2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法

陈一梅 刘伟峰 孔明鑫 张桂林

陈一梅, 刘伟峰, 孔明鑫, 张桂林. 基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法. 自动化学报, 2020, 46(7): 1445-1456. doi: 10.16383/j.aas.c180077
引用本文: 陈一梅, 刘伟峰, 孔明鑫, 张桂林. 基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法. 自动化学报, 2020, 46(7): 1445-1456. doi: 10.16383/j.aas.c180077
CHEN Yi-Mei, LIU Wei-Feng, KONG Ming-Xin, ZHANG Gui-Lin. A Modeling and Tracking Algorithm of Finite Mixture Models for Multiple Extended Target Based on the GLMB Filter and Gibbs Sampler. ACTA AUTOMATICA SINICA, 2020, 46(7): 1445-1456. doi: 10.16383/j.aas.c180077
Citation: CHEN Yi-Mei, LIU Wei-Feng, KONG Ming-Xin, ZHANG Gui-Lin. A Modeling and Tracking Algorithm of Finite Mixture Models for Multiple Extended Target Based on the GLMB Filter and Gibbs Sampler. ACTA AUTOMATICA SINICA, 2020, 46(7): 1445-1456. doi: 10.16383/j.aas.c180077

基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法

doi: 10.16383/j.aas.c180077
基金项目: 

国家自然科学基金 61771177

国家自然科学基金 61333011

江苏省自然科学基金项目 BK20160148

杭州电子科技大学优秀学位论文培育基金项目 yxlw2018008

详细信息
    作者简介:

    陈一梅  杭州电子科技大学自动化学院系统科学与控制工程研究所硕士研究生.主要研究方向为目标跟踪, 信息融合.E-mail: chenym245600@163.com

    孔明鑫  杭州电子科技大学自动化学院系统科学与控制工程研究所硕士研究生.主要研究方向为深度学习, 目标识别.E-mail: 171060021@hdu.edu.cn

    张桂林  中国电子科技集团公司第二十八研究所研究员.主要研究方向为为目标跟踪, 不确定信息处理, 模式识别. E-mail: 1917907284@qq.com

    通讯作者:

    刘伟峰  杭州电子科技大学副教授.主要研究方向为目标跟踪, 不确定信息处理, 模式识别.本文通信作者. E-mail: liuwf@hdu.edu.cn

A Modeling and Tracking Algorithm of Finite Mixture Models for Multiple Extended Target Based on the GLMB Filter and Gibbs Sampler

Funds: 

National Nature Science Foundation of China 61771177

National Nature Science Foundation of China 61333011

Natural Science Foundation for Young Scientists of Jiangsu Province BK20160148

Foundation for Hangzhou Dianzi University Excellent Dissertation Cultivation Project yxlw2018008

More Information
    Author Bio:

    CHEN Yi-Mei  Master student at the Institute of Systems Science and Control Engineering, School of Automation, Hangzhou Dianzi University. Her research interest covers target tracking and information fusion

    KONG Ming-Xin  Master student at the Institute of Systems Science and Control Engineering, School of Automation, Hangzhou Dianzi University. Her research interest covers deep learning and target identification

    ZHANG Gui-Lin  Professor at the 28th research institute of China electronics technology group corporation. His research interest covers target tracking, uncertain information processing, and pattern recognition

    Corresponding author: LIU Wei-Feng  Associate professor at Hangzhou Dianzi University. His research interest covers target tracking, uncertain information processing, and pattern recognition. Corresponding author of this paper
  • 摘要: 本文针对杂波条件下多扩展目标的状态估计, 目标个数估计, 扩展目标形状估计问题, 提出了一种基于标签随机有限集(Labelled random finite sets, L-RFS)框架下多扩展目标跟踪学习算法, 该学习算法主要包括两方面:多扩展目标动态建模和多扩展目标的跟踪估计.首先, 结合广义标签多伯努利滤波器(Generalized labelled multi-Bernoulli, GLMB)建立了扩展目标的量测有限混合模型(Finite mixture models, FMM), 利用Gibbs采样和贝叶斯信息准则(Bayesian information criterion, BIC)准则推导出有限混合模型的参数来对多扩展目标形状进行学习, 然后采用等效量测方法来替代扩展目标产生的量测, 对扩展目标形状采用椭圆逼近建模, 实现扩展目标形状与状态的估计.仿真实验表明本文所给的方法能够有效跟踪多扩展目标, 并且在目标个数估计方面优于CBMeMBer算法.此外, 与标签多伯努利滤波(LMB)计算比较表明: GLMB和LMB算法滤波估计精度接近, 二者精度高于CBMeMBer算法.
    Recommended by Associate Editor XU Bin
    1)  本文责任编委 许斌
  • 图  1  扩展目标("四角星"表示量测)

    Fig.  1  The concept map of extended target (the four-pointed star denotes the measurement)

    图  2  多扩展目标运动真实轨迹

    Fig.  2  Ground truths for multiple extended targets

    图  3  由GLMB滤波器得到的轨迹估计

    Fig.  3  Track estimation by GLMB filter

    图  4  由CBMeMBer滤波器得到的轨迹估计

    Fig.  4  Track estimation by CBMeMBer filter

    图  5  由GLMB滤波算法得到状态估计

    Fig.  5  The state estimation by GLMB filter

    图  6  多扩展目标个数估计对比

    Fig.  6  The cardinality estimates comparison for multiple extended targets

    图  7  OSPA距离(100 MC runs)

    Fig.  7  OSPA distance (100 MC runs)

    图  8  平行运动场景

    Fig.  8  Parallel motion scenes

    图  9  交叉运动场景

    Fig.  9  Cross-motion scenes

    图  10  平行运动场景下状态估计

    Fig.  10  State estimation in parallel motion scenes

    图  11  交叉运动场景下状态估计

    Fig.  11  State estimation in cross-motion scenarios

    图  12  平行运动和交叉运动场景下的扩展目标个数估计

    Fig.  12  Estimated number of extended targets in cross-motion and parallel motion scenarios

    图  13  交叉运动和平行运动场景OSPA距离(100 MCs)

    Fig.  13  OSPA distance of cross-motion and parallel motion scenes (100 MCs)

    表  1  算法性能分析

    Table  1  Performance analysis of algorithms

    线性 线性
    时间(秒/步) 1.37 0.05
    目标个数估计准确率 97.8 % 84.6 %
    下载: 导出CSV
  • [1] Granstrom K, Lundquist C, Orguner U. Tracking rectangular and elliptical extended targets using laser measurements. In: Proceedings of the 14th International Conference on Information Fuison. Chicago, USA: IEEE, 2011. 1-8
    [2] Granstrom K, Baum M. Extended Object Tracking: Introduction, Overview and Applications. Journal of Advances in Information Fusion, 2017, 12(2): 139-174 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026837439/
    [3] Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic data association. IEEE Transactions on Automatic Control, 1975, 11(9): 451-460 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8dc15d816a6401c947831944afbe18b1
    [4] Bar-Shalom Y. Tracking methods in a multi-target environment. IEEE Transactions on Automatic Control, 1978, 23(6): 678-626 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ab65a2e64f2283b6646724fc1a43c872
    [5] Fortmann T, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184 doi: 10.1109/JOE.1983.1145560
    [6] Reid D. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854 doi: 10.1109/TAC.1979.1102177
    [7] Blackman S. Multiple hypothesis tracking for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2004, 11(9): 5-18
    [8] Koch W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059 doi: 10.1109/TAES.2008.4655362
    [9] Feldmann M, Franken D, Koch W. Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420 doi: 10.1109/TSP.2010.2101064
    [10] Baum M, Hanebeck U D. Random hypersurface models for extended object tracking. In: Proceedings of the 9th IEEE International Symposium on Signal Processing and Information Technology. Ajman, United Arab Emirates: IEEE, 2009. 178-183
    [11] Gilholm K, Salmond D. Spatial distribution model for tracking extended objects. IEEE Proceedings Radar, Sonar and Navigation, 2005, 152(5): 364-371 doi: 10.1049/ip-rsn:20045114
    [12] Gilholm K, Godsill S, Maskell S, Salmond D. Poisson models for extended target and group tracking. In: Proceedings of Signal and Data Processing of Small Targets. San Diego, USA: SPIE, 2005. 230-241
    [13] Mahler R. PHD filters for nonstandard targets, I: extended targets. In: Proceedings of the 12th International Conference on Information Fusion. Seattle, USA: IEEE, 2009. 915-921
    [14] Granstrom K, Lundquist C, Orguner U. A Gaussian mixture PHD filter for extended target tracking. In: Proceedings of the 13th International Conference on Information Fusion, Edinburgh, UK: IEEE, 2010. 1-8
    [15] Orguner U, Lundquist C, Granstrom K. Extended target tracking with a cardinalized probability hypothesis density filter. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 65-72
    [16] Vo B T, Vo B N. Labeled random finite sets and multi-object conjugate priors. IEEE Transactions on Signal Processing, 2013, 61(13): 3460-3475 doi: 10.1109/TSP.2013.2259822
    [17] Beard M, Reuter S, Granstrom K, Vo B T, Vo B N and Scheel A. Multiple extended target tracking with labeled random finite sets. IEEE Transactions on Signal Processing, 2016, 64(7): 1638-1653 doi: 10.1109/TSP.2015.2505683
    [18] 连峰, 马冬冬, 元向辉, 陈文, 韩崇昭.扩展目标CBMeMBer滤波器及其高斯混合实现.控制与决策, 2015, 30(04): 611-616 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201504006

    Lian Feng, Ma Dong-Dong, Yuan Xiang-Hui, Chen Wen, Han Chong-Zhao. CBMeMBer filter for extended targets and its Gaussian mixture implementations. Control and Decision, 2015, 30(04): 611-616 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201504006
    [19] Baum M, Hanebeck U D. Shape tracking of extended objects and group targets with star-convex RHMs. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-8
    [20] Aranstrom K, Orguner U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671 doi: 10.1109/TSP.2012.2212888
    [21] Baum M, Hanebeck U D. Random Hypersurface Models for Extended Object Tracking. IEEE International Symposium on Signal Processing and Information Technology. Ajman, United Arabn Emirates: IEEE, 2009. 178-183
    [22] 李鹏, 杨金龙, 葛洪伟.基于高斯曲面特征矩阵的扩展目标形状估计.光电子激光, 2014, 25(9): 1803-1811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201409027

    Li Peng, Yang Jin-Long, Ge Hong-Wei. Shape estimation of exteded targets based on Gaussian surface feature matrix. Journal of Opto-electronics Laser, 2014, 25(9): 1803-1811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201409027
    [23] Sun L, Lan J, Lix R. Extended target tracking using star-convex model with non-linear inequality constraints. In: Proceedings of the 31th Chinese Control Conference, Hefei, China: IEEE, 2012. 3869-3874
    [24] Vo B N, Vo B T, Hoang H G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2017, 65(8): 1975-1987 doi: 10.1109/TSP.2016.2641392
    [25] Vo B N, Vo B T. An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling. In: Proceedings of the 20th International Conference on Information Fusion, Xi$'$an, China, 2017. 1-8
    [26] 李翠芸, 王荣, 姬红兵.基于变分贝叶斯势均衡多目标多伯努利滤波的多扩展目标跟踪算法.控制理论与应用, 2015, 32(02): 187-195 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201502007

    Li Cui-Yun, Wang Yong, Ji Hong-Bing. Multiple extended-target tracking based on variational Bayesian cardinality-balanced multi-target multi-Bernoulli. Control Theory & Applications, 2015, 32(02): 187-195 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201502007
    [27] 刘伟峰, 柴中, 文成林.基于随机采样的多量测目标跟踪算法.自动化学报, 2013, 39(02): 168-178 doi: 10.3724/SP.J.1004.2013.00168

    Liu Wei-Feng, Chai Zhong, Wen Cheng-Lin. Multi-measurement target tracking by using random sampling approach. Acta Automatica Sinica, 2013, 39(2): 168-178 doi: 10.3724/SP.J.1004.2013.00168
    [28] 朱书军, 刘伟峰, 崔海龙.基于广义标签多伯努利滤波的可分辨群目标跟踪算法.自动化学报, 2017, 43(12): 2178-2189 doi: 10.16383/j.aas.2017.c160334

    Zhu Shu-Jun, Liu Wei-Feng, Cui Hai-Long. Multiple resolvable groups tracking by using GLMB filter. Acta Automatica Sinica, 2017, 43(12): 2178-2189 doi: 10.16383/j.aas.2017.c160334
    [29] Chen Y M, Liu W F, Wang X D. Multiple extended target tracking based on GLMB filter and gibbs sampler. In: Proceedings of the 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), Chiang Mai, Thailand, 2017. 26-31
    [30] Mahler R P S. Statistical multisource-multitarget information fusion. Boston: Artech House, USA, 2007.
    [31] Mahler R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace, Electronic Systems, 2003, 39(4): 1152-1178 doi: 10.1109/TAES.2003.1261119
    [32] Mc Lachlan G, Peel D. Finite mixture models. New York, John Wiley Sons, 2000.
    [33] Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567 doi: 10.1109/TSP.2014.2364014
    [34] Diebolt J, Robert P. Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society 1994, 56(2): 363-375
    [35] Vo B N, Vo B T, Phung D. Labeled random finite sets and the bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567 doi: 10.1109/TSP.2014.2364014
    [36] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of image. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1984, 6(4): 721-741 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/02664769300000058
    [37] Liu W F, Cui H L, Wen C L. A time-varying clutter intensity estimation algorithm by using gibbs sampler and BIC. In: Proceedings of the 19th International Conference on Information Fuison. Germany, IEEE, 2016. 1546-1553
    [38] Vo B T, Vo B N, and Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transaction on Signal Processing, 57(2): 409-423 doi: 10.1109/TSP.2008.2007924
    [39] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457 doi: 10.1109/TSP.2008.920469
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1838
  • HTML全文浏览量:  91
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 录用日期:  2018-07-15
  • 刊出日期:  2020-07-24

目录

    /

    返回文章
    返回