2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FlowS-Unet的遥感图像建筑物变化检测

顾炼 许诗起 竺乐庆

顾炼, 许诗起, 竺乐庆. 基于FlowS-Unet的遥感图像建筑物变化检测. 自动化学报, 2020, 46(6): 1291-1300. doi: 10.16383/j.aas.c180122
引用本文: 顾炼, 许诗起, 竺乐庆. 基于FlowS-Unet的遥感图像建筑物变化检测. 自动化学报, 2020, 46(6): 1291-1300. doi: 10.16383/j.aas.c180122
GU Lian, XU Shi-Qi, ZHU Le-Qing. Detection of Building Changes in Remote Sensing Images via FlowS-Unet. ACTA AUTOMATICA SINICA, 2020, 46(6): 1291-1300. doi: 10.16383/j.aas.c180122
Citation: GU Lian, XU Shi-Qi, ZHU Le-Qing. Detection of Building Changes in Remote Sensing Images via FlowS-Unet. ACTA AUTOMATICA SINICA, 2020, 46(6): 1291-1300. doi: 10.16383/j.aas.c180122

基于FlowS-Unet的遥感图像建筑物变化检测

doi: 10.16383/j.aas.c180122
基金项目: 

浙江省自然科学基金 LY20F020002

详细信息
    作者简介:

    顾炼  浙江工商大学计算机与信息工程学院硕士研究生.主要研究方向为图像处理, 模式识别. E-mail: guliancv@163.com

    许诗起  浙江工商大学计算机与信息工程学院硕士研究生.主要研究方向为数据挖掘, 深度学习. E-mail: xushiqitc@163.com

    通讯作者:

    竺乐庆  浙江工商大学计算机与信息工程学院副教授.主要研究方向为图像处理, 模式识别, 视频处理.本文通信作者. E-mail: zhuleqing@zjgsu.edu.cn

Detection of Building Changes in Remote Sensing Images via FlowS-Unet

Funds: 

Natural Science Foundation of Zhejiang Province LY20F020002

More Information
    Author Bio:

    GU Lian   Master student at the School of Computer and Information Engineering, Zhejiang Gongshang University. Her research interest covers image processing and pattern recognition

    XU Shi-Qi  Master student at the School of Computer and Information Engineering, Zhejiang Gongshang University. His research interest covers data mining and deep learning

    Corresponding author: ZHU Le-Qing  Associate professor at the School of Computer and Information Engineering, Zhejiang Gongshang University. Her research interest covers image processing, pattern recognition, and video processing. Corresponding author of this paper
  • 摘要: 针对目前人为探察土地资源利用情况的任务繁重、办事效率低下等问题, 提出了一种基于深度卷积神经网络的建筑物变化检测方法, 利用高分辨率遥感图像实时检测每个区域新建与扩建的建筑物, 以方便对土地资源进行有效管理.本文受超列(Hypercolumn)和FlowNet中的细化(Refinement)结构启发, 将细化和其他改进应用到U-Net, 提出FlowS-Unet网络.首先对遥感图像裁剪、去噪、标注语义制作数据集, 将该数据集划分为训练集和测试集, 对训练集进行数据增强, 并根据训练集图像的均值和方差对所有图像进行归一化; 然后将训练集输入集成了多尺度交叉训练、多重损失计算、Adam优化的全卷积神经网络FlowS-Unet中进行训练; 最后对网络模型的预测结果进行膨胀、腐蚀以及孔洞填充等后处理得到最终的分割结果.本文以人工分割结果为参考标准进行对比测试, 用FlowS-Unet检测得到的F1分数高达0.943, 明显优于FCN和U-Net的预测结果.实验结果表明, FlowS-Unet能够实时准确地将新建与扩建的建筑物变化检测出来, 并且该模型也可扩展到其他类似的图像检测问题中.
    Recommended by Associate Editor LIU Qing-Shan
    1)  本文责任编委 刘青山
  • 图  1  一种端到端的建筑物变化检测概览图

    Fig.  1  An overview of end-to-end architecture of building change detection

    图  2  整体方案实施流程

    Fig.  2  The schema of proposed approach

    图  3  部分卫星图原图

    Fig.  3  Part of the original satellite image

    图  4  减少拼接区域色差效果图

    Fig.  4  The result after the color difference of stitching blocks was sup-pressed

    图  5  去云、雾效果图

    Fig.  5  Results of cloud and fog removal

    图  6  人工标注示意图

    Fig.  6  The demonstration of manual label annotation

    图  7  FlowS-Unet网络结构

    Fig.  7  The network structure of FlowS-Unet

    图  8  后处理前后对比图

    Fig.  8  A comparison between the results before and after post-processing

    图  9  准确率与损失值曲线

    Fig.  9  Curves of accuracy and loss

    图  10  FlowS-Unet与现有方法的定性比较

    Fig.  10  A quality comparison of FlowS-Unet and previous methods

    表  1  FlowS-Unet与现有方法的性能比较

    Table  1  The performance comparison of FlowS-Unet

    序号方法F1分数(后处理前/后)时间(s)
    1FlowS-Unet0.933/0.94362
    2FCN0.858/0.87350
    3U-Net0.898/0.91359
    4人工标注1.00018 000
    下载: 导出CSV

    表  2  多尺度与单尺度训练及预测的F1分数比较

    Table  2  The F1 score comparison between multi-scale cross and single-scale training and testing

    训练尺度(像素)预测尺度(像素)F1分数(后处理前/后)
    2242240.903/0.923
    2562560.909/0.928
    2882880.913/0.931
    3203200.911/0.932
    2240.933/0.939
    2560.938/0.943
    多尺度2880.939/0.945
    3200.939/0.944
    多尺度平均0.942/0.946
    下载: 导出CSV

    表  3  FlowS-Unet与其他队伍的F1分数比较

    Table  3  The F1 score comparison of FlowS-Unet and other teams

    名次初赛复赛决赛
    第1名0.8900.9140.861
    第2名(FlowS-Unet)0.9030.8770.840
    第3名0.8670.8980.800
    第4名0.7060.8700.842
    第5名0.8790.9360.823
    下载: 导出CSV
  • [1] Beumier C, Idrissa M. Building change detection from uniform regions. In: Proceedings of the 17th Iberoamerican Congress Pattern Recognition, Image Analysis, Computer Vision, and Applications. Buenos Aires, Argentina: Springer, 2012. 648-655
    [2] Turker M, Sumer E. Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images. International Journal of Remote Sensing, 2008, 29(11): 3073-3089 doi: 10.1080/01431160701442096
    [3] Huang X, Zhang L P, Zhu T T. Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 105-115 doi: 10.1109/JSTARS.2013.2252423
    [4] 周则明, 孟勇, 黄思训, 胡宝鹏.基于能量最小化的星载SAR图像建筑物分割方法.自动化学报, 2016, 42(2): 279-289 doi: 10.16383/j.aas.2016.c150460

    Zhou Ze-Ming, Meng Yong, Huang Si-Xun, Hu Bao-Peng. Building segmentation of spaceborne SAR images based on energy minimization. Acta Automatica Sinica, 2016, 42(2): 279-289 doi: 10.16383/j.aas.2016.c150460
    [5] 李炜明, 吴毅红, 胡占义.视角和光照显著变化时的变化检测方法研究.自动化学报, 2009, 35(5): 449-461 doi: 10.3724/SP.J.1004.2009.00449

    Li Wei-Ming, Wu Yi-Hong, Hu Zhan-Yi. Urban change detection under large view and illumination variations. Acta Automatica Sinica, 2009, 35(5): 449-461 doi: 10.3724/SP.J.1004.2009.00449
    [6] 田昊, 杨剑, 汪彦明, 李国辉.基于先验形状约束水平集模型的建筑物提取方法.自动化学报, 2010, 36(11): 1502-1511 doi: 10.3724/SP.J.1004.2010.01502

    Tian Hao, Yang Jian, Wang Yan-Ming, Li Guo-Hui. Towards automatic building extraction: Variational level set model using prior shape knowledge. Acta Automatica Sinica, 2010, 36(11): 1502-1511 doi: 10.3724/SP.J.1004.2010.01502
    [7] Liu B, Tang K, Liang J. A bottom-up/top-down hybrid algorithm for model-based building detection in single very high resolution SAR image. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 926-930 doi: 10.1109/LGRS.2017.2687946
    [8] Lukashevich P, Zalessky B, Belotserkovsky A. Building detection on aerial and space images. In: Proceedings of the 2017 International Conference on Information and Digital Technologies (IDT). Zilina, Slovakia: IEEE, 2017. 246-251
    [9] 施文灶, 毛政元.基于图分割的高分辨率遥感影像建筑物变化检测研究.地球信息科学学报, 2016, 18(3): 423-432 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201603017

    Shi Wen-Zao, Mao Zheng-Yuan. The research on building change detection from high resolution remotely sensed imagery based on graph-cut segmentation. Journal of Geo-Information Science, 2016, 18(3): 423-432 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201603017
    [10] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Nevada, USA: Curran Associates Inc., 2012. 1097-1105
    [11] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, California, USA, 2015. 1-14 %arXiv: 1409.1556, 2014.
    [12] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 3431 -3440
    [13] Yuan J Y. Automatic building extraction in aerial scenes using convolutional networks. arXiv: 1602.06564, 2016.
    [14] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the 18th Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015. 234-241
    [15] Hariharan B, Arbeláez B, Girshick R, Malik J. Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 447-456
    [16] Dosovitskiy A, Fischer P, Ilg E, Häusser P, Hazirbas C, Golkov V, et al. FlowNet: Learning optical flow with convolutional networks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 2758-2766
    [17] 陈文康.基于深度学习的农村建筑物遥感影像检测.测绘, 2016, 39(5): 227-230 doi: 10.3969/j.issn.1674-5019.2016.05.010

    Chen Wen-Kang. Remote sensing image detection of rural buildings based on deep learning algorithm. Surveying and Mapping, 2016, 39(5): 227-230 doi: 10.3969/j.issn.1674-5019.2016.05.010
    [18] Silberman N, Sontag D, Fergus R. Instance segmentation of indoor scenes using a coverage loss. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 616-631
    [19] Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915- 1929 doi: 10.1109/TPAMI.2012.231
    [20] Zhang A, Liu X M, Gros A, Tiecke T. Building detection from satellite images on a global scale. arXiv: 1707.08952, 2017.
    [21] Ghaffarian S, Ghaffarian S. Automatic building detection based on supervised classification using high resolution Google earth images. In: Proceedings of the 2014 ISPRS Technical Commission Ⅲ Symposium. Zurich, Switzerland: ISPRS, 2014. 101-106
    [22] Shu Z, Hu X Y, Sun J. Center-point-guided proposal generation for detection of small and dense buildings in aerial imagery. IEEE Geoscience and Remote Sensing Letters, 2018, 15(7): 1100-1104 doi: 10.1109/LGRS.2018.2822760
    [23] Yang H L, Lunga D, Yuan J Y. Toward country scale building detection with convolutional neural network using aerial images. In: Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA: IEEE, 2017. 870-873
    [24] Sun L, Tang Y Q, Zhang L P. Rural building detection in high-resolution imagery based on a two-stage CNN model. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1998-2002 doi: 10.1109/LGRS.2017.2745900
    [25] Vakalopoulou M, Bus N, Karantzalos K, Paragios N. Integrating edge/boundary priors with classification scores for building detection in very high resolution data. In: Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA: IEEE, 2017. 3309-3312
    [26] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698 doi: 10.1109/TPAMI.1986.4767851
    [27] 卫亚星, 王莉雯.遥感图像增强方法分析.测绘与空间地理信息, 2006, 29(2): 4-7 doi: 10.3969/j.issn.1672-5867.2006.02.002

    Wei Ya-Xing, Wang Li-Wen. Analysis of enhancement methods about satellite images. Geomatics and Spatial Information Technology, 2006, 29(2): 4-7 doi: 10.3969/j.issn.1672-5867.2006.02.002
    [28] Cai B L, Xu X M, Jia K, Qing C M, Tao D C. DehazeNet: An end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198 doi: 10.1109/TIP.2016.2598681
    [29] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Journal of Machine Learning Research, 2011, 15: 315-323%In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA: JMLR W & CP, 2011. 315-323 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201606009
    [30] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR, 2015. 448-456
    [31] Zeiler M D, Krishnan D, Taylor G W, Fergus R. Deconvolutional networks. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 2528- 2535
    [32] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929-1958 http://d.old.wanfangdata.com.cn/Periodical/kzyjc200606005
    [33] Lin T Y, Dollár P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 936-944
    [34] Kingma D P, Ba J. Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA: 2015. 1-15
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  2377
  • HTML全文浏览量:  361
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 录用日期:  2018-07-15
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回