2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于节点块序列约束的局部贝叶斯网络结构搜索算法

王海羽 刘浩然 张力悦 张春兰 刘彬

王海羽, 刘浩然, 张力悦, 张春兰, 刘彬. 基于节点块序列约束的局部贝叶斯网络结构搜索算法. 自动化学报, 2020, 46(6): 1210-1219. doi: 10.16383/j.aas.c180108
引用本文: 王海羽, 刘浩然, 张力悦, 张春兰, 刘彬. 基于节点块序列约束的局部贝叶斯网络结构搜索算法. 自动化学报, 2020, 46(6): 1210-1219. doi: 10.16383/j.aas.c180108
WANG Hai-Yu, LIU Hao-Ran, ZHANG Li-Yue, ZHANG Chun-Lan, LIU Bin. Local Bayesian Network Structure Searching Using Constraint of Node Chunk Sequence. ACTA AUTOMATICA SINICA, 2020, 46(6): 1210-1219. doi: 10.16383/j.aas.c180108
Citation: WANG Hai-Yu, LIU Hao-Ran, ZHANG Li-Yue, ZHANG Chun-Lan, LIU Bin. Local Bayesian Network Structure Searching Using Constraint of Node Chunk Sequence. ACTA AUTOMATICA SINICA, 2020, 46(6): 1210-1219. doi: 10.16383/j.aas.c180108

基于节点块序列约束的局部贝叶斯网络结构搜索算法

doi: 10.16383/j.aas.c180108
基金项目: 

国家自然科学基金 51641609

国家自然科学基金 61802333

详细信息
    作者简介:

    王海羽  燕山大学信息科学与工程学院硕士研究生.主要研究方向为贝叶斯网络, 动态贝叶斯网络, 人工智能, 进化算法, 故障诊断与预测. E-mail: anderwwhy@outlook.com

    张力悦  燕山大学信息科学与工程学院硕士研究生.主要研究方向为智能算法, 贝叶斯网络, 故障诊断与预测. E-mail: zly15128506765@163.com

    张春兰  燕山大学信息科学与工程学院硕士研究生.主要研究方向为智能优化, 贝叶斯网络, 故障诊断与预测. E-mail: 15076053886@163.com

    刘彬  燕山大学信息科学与工程学院教授.主要研究方向为深度学习, 贝叶斯网络, 故障诊断与预测. E-mail: liubin@ysu.edu.cn

    通讯作者:

    刘浩然  燕山大学信息科学与工程学院教授.主要研究方向为贝叶斯网络, 人工智能, 无线传感器网络, 故障诊断与预测.本文通信作者. E-mail: liuhaoranysu125@163.com

Local Bayesian Network Structure Searching Using Constraint of Node Chunk Sequence

Funds: 

National Natural Science Foundation of China 51641609

National Natural Science Foundation of China 61802333

More Information
    Author Bio:

    WANG Hai-Yu  Master student at the College of Information Science and Engineering, Yanshan University. His research interest covers Bayesian network, artiflcial intelligence, evolutionary computation, and fault diagnosis and prediction

    ZHANG Li-Yue  Master student at the College of Information Science and Engineering, Yanshan University. His research interest covers intelligent algorithms, Bayesian networks, and fault diagnosis and prediction

    ZHANG Chun-Lan  Master student at the College of Information Science and Engineering, Yanshan University. Her research interest covers intelligent optimization, Bayesian network, and fault diagnosis and prediction

    LIU Bin  Professor at the College of Information Science and Engineering, Yanshan University. His research interest covers deep learning, Bayesian network, and fault diagnosis and prediction

    Corresponding author: LIU Hao-Ran  Professor at the College of Information Science and Engineering, Yanshan University. His research interest covers Bayesian network, artiflcial intelligence, wireless sensor networks, and fault diagnosis and prediction. Corresponding author of this paper
  • 摘要: 针对K2算法过度依赖节点序和节点序搜索算法评价节点序效率较低的问题, 提出一种基于节点块序列约束的局部贝叶斯网络结构搜索算法, 该算法首先通过评分定向构建定向支撑树结构, 在此基础上构建节点块序列, 然后利用节点块序列确定每个节点的潜在父节点集, 通过搜索每个节点的父节点集构建网络结构, 最后对该结构进行非法结构修正得到最优贝叶斯网络结构.利用标准网络将算法与几种不同类型的改进算法进行对比分析, 验证该算法的有效性.
    Recommended by Associate Editor LI Ming
    1)  本文责任编委 黎铭
  • 图  1  由定向支撑树构建节点块序列的例子

    Fig.  1  Example of constructing node chunk sequence by directional support tree

    图  2  由节点块序列搜索潜在父节点集的简单例子

    Fig.  2  A simple example of searching potential parent set by node chunk sequence

    图  3  Alarm网络中不同算法精度对比

    Fig.  3  Comparison of different algorithm accuracy in Alarm network

    图  4  Insurance网络中不同算法精度对比

    Fig.  4  Comparison of different algorithm accuracy in Insurance network

    图  5  Hailfinder网络中不同算法精度对比

    Fig.  5  Comparison of different algorithm accuracy in Hailfinder network

    表  1  标准贝叶斯网络的参数

    Table  1  Parameters of standard Bayesian networks

    网络节点数边数变量域最大节点出入度
    Alarm37462~46
    Insurance27522~59
    Hailfinder56662~1117
    下载: 导出CSV

    表  2  标准贝叶斯网络结构平均BIC得分

    Table  2  Average BIC score in standard Bayesian network structure

    网络1 0002 0003 0005 000
    Alarm-10 874.35-20 382.51-30 057.28-48 056.66
    Insurance-15 998.20-30 103.21-43 863.15-73 069.35
    Hailfinder-67 046.62-126 837.31-176 348.73-279 766.12
    下载: 导出CSV

    表  3  NCSC算法与标准节点序的K2算法在Alarm网络中运行结果

    Table  3  Results of NCSC algorithm and standard node sequence K2 algorithm in Alarm network

    AlarmBICExt (s)结构
    CMRAW
    1 000NCSC-11 410.8332.98±1.8241.82.12.86.511.4
    K2-11 189.5110.27±0.6144.21.804.36.1
    2 000NCSC-20 791.8642.14±1.8841.71.92.26.210.3
    K2-20 605.9911.53±0.4744.51.502.74.2
    3 000NCSC-31 025.2845.99±5.9342.91.32.24.27.7
    K2-30 505.0114.04±1.9544.91.103.14.2
    5 000NCSC-49 812.6156.25±2.1343.21.21.14.77
    K2-49 235.7716.51±0.7445.11.00.03.14.1
    下载: 导出CSV

    表  4  NCSC算法与标准节点序的K2算法在Insurance网络中运行结果

    Table  4  Results of NCSC algorithm and standard node sequence K2 algorithm in Insurance network

    InsuranceBICExt (s)结构
    CMRAW
    1 000NCSC-16 486.3117.28±0.3438.311.92.32.616.8
    K2-16 219.714.58±0.2539.712.300.312.6
    2 000NCSC-30 756.319.61±1.1339.110.72.43.216.3
    K2-30 544.865.11±0.3142.29.800.510.3
    3 000NCSC-45 369.2324.34±3.2239.810.22.33.315.8
    K2-44 748.86.32±0.4042.69.400.59.9
    5 000NCSC-73 566.7729.92±2.9140.69.42.33.214.9
    K2-73 148.287.68±0.4543.88.200.68.8
    下载: 导出CSV

    表  5  NCSC算法与标准节点序的K2算法在Hailfinder网络中运行结果

    Table  5  Results of NCSC algorithm and standard node sequence K2 algorithm in Hailfinder network

    InsuranceBICExt (s)结构
    CMRAW
    1 000NCSC-78 396.62232.18±16.3147.816.32.89.729.3
    K2-78 157.9925.71±1.5548.317.708.125.8
    2 000NCSC-131 604.2250.58±7.9450.213.91.610.125.6
    K2-130 945.530.22±1.5151.614.409.123.5
    3 000NCSC-182 167.2292.22±20.0151.513.41.410.325.1
    K2-181 831.936.58±1.8452.913.109.522.6
    5 000NCSC-283 288.4356.14±16.7751.812.81.810.124.7
    K2-282 937.243.37±1.8353.512.509.922.4
    下载: 导出CSV

    表  6  五种算法在Alarm网络中运行时间(s)

    Table  6  Running time of five algorithms in Alarm network (s)

    Alarm1 0002 0003 0005 000
    NCSC32.98±1.8242.14±1.8845.99±2.0456.25±2.13
    K2+T11.72±0.7414.82±1.6216.33±1.2518.82±2.71
    MAK942.60±31.41 153.37±32.371 299.01±42.551 582.35±46.86
    SHC3 474.01±90.804 079.66±121.984 784.10±156.856 013.93±216.64
    SAR46.77±0.8149.64±3.5262.30±3.3877.39±10.91
    下载: 导出CSV

    表  7  五种算法在Insurance网络中运行时间

    Table  7  Running time of five algorithms in Insurance network (s)

    Insurance1 0002 0003 0005 000
    NCSC17.28±0.3419.61±1.1324.34±3.2229.92±2.91
    K2+T4.55±0.416.03±1.207.17±0.839.42±2.59
    MAK388.99±12.41420.61±27.73481.50±32.86694.92±30.30
    SHC4 051.46±123.825 521.37±179.045 701.31±207.107 072.01±241.25
    SAR19.38±0.9019.95±1.5531.67±4.8140.60±5.95
    下载: 导出CSV

    表  8  五种算法在Hailfinder网络中运行时间(s)

    Table  8  Running time of five algorithms in Hailfinder network (s)

    Hailflnder1 0002 0003 0005 000
    NCSC232.18±6.31250.58±7.94292.22±10.73356.14±14.86
    K2+T28.54±0.9232.82±0.9339.21±1.1649.38±1.76
    MAK2 203.76±61.582 611.30±66.943 100.82±96.873 854.99±120.45
    SHC18 273.69±468.5523 500.71±318.1129 255.29±380.5235 785.38±420.00
    SAR229.07±7.82264.35±15.53307.52±12.35362.27±20.55
    下载: 导出CSV
  • [1] Tien I, Der Kiureghian A. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems. Reliability Engineering and System Safety, 2016, 156: 134-147 doi: 10.1016/j.ress.2016.07.022
    [2] Gendelman R, Xing H M, Mirzoeva O K, Sarde P, Curtis C, Feiler H S, et al. Bayesian network inference modeling identifies TRIB1 as a novel regulator of cell-cycle progression and survival in cancer cells. Cancer Research, 2017, 77(7): 1575-1585 doi: 10.1158/0008-5472.CAN-16-0512
    [3] Lee D, Pan R. A nonparametric Bayesian network approach to assessing system reliability at early design stages. Reliability Engineering and System Safety, 2018, 171: 57-66 doi: 10.1016/j.ress.2017.11.009
    [4] Chaturvedi I, Ragusa E, Gastaldo P, Zunino R, Cambria E. Bayesian network based extreme learning machine for subjectivity detection. Journal of the Franklin Institute, 2018, 355(4): 1780-1797 doi: 10.1016/j.jfranklin.2017.06.007
    [5] Khakzad N, Van Gelder P. Vulnerability of industrial plants to flood-induced natechs: a Bayesian network approach. Reliability Engineering and System Safety, 2018, 169: 403- 411 doi: 10.1016/j.ress.2017.09.016
    [6] 刘建伟, 黎海恩, 罗雄麟.概率图模型学习技术研究进展.自动化学报, 2014, 40(6): 1025-1044 doi: 10.3724/SP.J.1004.2014.01025

    Liu Jian-Wei, Li Hai-En, Luo Xiong-Lin. Learning technique of probabilistic graphical models: a review. Acta Automatica Sinica, 2014, 40(6): 1025-1044 doi: 10.3724/SP.J.1004.2014.01025
    [7] Contaldi C, Vafaee F, Nelson P C. Bayesian network hybrid learning using an elite-guided genetic algorithm. Artificial Intelligence Review, 2019, 52: 245-272 doi: 10.1007/s10462-018-9615-5
    [8] Chow C, Liu C. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 1968, 14(3): 462-467 doi: 10.1109/TIT.1968.1054142
    [9] Koopman R, Wang S H. Mutual information based labelling and comparing clusters. Scientometrics, 2017, 111(2): 1157 -1167 doi: 10.1007/s11192-017-2305-2
    [10] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufmann Publishers, 1988.
    [11] Jiang J K, Wang J Y, Yu H, Xu H J. Poison identification based on Bayesian network: a novel improvement on K2 algorithm via Markov blanket. In: Proceedings of the 2013 Advances in Swarm Intelligence. Lecture Notes in Computer Science. Berlin, Germany: Heidelberg: Springer, 2013. 173- 182
    [12] Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9(4): 309-347
    [13] Chen X W, Anantha G, Lin X T. Improving Bayesian network structure learning with mutual information-based node ordering in the K2 algorithm. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 628-640 doi: 10.1109/TKDE.2007.190732
    [14] Ko S, Kim D W. An efficient node ordering method using the conditional frequency for the K2 algorithm. Pattern Recognition Letters, 2014, 40: 80-87 doi: 10.1016/j.patrec.2013.12.021
    [15] Leray P, Francois O. BNT Structure Learning Package: Documentation and Experiments, Technical Report, Laboratoire PSI, 2006.
    [16] Faulkner E. K2GA: heuristically guided evolution of Bayesian network structures from data. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Honolulu, HI, USA: IEEE, 2007. 18-25
    [17] Wu Y H, McCall J, Corne D. Two novel ant colony optimization approaches for Bayesian network structure learning. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010. 1-7
    [18] Aouay S, Jamoussi S, Ben Ayed Y. Particle swarm optimization based method for Bayesian network structure learning. In: Proceedings of the 5th International Conference on Modeling, Simulation, and Applied Optimization. Hammamet, Tunisia: IEEE, 2013. 1-6
    [19] 刘浩然, 孙美婷, 李雷, 刘永记, 刘彬.基于蚁群节点寻优的贝叶斯网络结构算法研究.仪器仪表报, 2017, 38(1): 143-150 http://d.old.wanfangdata.com.cn/Periodical/yqyb201701019

    Liu Hao-Ran, Sun Mei-Ting, Li Lei, Liu Yong-Ji, Liu Bin. Study on Bayesian network structure learning algorithm based on ant colony node order optimization. Chinese Journal of Scientific Instrument, 2017, 38(1): 143-150 http://d.old.wanfangdata.com.cn/Periodical/yqyb201701019
    [20] Malone B, Kangas K, Järvisalo M, Koivisto M, Myllymäki P. Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction. Machine Learning, 2018, 107(1): 247-283 doi: 10.1007/s10994-017-5680-2
    [21] 王双成, 冷翠平, 李小琳.小数据集的贝叶斯网络结构学习.自动化学报, 2009, 35(8): 1063-1070 doi: 10.3724/SP.J.1004.2009.01063

    Wang Shuang-Cheng, Leng Cui-Ping, Li Xiao-Lin. Learning Bayesian network structure from small data set. Acta Automatica Sinica, 2009, 35(8): 1063-1070 doi: 10.3724/SP.J.1004.2009.01063
    [22] Schwarz G. Estimating the dimension of a model. The Annals of Statistics, 1978, 6(2): 461-464 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_97aaabbf8da8b3a5ff9b5d690a7fdbc3
    [23] Murphy K. The Bayes net toolbox for MATLAB. Computing Science and Statistics, 2001, 33: 1024-1034 http://www.researchgate.net/publication/2413249_The_Bayes_Net_Toolbox_for_Matlab
    [24] Wang J Y, Liu S Y. Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem. Knowledge-Based Systems, 2018, 150: 95-110 doi: 10.1016/j.knosys.2018.03.007
    [25] 刘浩然, 吕晓贺, 李轩, 李世昭, 史永红.基于Bayesian改进算法的回转窑故障诊断模型研究.仪器仪表学报, 2015, 36(7): 1554- 1561 doi: 10.3969/j.issn.0254-3087.2015.07.014

    Liu Hao-Ran, Lv Xiao-He, Li Xuan, Li Shi-Zhao, Shi Yong-Hong. A study on the fault diagnosis model of rotary kiln based on an improved algorithm of Bayesian. Chinese Journal of Scientific Instrument, 2015, 36(7): 1554-1561 doi: 10.3969/j.issn.0254-3087.2015.07.014
    [26] Liu H, Zhou S G, Lam W, Guan J H. A new hybrid method for learning Bayesian networks: separation and reunion. Knowledge-Based Systems, 2017, 121: 185-197 doi: 10.1016/j.knosys.2017.01.029
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  1233
  • HTML全文浏览量:  83
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-27
  • 录用日期:  2018-08-28
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回