[1]
|
Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S. Catastrophic cascade of failures in interdependent networks. Nature, 2010, 464(7291): 1025-1028 doi: 10.1038/nature08932
|
[2]
|
Buldyrev S V, Shere N W, Cwilich G A. Interdependent networks with identical degrees of mutually dependent nodes. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83: Article No. 016112 doi: 10.1103-PhysRevE.83.016112/
|
[3]
|
Shao J, Buldyrev S V, Havlin S, Stanley H E. Cascade of failures in coupled network systems with multiple support-dependence relations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 83: Article No. 036116 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d162176add3b0e3b88dc0df8f2c581c
|
[4]
|
李稳国, 邓曙光, 杨冰, 肖卫初.相互依存网络间的拓扑构建方法.计算机工程与应用, 2014, 50(11): 85-89 doi: 10.3778/j.issn.1002-8331.1305-0374Li Wen-Guo, Deng Shu-Guang, Yang Bing, Xiao Wei-Chu. Topological coupling method between interdependent networks. Computer Engineering and Applications, 2014, 50(11): 85-89 doi: 10.3778/j.issn.1002-8331.1305-0374
|
[5]
|
Shen A W, Guo J L, Wang Z J. Research on methods for improving robustness of cascading failures of interdependent networks. Wireless Personal Communications, 2017, 95(3): 2111-2126 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd7984ec54dad8309d3c591b2db82064
|
[6]
|
Danziger M M, Shekhtman L M, Bashan A, Berezin Y, Havlin S. Vulnerability of interdependent networks and networks of networks. Interconnected Networks. Cham, Germany: Springer International Publishing, 2016.
|
[7]
|
Wang J W, Jiang C, Qian J F. Robustness of interdependent networks with different link patterns against cascading failures. Physica A: Statistical Mechanics and Its Applications, 2014, 393: 535-541 doi: 10.1016/j.physa.2013.08.031
|
[8]
|
Moskalenko O I, Koronovskii A A, Hramov A E, Zhuravlev M O. Estimate of the degree of synchronization in the intermittent phase synchronization regime from a time series (model systems and neurophysiological data). JETP Letters, 2016, 103(8): 539-543 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e21b6ed6fd524ad940e31c7784d0846d
|
[9]
|
Pai M C. Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Applied Mathematics and Computation, 2014, 227: 663-671 doi: 10.1016/j.amc.2013.11.075
|
[10]
|
Ryono K, Oguchi T. Partial synchronization in networks of nonlinear systems with transmission delay couplings. IFAC-PapersOnLine, 2015, 48(18): 77-82 doi: 10.1016/j.ifacol.2015.11.014
|
[11]
|
Rao P C, Wu Z Y, Liu M. Adaptive projective synchronization of dynamical networks with distributed time delays. Nonlinear Dynamics, 2012, 67(3): 1729-1736 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c95ff83f24ac819b638bfc8d3a3c672b
|
[12]
|
Um J, Minnhagen P, Kim B J. Synchronization in interdependent networks. Chaos, 2011, 21(2): Article No. 025106 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1106.6276
|
[13]
|
Gao J X, Buldyrev S V, Stanley H E, Havlin S. Networks formed from interdependent networks. Nature Physics, 2012, 8(1): 40-48 doi: 10.1038/nphys2180
|
[14]
|
Tu L L, Song S, Wang Y J, Li K Y. The relationship between the topology and synchronizability of partially interdependent networks. EPL (Europhysics Letters), 2017, 119(4): Article No. 40004 doi: 10.1209/0295-5075/119/40004
|
[15]
|
涂俐兰, 刘红芳, 余乐.噪声下时滞复杂网络的局部自适应H无穷一致性.物理学报, 2013, 62(14): 70-77 http://d.old.wanfangdata.com.cn/Periodical/wlxb201314011Tu Li-Lan, Liu Hong-Fang, Yu Le. Local adaptive H∞ consistency of delayed complex networks with noise. Acta Physica Sinica, 2013, 62(14): 70-77 http://d.old.wanfangdata.com.cn/Periodical/wlxb201314011
|
[16]
|
Shi H J, Sun Y Z, Miao L Y, Duan Z M. Outer synchronization of uncertain complex delayed networks with noise coupling. Nonlinear Dynamics, 2016, 85(4): 2437-2448 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=452b0cf3f2dbc10aa78c158cdb7885c0
|
[17]
|
老松杨, 王竣德, 白亮.相依网络研究综述.国防科技大学学报, 2016, 38(1): 122-128 http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201601020Lao Song-Yang, Wang Jun-De, Bai Liang. Review of the interdependent networks. Journal of National University of Defense Technology, 2016, 38(1): 122-128 http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201601020
|
[18]
|
陈关荣.复杂动态网络环境下控制理论遇到的问题与挑战.自动化学报, 2013, 39(4): 312-321 doi: 10.3724/SP.J.1004.2013.00312Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312-321 doi: 10.3724/SP.J.1004.2013.00312
|
[19]
|
Xu Q, Zhuang S X, Hu D, Zeng Y F, Xiao J. Generalized mutual synchronization between two controlled interdependent networks. Abstract and Applied Analysis, 2014, 2014: Article No. 453149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003285585
|
[20]
|
Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 1981, 26(2): 301-320 doi: 10.1109-TAC.1981.1102603/
|
[21]
|
Doyle J C, Glover K, Khargonekar P P, Francis B A. State-space solutions to standard $H_2$ and H∞ control problems. In: Proceedings of the 1988 American Control Conference. Atlanta, USA: IEEE, 1988. 1691-1696
|
[22]
|
Wang Z Y, Huang L H, Zuo Y, Zhang L L. H∞ control for uncertain system with time-delay and nonlinear external disturbance via adaptive control method. International Journal of Control, Automation and Systems, 2010, 8(2): 266-271 doi: 10.1007/s12555-010-0212-x
|
[23]
|
Lin T C, Kuo C H. H∞ synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Transactions, 2011, 50(4): 548-556 http://www.sciencedirect.com/science/article/pii/S001905781100067X
|
[24]
|
Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994. 7-12
|