2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合嵌入式多标签分类算法

刘慧婷 冷新杨 王利利 赵鹏

刘慧婷, 冷新杨, 王利利, 赵鹏. 联合嵌入式多标签分类算法. 自动化学报, 2019, 45(10): 1969-1982. doi: 10.16383/j.aas.c180087
引用本文: 刘慧婷, 冷新杨, 王利利, 赵鹏. 联合嵌入式多标签分类算法. 自动化学报, 2019, 45(10): 1969-1982. doi: 10.16383/j.aas.c180087
LIU Hui-Ting, LENG Xin-Yang, WANG Li-Li, ZHAO Peng. A Joint Embedded Multi-label Classification Algorithm. ACTA AUTOMATICA SINICA, 2019, 45(10): 1969-1982. doi: 10.16383/j.aas.c180087
Citation: LIU Hui-Ting, LENG Xin-Yang, WANG Li-Li, ZHAO Peng. A Joint Embedded Multi-label Classification Algorithm. ACTA AUTOMATICA SINICA, 2019, 45(10): 1969-1982. doi: 10.16383/j.aas.c180087

联合嵌入式多标签分类算法

doi: 10.16383/j.aas.c180087
基金项目: 

国家自然科学基金 61602004

国家自然科学基金 61202227

详细信息
    作者简介:

    冷新杨   安徽大学硕士研究生.主要研究方向为机器学习, 文本分类.E-mail:lxy_un@126.com

    王利利   安徽大学硕士研究生.主要方向领域为机器学习, 数据挖掘.E-mail:wll9267@126.com

    赵鹏   安徽大学副教授, 博士.主要研究方向为机器学习, 智能信息处理.E-mail:zhaopeng_ad@163.com

    通讯作者:

    刘慧婷   安徽大学副教授, 博士.主要研究方向为机器学习, 数据挖掘.本文通信作者.E-mail:htliu@ahu.edu.cn

A Joint Embedded Multi-label Classification Algorithm

Funds: 

National Natural Science Foundation of China 61602004

National Natural Science Foundation of China 61202227

More Information
    Author Bio:

       Master student at Anhui University. His research interest covers machine learning and text categorization

       Master student at Anhui University. Her research interest covers machine learning and data mining

       Ph.D., associate professor at Anhui University. Her research interest covers machine learning and intelligent information processing

    Corresponding author: LIU Hui-Ting    Ph.D., associate professor at Anhui University. Her research interest covers machine learning and data mining. Corresponding author of this paper
  • 摘要: 现有的一些多标签分类算法,因多标签数据含有高维的特征或标签信息而变得不可行.为了解决这一问题,提出基于去噪自编码器和矩阵分解的联合嵌入多标签分类算法Deep AE-MF.该算法包括两部分:特征嵌入部分使用去噪自编码器对特征空间学习得到非线性表示,标签嵌入部分则是利用矩阵分解直接学习到标签空间对应的潜在表示与解码矩阵.Deep AE-MF将特征嵌入和标签嵌入的两个阶段进行联合,共同学习一个潜在空间用于模型预测,进而得到一个有效的多标签分类模型.为了进一步提升模型性能,在Deep AE-MF方法中对标签间的负相关信息加以利用.通过在不同数据集上进行实验证明了提出Deep AE-MF方法的有效性和鲁棒性.
    1)  本文责任编委 张敏灵
  • 图  1  基于嵌入方法的两种模型图

    Fig.  1  Illustration of models based on embedding method

    图  2  Deep AE-MF算法模型图

    Fig.  2  The model of algorithm deep AE-MF

    图  3  $\alpha$的不同取值对数据集TJ和enron使用不同度量方式的性能体现

    Fig.  3  The performance of Deep AE-MF on data sets TJ and Enronis with respect to different values of $\alpha$ and different metrics

    图  4  $s/K$的不同取值对数据集EURLex-4K和enron使用不同度量方式的性能体现

    Fig.  4  The performance of Deep AE-MF on data sets EURLex-4K and enron with respect to different values of $s/K$ and different metrics

    表  1  多标签数据集相关统计

    Table  1  Multi-label datasets and associate statistics

    数据集 标签数 实例数 特征数 标记密度 平均标记数
    enron 53 1 702 8 000 0.0637 3.378
    ohsumed 23 13 928 8 000 0.0720 1.663
    movieLens 20 10 076 8 000 0.1020 2.043
    TJ 9 5 892 8 000 0.2001 1.801
    Delicious 983 16 105 500 0.0193 19.03
    EURLex-4K 3 993 19 438 5 000 0.0013 5.31
    下载: 导出CSV

    表  2  多标签数据集字符数量统计

    Table  2  The number of characters in a multi-label dataset

    数据集 含有不同字符数的样本比例
    50以内 50~100 100~200 200~400 400~800 800以上
    enron 0.437133 0.287309 0.165100 0.052291 0.014101 0.0440658
    ohsumed 0.591008 0.325526 0.082473 0.000992 0 0
    movieLens 0.427197 0.558372 0.014431 0 0 0
    TJ 0.134589 0.354888 0.339613 0.159708 0.011202 0
    下载: 导出CSV

    表  3  基于hamming loss的性能比较

    Table  3  The hamming loss of ten multi-label algorithms with respect to different data sets

    算法/数据集 enron ohsumed movieLens TJ Delicious EURLex-4K
    BR 0.0771 0.1484 0.1992 0.2923 0.0185 0.0032
    CCA-SVM 0.1593 0.2148 0.3116 0.3764 - -
    CCA-Ridge 0.1549 0.2140 0.3045 0.3268 - -
    LS_ML 0.1000 0.2119 0.2474 0.2842 - -
    PLST 0.0843 0.1510 0.2186 0.2906 0.0183 0.0037
    CPLST 0.0841 0.1512 0.2186 0.2906 0.0182 0.0038
    FaIE 0.0841 0.1505 0.2188 0.2882 0.0183 0.0038
    ML_CSSP 0.0836 0.1479 0.2075 0.2804 0.0181 0.0036
    Deep AE-MF 0.0518 0.1693 0.1416 0.1891 0.0310 0.0013
    Deep AE-MF+neg 0.0509 0.1630 0.1445 0.1869 0.0279 0.0012
    下载: 导出CSV

    表  4  基于Micro-F1-label的性能比较

    Table  4  The Micro-F1-label of ten multi-label algorithms with respect to different data sets

    算法/数据集 enron ohsumed movieLens TJ Delicious EURLex-4K
    BR 0.3451 0.1137 0.3308 0.4281 0.1370 0.1294
    CCA-SVM 0.2622 0.1528 0.3058 0.4355 - -
    CCA-Ridge 0.2744 0.1509 0.3074 0.4344 - -
    LS_ML 0.3417 0.1531 0.3633 0.4931 - -
    PLST 0.3638 0.1589 0.3639 0.4781 0.1911 0.1540
    CPLST 0.3643 0.1577 0.3642 0.4787 0.1911 0.1534
    FaIE 0.3643 0.1593 0.3607 0.4839 0.1911 0.1539
    ML_CSSP 0.3606 0.1543 0.3532 0.4850 0.1860 0.1534
    Deep AE-MF 0.5475 0.1642 0.3968 0.5421 0.2757 0.4913
    Deep AE-MF+neg 0.5531 0.1962 0.4122 0.5632 0.2775 0.4936
    下载: 导出CSV

    表  5  基于Macro-F1-label的性能比较

    Table  5  The Macro-F1-label of ten multi-label algorithms with respect to different data sets

    算法/数据集 enron ohsumed movieLens TJ Delicious EURLex-4K
    BR 0.0923 0.0656 0.2066 0.4146 0.0338 0.0371
    CCA-SVM 0.1045 0.1150 0.2572 0.4282 - -
    CCA-Ridge 0.1019 0.1134 0.2556 0.4488 - -
    LS_ML 0.1158 0.1141 0.2971 0.4832 - -
    PLST 0.1149 0.0884 0.2742 0.4717 0.0460 0.0507
    CPLST 0.1149 0.0863 0.2744 0.4725 0.0462 0.0514
    FaIE 0.1147 0.0863 0.2609 0.4647 0.0461 0.0506
    ML_CSSP 0.1147 0.0793 0.2375 0.4580 0.0437 0.0492
    Deep AE-MF 0.1356 0.0960 0.3394 0.5440 0.1316 0.1477
    Deep AE-MF+neg 0.1384 0.1011 0.3455 0.5629 0.1324 0.1483
    下载: 导出CSV

    表  6  基于F1的性能比较

    Table  6  The F1 of ten multi-label algorithms with respect to different data sets

    算法/数据集 enron ohsumed movieLens TJ Delicious EURLex-4K
    BR 0.2885 0.1046 0.2705 0.4482 0.1280 0.2061
    CCA-SVM 0.2758 0.1354 0.2982 0.4191 - -
    CCA-Ridge 0.2937 0.1344 0.2983 0.4360 - -
    LS_ML 0.3510 0.1352 0.3523 0.4821 - -
    PLST 0.4029 0.1343 0.3158 0.4753 0.1650 0.2502
    CPLST 0.4036 0.1330 0.3164 0.4758 0.1651 0.2503
    FaIE 0.4000 0.1327 0.3171 0.4738 0.1650 0.2502
    ML_CSSP 0.3814 0.1318 0.2854 0.4799 0.1632 0.2419
    Deep AE-MF 0.4491 0.1489 0.3307 0.4677 0.2138 0.4291
    Deep AE-MF+neg 0.4582 0.1491 0.3381 0.5013 0.2310 0.4365
    下载: 导出CSV

    表  7  基于P@K的性能比较

    Table  7  The P@K of six multi-label algorithms with respect to different data sets

    数据集 EURLex-4K Delicious
    度量准则/算法 LEML PD-sparse Deep AE-MF Deep AE-MF+neg LEML PD-sparse Deep AE-MF Deep AE-MF+neg
    P@1 0.6340 0.7643 0.8078 0.8104 0.6567 0.5182 0.6633 0.6754
    P@3 0.5035 0.6037 0.6821 0.6893 0.6055 0.4418 0.6095 0.6123
    P@5 0.4128 0.4972 0.5764 0.5805 0.5608 0.5656 0.5764 0.5834
    下载: 导出CSV

    表  8  Student$'$s t test结果$P$值(加粗表示$P$值大于0.05)

    Table  8  $P$ value of Student$'$s t test results (Bold indicates that $P$ value is greater than 0.05)

    enron ohsumed movieLens TJ Delicious EURLex-4K
    Deep AE-MF hamming loss
    BR 1.87E-5 1.02E-3 7.03E-6 2.94E-7 1.32E-5 9.64E-3
    LS_ML 2.93E-5 1.27E-4 5.92E-7 3.28E-7 - -
    CCA-SVM 3.38E-8 2.04E-6 4.47E-7 4.55E-10 - -
    CCA-Ridge 5.34E-9 6.01E-6 2.33E-7 3.97E-7 - -
    PLST 2.41E-8 2.91E-3 8.36E-12 3.04E-9 8.04E-6 4.67E-4
    CPLST 2.43E-8 3.04E-3 2.05E-5 1.32E-9 5.01E-6 9.75E-4
    FaIE 3.62E-9 5.83E-4 1.25E-11 3.09E-9 1.61E-5 5.38E-4
    ML_CSSP 9.35E-8 8.36E-2 8.18E-7 7.93E-10 3.08E-6 4.29E-3
    Deep AE-MF+neg 1.90E-5 7.39E-4 3.89E-7 2.73E-4 3.21E-3 1.09E-1
    Deep AE-MF Macro-F1-label
    BR 4.85E-10 3.01E-6 1.73E-7 3.61E-7 2.63E-9 3.12E-9
    LS_ML 4.03E-10 1.25E-1 3.26E-7 4.11E-8 - -
    CCA-SVM 3.19E-8 5.48E-2 3.21E-7 3.37E-9 - -
    CCA-Ridge 6.06E-11 4.84E-4 1.51E-5 3.01E-6 - -
    PLST 1.51E-9 2.23E-3 1.93E-5 6.64E-7 4.38E-8 4.13E-12
    CPLST 1.42E-9 5.19E-3 5.21E-5 1.03E-6 8.21E-9 1.62E-11
    FaIE 1.72E-10 3.99E-2 1.83E-5 5.11E-7 2.26E-7 1.45E-10
    ML_CSSP 1.64E-10 4.12E-4 4.03E-6 3.03E-7 6.63E-9 8.11E-11
    Deep AE-MF+neg 1.61E-5 5.51E-7 8.11E-2 3.09E-7 1.18E-3 2.34E-4
    Deep AE-MF Micro-F1-label
    BR 1.62E-8 2.82E-5 2.34E-8 5.07E-11 1.35E-8 9.95E-9
    LS_ML 3.90E-7 1.54E-4 2.75E-7 1.31E-10 - -
    CCA-SVM 2.74E-7 5.75E-4 4.25E-9 6.72E-9 - -
    CCA-Ridge 2.70E-7 1.84E-4 4.85E-8 1.06E-10 - -
    PLST 5.01E-6 8.47E-3 9.98E-9 2.71E-10 5.21E-8 1.02E-9
    CPLST 7.08E-6 6.36E-3 4.18E-9 4.14E-11 5.08E-8 1.73E-12
    FaIE 1.40E-5 5.86E-3 1.61E-9 1.08E-10 5.35E-9 4.44E-10
    ML_CSSP 6.03E-5 3.01E-4 2.84E-9 6.08E-12 5.86E-7 2.21E-9
    Deep AE-MF+neg 1.2E-2 3.31E-3 8.03E-5 3.45E-8 4.21E-4 2.21E-3
    下载: 导出CSV
  • [1] Gong Y C, Ke Q F, Isard M, Lazebnik S. A multi-view embedding space for modeling internet images, tags, and their semantics. International Journal of Computer Vision, 2014, 106 (2):210-233 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04fd939c81a601681d8a34f3be315ec8
    [2] Cambria E. Affective computing and sentiment analysis. IEEE Intelligent Systems, 2016, 31 (2):102-107 http://www.springer.com/978-94-007-1756-5
    [3] 张晨光, 张燕, 张夏欢.最大规范化依赖性多标记半监督学习方法.自动化学报, 2015, 41 (9):1577-1588 http://www.aas.net.cn/CN/abstract/abstract18732.shtml

    Zhang Chen-Guang, Zhang Yan, Zhang Xia-Huan. Normalized dependence maximization multi-label semi-supervised learning method. Acta Automatica Sinica, 2015, 41 (9):1577-1588 http://www.aas.net.cn/CN/abstract/abstract18732.shtml
    [4] Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing:from unimodal analysis to multimodal fusion. Information Fusion, 2017, 37 :98-125 doi: 10.1016/j.inffus.2017.02.003
    [5] Boutell M R, Luo J B, Shen X P, Brown C M. Learning multi-label scene classification. Pattern Recognition, 2004, 37 (9):1757-1771 doi: 10.1016/j.patcog.2004.03.009
    [6] Wu Q, Ye Y, Ho S S, Zhou S. Semi-supervised multi-label collective classification ensemble for functional genomics. BMC Genomics, 2014, 15 (S9):S17 doi: 10.1186/1471-2164-15-S9-S17
    [7] Kazawa H, Izumitani T, Taira H, Maeda E. Maximal margin labeling for multi-topic text categorization. In: Proceedings of the 2005 Advances in Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2005. 649-656
    [8] Hüllermeier E, Fürnkranz J, Cheng W W, Brinker K. Label ranking by learning pairwise preferences. Artificial Intelligence, 2008, 172 (16-17):1897-1916 doi: 10.1016/j.artint.2008.08.002
    [9] Zaragoza J H, Sucar L E, Morales E F, Bielza C, Larrañaga P. Bayesian chain classifiers for multidimensional classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Barcelona, Brazil, 2011. 2192-2197
    [10] Elisseeff A, Weston J. A kernel method for multi-labelled classification. In: Proceedings of the 2002 Advances in Neural Information Processing Systems. Cambridge: MIT, 2002. 681-687
    [11] Xu J H. An extended one-versus-rest support vector machine for multi-label classification. Neurocomputing, 2011, 74 (17):3114-3124 doi: 10.1016/j.neucom.2011.04.024
    [12] 张敏灵.一种新型多标记懒惰学习算法.计算机研究与发展, 2012, 49(11):2271-2282 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201211001

    Zhang Min-Ling. An improved multi-label lazy learning approach. Journal of Computer Research and Development, 2012, 49 (11):2271-2282 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201211001
    [13] Zhang M L, Peña J M, Robles V. Feature selection for multi-label naive Bayes classification. Information Sciences, 2009, 179 (19):3218-3229 doi: 10.1016/j.ins.2009.06.010
    [14] Guo Y, Wu Q Y, Deng C R, Chen J, Tan M K. Double forward propagation for memorized batch normalization. In: Proceedings of the 32nd AAAI Conference on Artiflcial Intelligence. New Orleans, USA: AAAI Press, 2018.
    [15] Li L, Wang H F. Towards label imbalance in multi-label classification with many labels[Online], available: https://arxiv.org/abs/1604.01304, May 24, 2018.
    [16] Wu Q Y, Ye Y M, Zhang H J, Chow T W S, Ho S S. ML-TREE:a tree-structure-based approach to multilabel learning. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26 (3):430-443 doi: 10.1109/TNNLS.2014.2315296
    [17] Wu Q Y, Tan M K, Song H J, Chen J, Ng M K. ML-FOREST:a multi-label tree ensemble method for multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (10):2665-2680 doi: 10.1109/TKDE.2016.2581161
    [18] Kapoor A, Jain P, Viswanathan R. Multilabel classification using Bayesian compressed sensing. In: Proceedings of the 2012 Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA: NIPS, 2012. 2645-2653
    [19] Park C H, Lee M. On applying linear discriminant analysis for multi-labeled problems. Pattern Recognition Letters, 2008, 29 (7):878-887 doi: 10.1016/j.patrec.2008.01.003
    [20] Ji S W, Tang L, Yu S P, Ye J P. Extracting shared subspace for multi-label classification. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA: ACM, 2008. 381-389
    [21] Yu S P, Yu K, Tresp V, Kriegel H P. Multi-output regularized feature projection. IEEE Transactions on Knowledge and Data Engineering, 2006, 18 (12):1600-1613 doi: 10.1109/TKDE.2006.194
    [22] Wang J, Yang Y, Mao J H, Huang Z H, Huang C, Xu W. CNN-RNN: a unified framework for multi-label image classification. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 2285-2294
    [23] Nam J, Kim J, Mencía E L, Gurevych I, Fürnkranz J. Large-scale multi-label text classification-revisiting neural networks. In: Proceedings of the 2014 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg, Germany: Springer, 2014. 437-452
    [24] Hsu D, Kakade S M, Langford J, Zhang T. Multi-label prediction via compressed sensing. In: Proceedings of the 2009 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2009. 772-780
    [25] Tai F, Lin H T. Multilabel classification with principal label space transformation. Neural Computation, 2012, 24 (9):2508-2542 doi: 10.1162/NECO_a_00320
    [26] Chen Y N, Lin H T. Feature-aware label space dimension reduction for multi-label classification. In: Proceedings of the 2012 Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, US: NIPS, 2012. 1529-1537
    [27] Lin Z J, Ding G G, Hu M Q, Wang J M. Multi-label classification via feature-aware implicit label space encoding. In: Proceedings of the 31st International Conference on Machine Learning. Beijing, China, 2014. 325-333
    [28] Yu H F, Jain P, Kar P, Dhillon I. Large-scale multi-label learning with missing labels. In: Proceedings of the 31st International Conference on Machine Learning. Beijing, China: ACM, 2014. 593-601
    [29] Tsoumakas G, Katakis I. Multi-label classification:an overview. International Journal of Data Warehousing and Mining, 2007, 3 (3):1-13
    [30] 付忠良.多标签代价敏感分类集成学习算法.自动化学报, 2014, 40(6):1075-1085 http://www.aas.net.cn/CN/abstract/abstract18377.shtml

    Fu Zhong-Liang. Cost-sensitive ensemble learning algorithm for multi-label classification problems. Acta Automatica Sinica, 2014, 40 (6):1075-1085 http://www.aas.net.cn/CN/abstract/abstract18377.shtml
    [31] Abdi H, Williams L J. Principal component analysis. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2 (4):433-459 doi: 10.1002/wics.101
    [32] Pudil P, Somol P, Haindl M. Introduction to Statistical Pattern Recognition (Second Edition). San Diego:Academic Press, 1990. 441-507
    [33] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290 (5500):2323-2326 doi: 10.1126/science.290.5500.2323
    [34] Tsoumakas G, Katakis I, Vlahavas I. Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of the 2008 ECML/PKDD Workshop on Mining Multidimensional Data. Antwerp, Belgium: Springer, 2008. 53-59
    [35] Tsoumakas G, Vlahavas I. Random k-labelsets: an ensemble method for multilabel classification. In: Proceedings of the 2008 European Conference on Machine Learning. Berlin, Heidelberg, Germany: Springer, 2007. 406-417
    [36] 唐朝辉, 朱清新, 洪朝群, 祝峰.基于自编码器及超图学习的多标签特征提取.自动化学报, 2016, 42(7):1014-1021 http://www.aas.net.cn/CN/abstract/abstract18892.shtml

    Tang Chao-Hui, Zhu Qing-Xin, Hong Chao-Qun, Zhu William. Multi-label feature selection with autoencoders and hypergraph learning. Acta Automatica Sinica, 2016, 42 (7):1014-1021 http://www.aas.net.cn/CN/abstract/abstract18892.shtml
    [37] Zhang Y, Schneider J. Multi-label output codes using canonical correlation analysis. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, USA: JMLR, 2011. 873-882
    [38] Wang W R, Arora R, Livescu K, Bilmes J. On deep multi-view representation learning. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: Omni Press, 2015. 1083-1092
    [39] Schapire R E, Singer Y. BoosTexter:a boosting-based system for text categorization. Machine Learning, 2000, 39 (2-3):135-168 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021532080/
    [40] Yang Y M. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1 (1-2):69-90 doi: 10.1023/A%3A1009982220290
    [41] Godbole S, Sarawagi S. Discriminative methods for multi-labeled classification. In: Proceedings of the 2004 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Heidelberg, Germany: Springer, 2004. 22-30
    [42] Yen I E H, Huang X R, Ravikumar P, Zhong K, Dhillon I. PD-Sparse: a primal and dual sparse approach to extreme multiclass and multilabel classification. In: Proceedings of the 2016 International Conference on Machine Learning. NY, USA: ACM, 2016. 3069-3077
    [43] Bhatia K, Jain H, Kar P, Varma M, Jain P. Sparse local embeddings for extreme multi-label classification. In: Proceedings of the 2015 Advances in Neural Information Processing Systems. Montreal, Canada: Cornell University Library, 2015. 730-738
    [44] Bi W, Kwok J. Efficient multi-label classification with many labels. In: Proceedings of the 2013 International Conference on Machine Learning. Atlanta, GA, USA: ACM, 2013. 405-413
    [45] Demšar J. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 2006, 7 :1-30 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d2ca9dbb44bf0def88798c7dffbf6f4
  • 加载中
图(4) / 表(8)
计量
  • 文章访问数:  2336
  • HTML全文浏览量:  438
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-05
  • 录用日期:  2018-05-18
  • 刊出日期:  2019-10-20

目录

    /

    返回文章
    返回