHD filter based on random hypersurface model for multiple extended targets. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1752-1759
    [33] Ünsalan C, Erçil A. Conversions between parametric and implicit forms using polar/spherical coordinate representations. Computer Vision and Image Understanding, 2001, 81(1): 1-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8862acbb2ed9a24a7854026578db0ff
    [34] Zhang G H, Lian F, Han C Z. CBMeMBer filters for nonstandard targets, Ⅰ: extended targets. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-6
    [35] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 2010, 58(10): 4977-4993 doi: 10.1109/TSP.2010.2056923
    [36] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457 doi: 10.1109/TSP.2008.920469
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  2797
  • HTML全文浏览量:  263
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-06
  • 录用日期:  2018-07-23
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回