2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

群目标跟踪技术综述

甘林海 王刚 刘进忙 李松

甘林海, 王刚, 刘进忙, 李松. 群目标跟踪技术综述. 自动化学报, 2020, 46(3): 411-426. doi: 10.16383/j.aas.c180052
引用本文: 甘林海, 王刚, 刘进忙, 李松. 群目标跟踪技术综述. 自动化学报, 2020, 46(3): 411-426. doi: 10.16383/j.aas.c180052
GAN Lin-Hai, WANG Gang, LIU Jin-Mang, LI Song. An Overview of Group Target Tracking. ACTA AUTOMATICA SINICA, 2020, 46(3): 411-426. doi: 10.16383/j.aas.c180052
Citation: GAN Lin-Hai, WANG Gang, LIU Jin-Mang, LI Song. An Overview of Group Target Tracking. ACTA AUTOMATICA SINICA, 2020, 46(3): 411-426. doi: 10.16383/j.aas.c180052

群目标跟踪技术综述

doi: 10.16383/j.aas.c180052
基金项目: 

国家自然科学基金青年基金 61703412

国家自然科学基金青年基金 61503407

详细信息
    作者简介:

    王刚  空军工程大学防空反导学院教授.主要研究方向为多传感器任务规划. E-mail: profwang123@163.com

    刘进忙  空军工程大学防空反导学院教授.主要研究方向为目标跟踪, 多传感数据融合. E-mail:liujinmang1@163.com

    李松  空军工程大学防空反导学院副教授.主要研究方向为模式识别及数据融合.E-mail: lisong77@163.com

    通讯作者:

    甘林海  空军工程大学博士研究生.主要研究方向群目标跟踪.本文通信作者. E-mail: ganlh123@163.com

An Overview of Group Target Tracking

Funds: 

National Natural Science Foundation of Youth Fund of China 61703412

National Natural Science Foundation of Youth Fund of China 61503407

More Information
    Author Bio:

    WANG Gang  Professor at the College of Air and Missile Defense, Air Force Engineering University. His main research interest is multi-sensor planning

    LIU Jin-Mang  Professor at the College of Air and Missile Defense, Air Force Engineering University. His research interest covers targets tracking and multi-sensor data fusion

    LI Song  Associate professor at the College of Air and Missile Defense, Air Force Engineering University. His research interest covers pattern recognition and data fusion

    Corresponding author: GAN Lin-Hai Ph. D. candidate at Air Force Engineering University. His main research interest is group target tracking. Corresponding author of this paper
  • 摘要: 根据研究重点的不同, 从群目标跟踪的建模和滤波算法方面展开综述, 主要包括:量测处理、扩展外形建模、内部关系建模、群分裂/合并建模以及滤波算法等.最后, 基于群目标跟踪现有研究进展和未来可能面临的挑战, 对群目标跟踪领域需要重点研究和关注的方向作了展望.
    Recommended by Associate Editor ZHU Ji-Hong
    1)  本文责任编委 朱纪洪
  • 图  1  群目标跟踪技术主要研究内容

    Fig.  1  Main research contents of group target tracking

    图  2  不同扩展外形的群目标示意图

    Fig.  2  Group targets with different extended shapes

    图  3  多椭圆建模任意外形群目标示意图

    Fig.  3  Modeling arbitrary shape group targets with multiple ellipse center

    图  4  边更新模型示意图

    Fig.  4  Model of edge renewal

    图  5  新顶点合并模型示意图

    Fig.  5  Model of new vertex merging

    图  6  可分辨群的分裂/合并示意图

    Fig.  6  Splitting/combination of resolvable groups

    图  7  不可分辨群的分裂/合并示意图

    Fig.  7  Splitting/combination of unresolvable groups

    表  1  常见量测划分方法及其特点

    Table  1  Common partitioning methods and their characteristics

    划分方法 特点
    距离划分[17, 29] 应用广泛, 不能处理空间临近群目标划分问题
    距离子划分[17, 20] 距离划分方法的改进, 可用于处理空间临近但大小相同的群目标划分问题
    预测划分和期望最大划分[22] 考虑了目标扩展外形, 但在多个空间临近群分离的场景容易造成势低估
    基于ART的系列方法[24-27] 较好的划分效率和稳定性, 易出现"饱和"问题
    下载: 导出CSV

    表  2  常见群扩展外形的主要建模方法及特点

    Table  2  Main modeling methods and features of common group extensions

    扩展外形 建模方法 特点
    椭圆外形 RM方法[14, 44, 55-57] 波方程简单, 预设先验参数少、鲁棒性强, 适用于线性系统
    RHM方法[43-44] 精度高, 比RM方法计算复杂
    矩形外形 矩形参数法[11] 波方程简单, 预设先验参数少、鲁棒性强, 适用于线性系统
    区间箱方法[46] 密集杂波条件下效果较好; 只描述了量测外形而没有估计目标外形
    星凸外形 星凸RHM方法[20, 58] 比简单外形建模方法具有更高的跟踪精度和更强的鲁棒性, 可描述更复杂的群外形; 估计半径可能为负
    GP方法[49, 59] 半径函数具有描述后验分布的能力; 不需要进行频域转换; 能保持不可观测部分的不确定性; 能够估计目标方向; 估计半径可能为负
    任意外形 水平集RHM方法[40] 能够在信息不确定条件下对时变外形进行高精度跟踪; 初始化困难; 需要正则化以满足鲁棒性要求; 需要处理强噪声造成的估计偏差
    多椭圆方法[12-13, 16, 52] 利用多个简单外形描述复杂外形, 具有较高的灵活性, 算法复杂度随着子目标数目的增加而增加
    下载: 导出CSV

    表  3  常见群内部关系模型及特点

    Table  3  Common group internal relationship models and their characteristics

    模型 特点
    虚拟领导者模型[60, 72] 用于线性高斯系统; 可能出现目标的碰撞或重叠
    MRF模型[61] 可以描述群内目标之间的复杂行为; 闭合表达式中的归一化常量通常是未知的; 没有考虑目标遮挡造成的航迹丢失问题[70]
    演化网络模型[64] 引入随机图模型, 利用图中的节点表示群成员, 边表示群成员之间的相互关系, 可以通过增加或删减节点改变图的大小, 节点之间边的产生具有选择性; 没有对群内目标重要性作出区分
    社会力模型[66-70, 73] 主要用于人群跟踪, 有一个明确的目的吸引群内成员相向运动, 而其他成员或静态障碍的阻碍则产生反响斥力[74]
    下载: 导出CSV

    表  4  群分裂/合并模型

    Table  4  Group splitting/combination model

    下载: 导出CSV
  • [1] Beard M, Reuter S, Granström K, Vo B T, Vo B N, Scheel A. Multiple extended target tracking with labeled random finite sets. IEEE Transactions on Signal Processing, 2016, 64(7): 1638-1653 doi: 10.1109/TSP.2015.2505683
    [2] 耿文东, 王元钦, 董正宏.群目标跟踪.北京:国防工业出版社, 2014.

    Geng Wen-Dong, Wang Yuan-Qin, Dong Zheng-Hong. Group-Targets Tracking. Beijing: National Defense Industry Press, 2014.
    [3] Mihaylova L, Carmi A Y, Septier F, Gning A, Pang S K, Godsill S. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Digital Signal Processing, 2014, 25: 1-16 doi: 10.1016/j.dsp.2013.11.006
    [4] Waxman M J. A bibliography of cluster (Group) tracking. In: Proceedings of the SPIE 5428, Signal and Data Processing of Small Targets. Florida, USA: SPIE, 2004. 551- 560
    [5] Drummond O E, Blackman S S, Pretrisor G C. Tracking clusters and extended objects with multiple sensors. In: Proceedings of the SPIE 1305, Signal and Data Processing of Small Targets. Florida, USA: SPIE, 1990. 362-375
    [6] 李振兴.群目标跟踪关键技术研究[博士学位论文], 空军工程大学, 中国, 2014.

    Li Zhen-Xing. Research on the Key Technologies of Group Target Tracking [Ph. D. dissertation], Air Force Engineering University, China, 2014.
    [7] 王海鹏, 董云龙, 熊伟, 潘新龙, 贾舒宜.多传感器编队目标跟踪技术.北京:电子工业出版社, 2016.

    Wang Hai-Peng, Dong Yun-Long, Xiong Wei, Pan Xin-Long, Jia Shu-Yi. Multi-Sensor Formation Targets Tracking Method. Beijing: Electronic Industry Press, 2016.
    [8] Taenzer E. Tracking multiple targets simultaneously with a phased array radar. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(5): 604-614 doi: 10.1109/TAES.1980.308926
    [9] Baum M, Faion F, Hanebeck U D. Modeling the target extent with multiplicative noise. In: Proceedings of the 15th International Conference on Information Fusion. Singapore, Singapore: IEEE, 2012. 2406-2412
    [10] Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042- 1059 doi: 10.1109/TAES.2008.4655362
    [11] Granström K, Reuter S, Meissner D, Scheel A. A multiple model PHD approach to tracking of cars under an assumed rectangular shape. In: Proceedings of the 17th International Conference on Information Fusion (Fusion). Salamanca, Spain: IEEE, 2014. 1-8
    [12] Lan J, Li X R. Tracking of extended object or target group using random matrix, Part Ⅱ: irregular object. In: Proceedings of the 15th International Conference on Information Fusion. Singapore, Singapore: IEEE, 2012. 2185- 2192
    [13] Lan J, Li X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Transactions on Signal Processing, 2014, 62(9): 2450- 2463 doi: 10.1109/TSP.2014.2309561
    [14] Lan J, Li X R. Tracking of extended object or target group using random matrix, Part Ⅰ: new model and approach. In: Proceedings of the 15th International Conference on Information Fusion. Singapore, Singapore: IEEE, 2012. 2177-2184
    [15] Granstrom K, Baum M, Reuter S. Extended object tracking: introduction, overview and applications. Journal of Advances in Information Fusion, 2017, 12(2): 139-174 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026837439/
    [16] Hu Q, Ji H B, Zhang Y Q. Tracking of maneuvering non-ellipsoidal extended target with varying number of sub-objects. Mechanical Systems and Signal Processing, 2018, 99: 262-284 doi: 10.1016/j.ymssp.2017.06.013
    [17] Granström K, Lundquist C, Orguner U. A Gaussian mixture PHD filter for extended target tracking. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [18] Granström K, Lundquist C, Orguner U. Extended target tracking using a Gaussian-mixture PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286 doi: 10.1109/TAES.2012.6324703
    [19] 张永权.随机有限集扩展目标跟踪算法研究[博士学位论文], 西安电子科技大学, 中国, 2014.

    Zhang Yong-Quan. Research on Algorithms of Extended Target Tracking Based on Random Finite Set [Ph. D. dissertation], Xidian University, China, 2014.
    [20] Li P, Ge H W, Yang J L. Adaptive measurement partitioning algorithm for a Gaussian inverse Wishart PHD filter that tracks closely spaced extended targets. Radioengineering, 2017, 26(2): 573-580 doi: 10.13164/re.2017.0573
    [21] 王聪, 王海鹏, 何友.基于坐标映射距离差分的快速群分割算法.系统工程与电子技术, 2016, 38(8): 1716-1722 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201608002

    Wang Cong, Wang Hai-Peng, He You. Fast algorithm of group segmentation based on coordinates transformations and distance differentiations. Systems Engineering and Electronics, 2016, 38(8): 1716-1722 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201608002
    [22] Granström K, Orguner U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671 doi: 10.1109/TSP.2012.2212888
    [23] Yang J L, Li P, Yang L, Ge H W. An improved ET-GM-PHD filter for multiple closely-spaced extended target tracking. International Journal of Control, Automation and Systems, 2017, 15(1): 468-472 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59912f6d99eec7b18579787a001e6356
    [24] Zhang Y Q, Ji H B. A novel fast partitioning algorithm for extended target tracking using a Gaussian mixture PHD filter. Signal Processing, 2013, 93(11): 2975-2985 doi: 10.1016/j.sigpro.2013.04.006
    [25] Zhang Y Q, Ji H B. Clustering Gaussian mixture reduction algorithm based on fuzzy adaptive resonance theory for extended target tracking. IET Radar, Sonar and Navigation, 2014, 8(5): 536-546 doi: 10.1049/iet-rsn.2013.0254
    [26] Zhang Y Q, Ji H B. Gaussian mixture reduction based on fuzzy ART for extended target tracking. Signal Processing, 2014, 97: 232-241 doi: 10.1016/j.sigpro.2013.11.004
    [27] Zhang Y Q, Ji H B. A robust and fast partitioning algorithm for extended target tracking using a Gaussian inverse Wishart PHD filter. Knowledge-Based Systems, 2016, 95: 125-141 doi: 10.1016/j.knosys.2015.12.008
    [28] 冯新喜, 蒲磊, 孔云波, 王雪.基于随机有限集理论的多扩展目标跟踪技术综述.空军工程大学学报(自然科学版), 2016, 17(3): 93-99 doi: 10.3969/j.issn.1009-3516.2016.03.018

    Feng Xin-Xi, Pu Lei, Kong Yun-Bo, Wang Xue. A survey of multiple extended targets tracking techniques based on FISST. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(3): 93-99 doi: 10.3969/j.issn.1009-3516.2016.03.018
    [29] Shen X L, Song Z Y, Fan H Q, Fu Q. Generalised distance partitioning for multiple-detection tracking filter based on random finite set. IET Radar, Sonar and Navigation, 2018, 12(2): 260-267 doi: 10.1049/iet-rsn.2017.0201
    [30] Granström K, Lundquist C. On the use of multiple measurement models for extended target tracking. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1534-1541
    [31] Granström K, Orguner U. On spawning and combination of extended/group targets modeled with random matrices. IEEE Transactions on Signal Processing, 2013, 61(3): 678 -692 doi: 10.1109/TSP.2012.2230171
    [32] Petrov N, Mihaylova L, Gning A, Angelova D. A novel sequential Monte Carlo approach for extended object tracking based on border parameterisation. In: Proceedings of the 14th International Conference on Information Fusion, Chicago, Illinois, USA: IEEE, 2011. 306-313
    [33] Schuster M, Reuter J, Wanielik G. Probabilistic data association for tracking extended targets under clutter using random matrices. In: Proceedings of the 18th International Conference on Information Fusion. Washington, USA: IEEE, 2015. 961-968
    [34] Zhu H Y, Han C Z, Li C. An extended target tracking method with random finite set observations. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-6
    [35] Baum M, Noack B, Hanebeck U D. Extended object and group tracking with elliptic random hypersurface models. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [36] Granström K, Lundquist C, Orguner U. Tracking rectangular and elliptical extended targets using laser measurements. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1 -8
    [37] Petrov N, Gning A, Mihaylova L, Angelova D. Box particle filtering for extended object tracking. In: Proceedings of the 15th International Conference on Information Fusion. Singapore, Singapore: IEEE, 2012. 82-89
    [38] 严超.箱粒子滤波在扩展目标跟踪中的应用[硕士学位论文], 西安电子科技大学, 中国, 2014.

    Yan Chao. Box Particle Filter's Application to Extended Target Tracking [Master thesis], Xidian University, China, 2014.
    [39] Baum M, Feldmann M, Franken D, Hanebeck U D, Koch W. Extended object and group tracking: a comparison of random matrices and random hypersurface models. In: Proceedings of the 5th IEEE ISIF Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF). Leipzig, Germany: IEEE, 2010. 904-906
    [40] Baum M, Hanebeck U D. Shape tracking of extended objects and group targets with star-convex RHMs. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-8
    [41] Baum M, Hanebeck U D. Extended object tracking with random hypersurface models. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149-159 doi: 10.1109/TAES.2013.120107
    [42] Hirscher T, Scheel A, Reuter S, Dietmayer K. Multiple extended object tracking using Gaussian processes. In: Proceedings of the 19th International Conference on Information Fusion (Fusion). Heidelberg, Germany: IEEE, 2016. 868-875
    [43] Zea A, Faion F, Baum M, Hanebeck U D. Level-set random hypersurface models for tracking nonconvex extended objects. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2990-3007 doi: 10.1109/TAES.2016.130704
    [44] Feldmann M, Franken D. Advances on tracking of extended objects and group targets using random matrices. In: Proceedings of the 12th International Conference on Information Fusion. Seattle, USA: IEEE, 2009. 1029-1036
    [45] Feldmann M, Franken D, Koch W. Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 2011, 59(4): 1409- 1420 doi: 10.1109/TSP.2010.2101064
    [46] Baum M, Hanebeck U D. Random hypersurface models for extended object tracking. In: Proceedings of the 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Ajman, United Arab Emirates: IEEE, 2009. 178-183
    [47] 李翠芸, 林锦鹏, 姬红兵.一种基于椭圆RHM的扩展目标Gamma高斯混合CPHD滤波器.控制与决策, 2015, 30(9): 1551-1558 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201509003

    Li Cui-Yun, Lin Jin-Peng, Ji Hong-Bing. A Gamma Gaussian-mixture CPHD filter based on ellipse random hypersurface models for extended targets. Control and Decision, 2015, 30(9): 1551-1558 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201509003
    [48] Wahlström N, Özkan E. Extended target tracking using Gaussian processes. IEEE Transactions on Signal Processing, 2015, 63(16): 4165-4178 doi: 10.1109/TSP.2015.2424194
    [49] Aftab W, De Freitas A, Arvaneh M, Mihaylova L. A Gaussian process approach for extended object tracking with random shapes and for dealing with intractable likelihoods. In: Proceedings of the 22nd International Conference on Digital Signal Processing (DSP). London, UK: IEEE, 2017. 1-6
    [50] Zea A, Faion F, Baum M, Hanebeck U D. Level-set random hypersurface models for tracking non-convex extended objects. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1760 -1767
    [51] Granström K, Willett P, Bar-Shalom Y. An extended target tracking model with multiple random matrices and unified kinematics. In: Proceedings of the 18th International Conference on Information Fusion. Washington, USA: IEEE, 2015. 1007-1014
    [52] Lan J, Li X R. Joint tracking and classification of non-ellipsoidal extended object using random matrix. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [53] Cao X M, Lan J, Li X R. Extension-deformation approach to extended object tracking. In: Proceedings of the 19th International Conference on Information Fusion. Heidelberg, Germany: IEEE, 2016. 1185-1192
    [54] Cao X M, Lan J, Li X R. Extended object tracking using control-points-based extension deformation. In: Proceedings of the 20th International Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1-8
    [55] Cao W, Lan J, Li X R. Extended object tracking and classification using radar and ESM sensor data. IEEE Signal Processing Letters, 2018, 25(1): 90-94 doi: 10.1016/j.sigpro.2017.10.026
    [56] Hu Q, Ji H B, Zhang Y Q. A standard PHD filter for joint tracking and classification of maneuvering extended targets using random matrix. Signal Processing, 2018, 144: 352-363 doi: 10.1016/j.sigpro.2017.10.026
    [57] Vivone G, Granström K, Braca P, Willett P. Multiple sensor measurement updates for the extended target tracking random matrix model. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2544-2558 doi: 10.1109/TAES.2017.2704166
    [58] Yao G, Dani A. Image moment-based random hypersurface model for extended object tracking. In: Proceedings of the 20th International Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1-7
    [59] Michaelis M, Berthold P, Meissner D, Wuensche H J. Heterogeneous multi-sensor fusion for extended objects in automotive scenarios using Gaussian processes and a GMPHD-filter. In: Proceedings of the 2017 Sensor Data Fusion: Trends, Solutions, Applications (SDF). Bonn, Germany: IEEE, 2017. 1-6
    [60] Pang S K, Li J, Godsill S J. Models and algorithms for detection and tracking of coordinated groups. In: Proceedings of the 2008 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2008. 1-17
    [61] Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819 doi: 10.1109/TPAMI.2005.223
    [62] Tchango A F, Thomas V, Buffet O, Dutech A, Flacher F. Tracking multiple interacting targets using a joint probabilistic data association filter. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [63] Pang S K, Li J, Godsill S J. Detection and tracking of coordinated groups. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 472-502 doi: 10.1109/TAES.2011.5705687
    [64] Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4): 1383-1396 doi: 10.1109/TSP.2010.2103062
    [65] Georgieva P, Mihaylova L, Jain L C. Advances in Intelligent Signal Processing and Data Mining. Berlin, Heidelberg: Springer, 2013. 7-53
    [66] Chen X J, Qin Z, An L, Bhanu B. Multiperson tracking by online learned grouping model with nonlinear motion context. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(12): 2226-2239 doi: 10.1109/TCSVT.2015.2511480
    [67] Qin Z, Shelton C R. Social grouping for multi-target tracking and head pose estimation in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2082-2095 doi: 10.1109/TPAMI.2015.2505292
    [68] Bazzani L, Zanotto M, Cristani M, Murino V. Joint individual-group modeling for tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4): 746-759 doi: 10.1109/TPAMI.2014.2353641
    [69] Ur-Rehman A, Naqvi S M, Mihaylova L, Chambers J A. Multi-target tracking and occlusion handling with learned variational Bayesian clusters and a social force model. IEEE Transactions on Signal Processing, 2016, 64(5): 1320-1335 doi: 10.1109/TSP.2015.2504340
    [70] Gao S, Chen X G, Ye Q X, Xing J L, Kuijper A, Ji X Y. A graphical social topology model for multi-object tracking [Online], available: https: //arxiv.org/abs/1702.04040, September 29, 2017
    [71] Liu W F, Wen C L. The structure-labeled group target estimation with random finite set observation. In: Proceedings of the 2014 International Conference on Control, Automation and Information Sciences (ICCAIS 2014). Gwangju, South Korea: IEEE, 2014. 1-8
    [72] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Norwood: Artech House, Inc, 2007.
    [73] Feng P M, Wang W W, Dlay S, Naqvi S M, Chambers J. Social force model-based MCMC-OCSVM particle PHD filter for multiple human tracking. IEEE Transactions on Multimedia, 2017, 19(4): 725-739 doi: 10.1109/TMM.2016.2638206
    [74] Mazzon R, Cavallaro A. Multi-camera tracking using a multi-goal social force model. Neurocomputing, 2013, 100: 41-50 doi: 10.1016/j.neucom.2011.09.038
    [75] Geng W D, Wang Y Q, Dong Z H. Group-Target Tracking. Singapore: Springer, 2017. 115-142
    [76] Lian F, Han C Z, Liu W F, Yan X X, Zhou H Y. Sequential Monte Carlo implementation and state extraction of the group probability hypothesis density filter for partly unresolvable group targets-tracking problem. IET Radar, Sonar and Navigation, 2010, 4(5): 685-702 doi: 10.1049/iet-rsn.2009.0109
    [77] 汪云, 胡国平, 甘林海.基于多模型GGIW-CPHD滤波的群目标跟踪算法.华中科技大学学报(自然科学版), 2017, 45(2): 89 -94 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201702017

    Wang Yun, Hu Guo-Ping, Gan Lin-Hai. Group targets tracking algorithm using a multiple models Gaussian inverse Wishart CPHD filter. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(2): 89-94 http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201702017
    [78] Gan L H, Wang G. Tracking maneuvering group target with extension predicted and best model augmentation method adapted. Mathematical Problems in Engineering, 2017, 2017: Article No. 5752870
    [79] Lan J, Li X R. Extended object or group target tracking using random matrix with nonlinear measurements. In: Proceedings of the 19th International Conference on Information Fusion. Heidelberg, Germany: IEEE, 2016. 901-908
    [80] Lei B T, Li C Y, Ji H B. Nonlinear maneuvering non-ellipsoidal extended object tracking using random matrix. In: Proceedings of the 20th International Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1-6
    [81] Özkan E, Wahlström N, Godsill S J. Rao-Blackwellised particle filter for star-convex extended target tracking models. In: Proceedings of the 19th International Conference on Information Fusion. Heidelberg, Germany: IEEE, 2016. 1193-1199
    [82] Simon D. Optimal State Estimation: Kalman, H, and Nonlinear Approaches. New York: Wiley-Interscience, 2006.
    [83] Baum M. Simultaneous Tracking and Shape Estimation of Extended Objects [Ph. D. dissertation], Karlsruhe Institute of Technology, Karlsruhe, Germany, 2013.
    [84] Steinbring J, Baum M, Zea A, Faion F, Hanebeck U D. A closed-form likelihood for particle filters to track extended objects with star-convex RHMs. In: Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). San Diego, USA: IEEE, 2015. 25-30
    [85] de Freitas A, Mihaylova L, Gning A, Angelova D, Kadirkamanathan V. Autonomous crowds tracking with box particle filtering and convolution particle filtering. Automatica, 2016, 69: 380-394 doi: 10.1016/j.automatica.2016.03.009
    [86] Zhang Y Q, Ji H B, Gao X B, Hu Q. An ellipse extended target CBMeMBer filter using gamma and box-particle implementation. Signal Processing, 2018, 149: 88-102 doi: 10.1016/j.sigpro.2018.03.002
    [87] Zhang Y Q, Ji H B, Hu Q. A fast ellipse extended target PHD filter using box-particle implementation. Mechanical Systems and Signal Processing, 2018, 99: 57-72 doi: 10.1016/j.ymssp.2017.05.044
    [88] Zhu H Y, Ma T T, Chen S, Jiang W. A random matrix based method for tracking multiple extended targets. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
    [89] Streit R. JPDA intensity filter for tracking multiple extended objects in clutter. In: Proceedings of the 19th International Conference on Information Fusion. Heidelberg, Germany: IEEE, 2016. 1477-1484
    [90] Wieneke M, Koch W. A PMHT approach for extended objects and object groups. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2349-2370 doi: 10.1109/TAES.2012.6237596
    [91] Zhang Y Q, Ji H B, Hu Q. A box-particle implementation of standard PHD filter for extended target tracking. Information Fusion, 2017, 34: 55-69 doi: 10.1016/j.inffus.2016.06.007
    [92] Li P, Ge H W, Yang J L, Zhang Y Q. Shape selection partitioning algorithm for Gaussian inverse Wishart probability hypothesis density filter for extended target tracking. IET Signal Processing, 2017, 10(9): 1041-1051 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b5a1efda6eddfb1faf399e30e6513ef
    [93] Lundquist C, Granström K, Orguner U. An extended target CPHD filter and a Gamma Gaussian inverse Wishart implementation. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472-483 doi: 10.1109/JSTSP.2013.2245632
    [94] Li C Y, Wang R, Hu Y H, Wang J B. Cardinalised probability hypothesis density tracking algorithm for extended objects with glint noise. IET Science, Measurement and Technology, 2016, 10(5): 528-536 doi: 10.1049/iet-smt.2016.0004
    [95] Jiang T Y, Liu M Q, Fan Z, Zhang S L. On multiple-model extended target multi-Bernoulli filters. Digital Signal Processing, 2016, 59: 76-85 doi: 10.1016/j.dsp.2016.08.002
    [96] Zong P, Barbary M. Improved multi-Bernoulli filter for extended stealth targets tracking based on sub-random matrices. IEEE Sensors Journal, 2016, 16(5): 1428-1447 doi: 10.1109/JSEN.2015.2499268
    [97] Ma D D, Lian F, Liu J. Sequential Monte Carlo implementation of cardinality balanced multi-target multi-Bernoulli filter for extended target tracking. IET Radar, Sonar and Navigation, 2016, 10(2): 272-277 doi: 10.1049/iet-rsn.2015.0081
    [98] Li M, Lin Z P, An W, Zhou Y Y. Box-particle labeled multi-Bernoulli filter for multiple extended target tracking. Radioengineering, 2016, 25(3): 527-535 doi: 10.13164/re.2016.0527
    [99] Li W L, Jia Y M, Du J P, Yu F S. Gaussian mixture PHD filter for multiple maneuvering extended targets tracking. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA: IEEE, 2014. 2410-2415
    [100] 欧阳成, 陈晓旭, 华云.改进的最适高斯近似概率假设密度滤波.雷达学报, 2013, 2(2): 239-246 http://d.old.wanfangdata.com.cn/Periodical/ldxb201302015

    Ouyang Cheng, Chen Xiao-Xu, Hua Yun. Improved best-fitting Gaussian approximation PHD filter. Journal of Radars, 2013, 2(2): 239-246 http://d.old.wanfangdata.com.cn/Periodical/ldxb201302015
    [101] 韩玉兰, 朱洪艳, 韩崇昭, 王静.多扩展目标的高斯混合概率假设密度滤波器.西安交通大学学报, 2014, 48(4): 95-101 http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201404017

    Han Yu-Lan, Zhu Hong-Yan, Han Chong-Zhao, Wang Jing. Gaussian-mixture probability hypothesis density filter for multiple extended targets. Journal of Xi'an Jiaotong University, 2014, 48(4): 95-101 http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201404017
    [102] Wang Y, Hu G P, Zhou H. Group targets tracking using multiple models GGIW-CPHD based on best-fitting Gaussian approximation and strong tracking filter. Journal of Sensors, 2016, 2016: Article No. 7294907
    [103] Wang Y, Hu G P, Li Z X. Tracking of group targets using multiple models GGIW-PHD algorithm based on best-fitting Gaussian approximation and strong tracking filter. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 331-343 doi: 10.1177/0954410016684359
    [104] 宋骊平, 严超, 姬红兵, 梁萌.基于箱粒子的多扩展目标PHD滤波.控制与决策, 2015, 30(10): 1759-1765 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201510004

    Song Li-Ping, Yan Chao, Ji Hong-Bing, Liang Meng. PHD filter for tracking multiple extended targets using box particle. Control and Decision, 2015, 30(10): 1759-1765 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzyjc201510004
    [105] 汪云.群目标跟踪关键技术研究[博士学位论文], 空军工程大学, 中国, 2017.

    Wang Yun. Research on the Group Target Tracking Algorithm [Ph. D. dissertation], Air Force Engineering University, China, 2017.
    [106] Ristic B, Sherrah J. Bernoulli filter for joint detection and tracking of an extended object in clutter. IET Radar, Sonar and Navigation, 2013, 7(1): 26-35 doi: 10.1049/iet-rsn.2012.0069
    [107] 李鹏涛.基于箱粒子滤波的MeMBer扩展目标跟踪算法研究[硕士学位论文], 西安电子科技大学, 中国, 2016.

    Li Peng-Tao. Research on MeMBer Extended Target Tracking Based on Box Particle Filter [Master thesis], Xidian University, China, 2016.
    [108] Lau R A, Williams J L. Tracking a coordinated group using expectation maximisation. In: Proceedings of the 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Melbourne, Australia: IEEE, 2013. 282-287
    [109] 朱志宇.粒子滤波算法及其应用.北京:科学出版社, 2010.

    Zhu Zhi-Yu. Particle Filter and Its Application. Beijing: Science Press, 2010.
    [110] 杨小军, 潘泉, 王睿, 张洪才.粒子滤波进展与展望.控制理论与应用, 2006, 23(2): 261-267 doi: 10.3969/j.issn.1000-8152.2006.02.019

    Yang Xiao-Jun, Pan Quan, Wang Rui, Zhang Hong-Cai. Development and prospect of particle filtering. Control Theory and Applications, 2006, 23(2): 261-267 doi: 10.3969/j.issn.1000-8152.2006.02.019
    [111] Carmi A Y, Mihaylova L, Septier F, Pang S K, Gurfil P, Godsill S J. Inferring leadership from group dynamics using Markov chain Monte Carlo methods. Modeling, Simulation and Visual Analysis of Crowds. New York: Springer, 2013. 325-346
    [112] Carmi A Y, Mihaylova L, Septier F. Subgradient-based Markov chain Monte Carlo particle methods for discrete-time nonlinear filtering. Signal Processing, 2016, 120: 532 -536 doi: 10.1016/j.sigpro.2015.10.015
    [113] 李振兴, 刘进忙, 李松, 白东颖, 倪鹏.基于箱式粒子滤波的群目标跟踪算法.自动化学报, 2015, 41(4): 785-798 doi: 10.16383/j.aas.2015.c140222

    Li Zhen-Xing, Liu Jin-Mang, Li Song, Bai Dong-Ying, Ni Peng. Group targets tracking algorithm based on box particle filter. Acta Automatica Sinica, 2015, 41(4): 785-798 doi: 10.16383/j.aas.2015.c140222
    [114] 李振兴, 刘进忙, 李超, 白东颖, 郭相科.联合模糊聚类和拟蒙特卡罗重采样的群目标跟踪算法.控制理论与应用, 2014, 31(11): 1597-1603 doi: 10.7641/CTA.2014.40362

    Li Zhen-Xing, Liu Jin-Mang, Li Chao, Bai Dong-Ying, Guo Xiang-Ke. Group targets tracking algorithm by combination of fuzzy clustering and Quasi-Monte Carlo resampling method. Control Theory and Applications, 2014, 31(11): 1597-1603 doi: 10.7641/CTA.2014.40362
    [115] 朱书军, 刘伟峰, 崔海龙.基于广义标签多伯努利滤波的可分辨群目标跟踪算法.自动化学报, 2017, 43(12): 2178-2189 doi: 10.16383/j.aas.2017.c160334

    Zhu Shu-Jun, Liu Wei-Feng, Cui Hai-Long. Multiple resolvable groups tracking using the GLMB filter. Acta Automatica Sinica, 2017, 43(12): 2178-2189 doi: 10.16383/j.aas.2017.c160334
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  6608
  • HTML全文浏览量:  1963
  • PDF下载量:  923
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 录用日期:  2018-08-17
  • 刊出日期:  2020-03-30

目录

    /

    返回文章
    返回