2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互补色小波颜色恒常性/白平衡方法

陈扬 李旦 张建秋

王超, 刘侠, 董迪, 臧丽亚, 刘再毅, 梁长虹, 田捷. 基于影像组学的非小细胞肺癌淋巴结转移预测. 自动化学报, 2019, 45(6): 1087-1093. doi: 10.16383/j.aas.c160794
引用本文: 陈扬, 李旦, 张建秋. 互补色小波颜色恒常性/白平衡方法. 自动化学报, 2020, 46(7): 1378-1389. doi: 10.16383/j.aas.c180037
WANG Chao, LIU Xia, DONG Di, ZANG Li-Ya, LIU Zai-Yi, LIANG Chang-Hong, TIAN Jie. Radiomics Based Lymph Node Metastasis Prediction in Non-small-cell Lung Cancer. ACTA AUTOMATICA SINICA, 2019, 45(6): 1087-1093. doi: 10.16383/j.aas.c160794
Citation: CHEN Yang, LI Dan, ZHANG Jian-Qiu. Color Constancy With Complementary Color Wavelets. ACTA AUTOMATICA SINICA, 2020, 46(7): 1378-1389. doi: 10.16383/j.aas.c180037

互补色小波颜色恒常性/白平衡方法

doi: 10.16383/j.aas.c180037
基金项目: 

国家自然科学基金 61571131

详细信息
    作者简介:

    陈扬  复旦大学电子工程系博士研究生.主要研究方向为图像/视频处理. E-mail: 13110720040@fudan.edu.cn

    张建秋  复旦大学电子工程系教授.主要研究方向为信号处理及其在通信、控制、测量、图像和雷达中的应用. E-mail: jqzhang@ieee.org

    通讯作者:

    李旦  复旦大学电子工程系讲师.主要研究方向为数字信号处理及应用.本文通信作者. E-mail: lidan@fudan.edu.cn

Color Constancy With Complementary Color Wavelets

Funds: 

National Natural Science Foundation of China 61571131

More Information
    Author Bio:

    CHEN Yang   Ph. D. candidate in the Department of Electronic Engineering, Fudan University. His research interest covers the multiresolution filtering and image/video processing

    ZHANG Jian-Qiu   Professor in the Department of Electronic Engineering, Fudan University. His research interest covers signal processing and its application

    Corresponding author: LI Dan   Lecturer in Department of Electronic Engineering, Fudan University. His research interest covers digital signal processing and its application to nondestructive testing. Corresponding author of this paper
  • 摘要: 借助于互补色小波, 本文提出一种新的颜色恒常性统计方法.分析表明:标准光照图像的互补色小波子带关系, 可以利用联合拉普拉斯分布来进行描述.统计学习标准光照图像, 可获得拉普拉斯分布的参数, 为图像建立起标准光照的基准模型.该基准模型可为光照偏移(颜色恒常偏移)的图像提供光照补偿依据, 使偏光图像通过光照补偿恢复为标准光照图像, 从而得到光照参数.基于该基准模型对补偿光照参数进行最大似然估计的实验结果表明:本文所提方法的处理效果与列出的最好文献算法相当, 其在常用数据库上估计到的光照参数误差中值小0.1°, 而均值和最大值则小0.3°.
    Recommended by Associate Editor SANG Nong
  • 肺癌是世界范围内发病率和死亡率最高的疾病之一, 占所有癌症病发症的18 %左右[1].美国癌症社区统计显示, 80 %到85 %的肺癌为非小细胞肺癌[2].在该亚型中, 大多数病人会发生淋巴结转移, 在手术中需对转移的淋巴结进行清扫, 现阶段通常以穿刺活检的方式确定淋巴结的转移情况.因此, 以非侵入性的方式确定淋巴结的转移情况对临床治疗具有一定的指导意义[3-5].然而, 基本的诊断方法在无创淋巴结转移的预测上存在很大挑战.

    影像组学是针对医学影像的兴起的热门方法, 指通过定量医学影像来描述肿瘤的异质性, 构造大量纹理图像特征, 对临床问题进行分析决策[6-7].利用先进机器学习方法实现的影像组学已经大大提高了肿瘤良恶性的预测准确性[8].研究表明, 通过客观定量的描述影像信息, 并结合临床经验, 对肿瘤进行术前预测及预后分析, 将对临床产生更好的指导价值[9].

    本文采用影像组学的方法来解决非小细胞肺癌淋巴结转移预测的问题.通过利用套索逻辑斯特回归(Lasso logistics regression, LLR)[10]模型得出基本的非小细胞肺癌淋巴结的转移预测概率, 并把组学模型的预测概率作为独立的生物标志物, 与患者的临床特征一起构建多元Logistics预测模型并绘制个性化诺模图, 在临床决策中的起重要参考作用.

    我们收集了广东省人民医院2007年5月至2014年6月期间的717例肺癌病例.这些病人在签署知情同意书后, 自愿提供自己的信息作为研究使用.为了充分利用收集到的数据对非小细胞肺癌淋巴结转移预测, 即对$N1-N3$与$N0$进行有效区分, 我们对收集的数据设置了三个入组标准: 1)年龄大于等于18周岁, 此时的肺部已经发育完全, 消除一定的干扰因素; 2)病理诊断为非小细胞肺癌无其他疾病干扰, 并有完整的CT (Computed tomography)增强图像及个人基本信息; 3)有可利用的术前病理组织活检分级用于确定N分期.经筛选, 共564例病例符合进行肺癌淋巴结转移预测研究的要求(如图 1).

    图 1  数据筛选流程图
    Fig. 1  Data filtering flow chart

    为了得到有价值的结果, 考虑到数据的分配问题, 为了保证客观性, 防止挑数据的现象出现, 在数据分配上, 训练集与测试集将按照时间进行划分, 并以2013年1月为划分点.得到训练集: 400例, 其中, 243例正样本$N1-N3$, 157例负样本$N0$; 测试集: 164例, 其中, 93例正样本, 71例负样本.

    在进行特征提取工作前, 首先要对肿瘤病灶进行分割.医学图像分割的金标准是需要有经验的医生进行手动勾画的结果.但手动分割无法保证每次的分割结果完全一致, 且耗时耗力, 尤其是在数据量很大的情况下.因此, 手动分割不是最理想的做法.在本文中, 使用的自动图像分割算法为基于雪橇的自动区域生长分割算法[11], 该算法首先选定最大切片层的种子点, 这时一般情况下最大切片为中间层的切片, 然后估计肿瘤的大小即直径, 作为一个输入参数, 再自动进行区域生长得到每个切片的肿瘤如图 2(a1), (b1), 之后我们进行雪橇滑动到邻接的上下两个切面, 进行分割, 这样重复上述的区域生长即滑动切片, 最终分割得到多个切片的的肿瘤区域, 我们将肿瘤切面层进行组合, 得到三维肿瘤如图 2(a2), (b2).

    图 2  三维病灶的分割
    Fig. 2  3D tumor segmentation

    利用影像组学处理方法, 从分割得到的肿瘤区域中总共提取出386个特征.这些特征可分为四组:三维形状特征, 表面纹理特征, Gabor特征和小波特征[12-13].形状特征通过肿瘤体积、表面积、体积面积比等特征描述肿瘤在空间和平面上的信息.纹理特征通过统计三维不同方向上像素的规律, 通过不同的分布规律来表示肿瘤的异质性. Gabor特征指根据特定方向, 特定尺度筛选出来的纹理信息.

    小波特征是指原图像经过小波变换滤波器后的纹理特征.在模式识别范畴中, 高维特征会增加计算复杂度, 此外, 高维的特征往往存在冗余性, 容易造成模型过拟合.因此, 本位通过特征筛选方法首先对所有特征进行降维处理.

    本文采用$L$1正则化Lasso进行特征筛选, 对于简单线性回归模型定义为:

    $$ \begin{equation} f(x)=\sum\limits_{j=1}^p {w^jx^j} =w^\mathrm{T}x \end{equation} $$ (1)

    其中, $x$表示样本, $w$表示要拟合的参数, $p$表示特征的维数.

    要进行参数$w$学习, 应用二次损失来表示目标函数, 即:

    $$ \begin{equation} J(w)=\frac{1}{n}\sum\limits_{i=1}^n{(y_i-f(x_i)})^2= \frac{1}{n}\vert\vert\ {{y}-Xw\vert\vert}^2 \end{equation} $$ (2)

    其中, $X$是数据矩阵, $X=(x_1 , \cdots, x_n)^\mathrm{T}\in {\bf R}^{n\times p}$, ${y}$是由标签组成的列向量, ${y}=(y_1, \cdots, y_n )^\mathrm{T}$.

    式(2)的解析解为:

    $$ \begin{equation} \hat{w}=(X^\mathrm{T}X)^{-1}X^\mathrm{T}{y} \end{equation} $$ (3)

    然而, 若$p\gg n$, 即特征维数远远大于数据个数, 矩阵$X^\mathrm{T}X$将不是满秩的, 此时无解.

    通过Lasso正则化, 得到目标函数:

    $$ \begin{equation} J_L(w)=\frac{1}{n} \vert\vert{y}-Xw\vert\vert^2+\lambda\vert\vert w\vert\vert _1 \end{equation} $$ (4)

    目标函数最小化等价为:

    $$ \begin{equation} \mathop {\min }\limits_w \frac{1}{n} \vert\vert{y}-Xw\vert\vert^2, \, \, \, \, \, \, \, \mathrm{s.t.}\, \, \vert \vert w\vert \vert _1 \le C \end{equation} $$ (5)

    为了使部分特征排除, 本文采用$L$1正则方法进行压缩.二维情况下, 在$\mbox{(}w^1, w^2)$平面上可画出目标函数的等高线, 取值范围则为平面上半径为$C$的$L$1范数圆, 等高线与$L$1范数圆的交点为最优解. $L$1范数圆和每个坐标轴相交的地方都有"角''出现, 因此在角的位置将产生稀疏性.而在维数更高的情况下, 等高线与L1范数球的交点除角点之外还可能产生在很多边的轮廓线上, 同样也会产生稀疏性.对于式(5), 本位采用近似梯度下降(Proximal gradient descent)[14]算法进行参数$w$的迭代求解, 所构造的最小化函数为$Jl=\{g(w)+R(w)\}$.在每次迭代中, $Jl(w)$的近似计算方法如下:

    $$ \begin{align} J_L (w^t+d)&\approx \tilde {J}_{w^t} (d)=g(w^t)+\nabla g(w^t)^\mathrm{T}d\, +\nonumber\\ &\frac{1} {2d^\mathrm{T}(\frac{I }{ \alpha })d}+R(w^t+d)=\nonumber\\ &g(w^t)+\nabla g(w^t)^\mathrm{T}d+\frac{{d^\mathrm{T}d} } {2\alpha } +\nonumber\\ &R(w^t+d) \end{align} $$ (6)

    更新迭代$w^{(t+1)}\leftarrow w^t+\mathrm{argmin}_d \tilde {J}_{(w^t)} (d)$, 由于$R(w)$整体不可导, 因而利用子可导引理得:

    $$ \begin{align} w^{(t+1)}&=w^t+\mathop {\mathrm{argmin}} \nabla g(w^t)d^\mathrm{T}d\, +\nonumber\\ &\frac{d^\mathrm{T}d}{2\alpha }+\lambda \vert \vert w^t+d\vert \vert _1=\nonumber\\ &\mathrm{argmin}\frac{1 }{ 2}\vert \vert u-(w^t-\alpha \nabla g(w^t))\vert \vert ^2+\nonumber\\ &\lambda \alpha \vert \vert u\vert \vert _1 \end{align} $$ (7)

    其中, $S$是软阈值算子, 定义如下:

    $$ \begin{equation} S(a, z)=\left\{\begin{array}{ll} a-z, &a>z \\ a+z, &a<-z \\ 0, &a\in [-z, z] \\ \end{array}\right. \end{equation} $$ (8)

    整个迭代求解过程为:

    输入.数据$X\in {\bf R}^{n\times p}, {y}\in {\bf R}^n$, 初始化$w^{(0)}$.

    输出.参数$w^\ast ={\rm argmin}_w\textstyle{1 \over n}\vert \vert Xw-{y}\vert \vert ^2+\\ \lambda \vert\vert w\vert \vert _1 $.

    1) 初始化循环次数$t = 0$;

    2) 计算梯度$\nabla g=X^\mathrm{T}(Xw-{y})$;

    3) 选择一个步长大小$\alpha ^t$;

    4) 更新$w\leftarrow S(w-\alpha ^tg, \alpha ^t\lambda )$;

    5) 判断是否收敛或者达到最大迭代次数, 未收敛$t\leftarrow t+1$, 并循环2)$\sim$5)步.

    通过上述迭代计算, 最终得到最优参数, 而参数大小位于软区间中的, 将被置为零, 即被稀疏掉.

    本文使用LLR对组学特征进行降维并建模, 并使用10折交叉验证, 提高模型的泛化能力, 流程如图 3所示.

    图 3  淋巴结转移预测模型构造图
    Fig. 3  Structure of lymph node metastasis prediction model

    将本文使用的影像组学模型的预测概率(Radscore)作为独立的生物标志物, 并与临床指标中显著的特征结合构建多元Logistics模型, 绘制个性化预测的诺模图, 最后通过校正曲线来观察预测模型的偏移情况.

    我们分别在训练集和验证集上计算各个临床指标与淋巴结转移的单因素P值, 计算方式为卡方检验, 结果见表 1, 发现吸烟与否和EGFR (Epidermal growth factor receptor)基因突变状态与淋巴结转移显著相关.

    表 1  训练集和测试集病人的基本情况
    Table 1  Basic information of patients in the training set and test set
    基本项训练集($N=400$) $P$值测试集($N=164$) $P$值
    性别144 (36 %)0.89678 (47.6 %)0.585
    256 (64 %)86 (52.4 %)
    吸烟126 (31.5 %)0.030*45 (27.4 %)0.081
    274 (68.5 %)119 (72.6 %)
    EGFR缺失36 (9 %)4 (2.4 %)
    突变138 (34.5 %)$ < $0.001*67 (40.9 %)0.112
    正常226 (56.5 %)93 (56.7 %)
    下载: 导出CSV 
    | 显示表格

    影像组学得分是每个病人最后通过模型预测后的输出值, 随着特征数的动态变化, 模型输出的AUC (Area under curve)值也随之变化, 如图 4所示, 使用R语言的Glmnet库可获得模型的参数$\lambda $的变化图.图中直观显示了参数$\lambda $的变化对模型性能的影响, 这次实验中模型选择了3个变量.如图 5所示, 横坐标表示$\lambda $的变化, 纵坐标表示变量的系数变化, 当$\lambda $逐渐变大时, 变量的系数逐渐减少为零, 表示变量选择的过程, 当$\lambda $越大表示模型的压缩程度越大.

    图 4  $\lambda $与变量数目对应走势
    Fig. 4  The trend of the parameters and the number of variables
    图 5  系数随$\lambda $参数变化图
    Fig. 5  The coefficient changes with the parameters

    通过套索回归方法, 自动的将变量压缩为3个, 其性能从图 4中也可发现, 模型的AUC值为最佳, 最终的特征如表 2所示. $V0$为截距项; $V179$为横向小波分解90度共生矩阵Contrast特征; $V230$为横向小波分解90度共生矩阵Entropy特征.

    表 2  Lasso选择得到的参数
    Table 2  Parameters selected by Lasso
    Lasso选择的参数含义数值$P$值
    $V0$截距项2.079115
    $V179$横向小波分解90度共生矩阵Contrast特征(Contrast_2_90)0.0000087< 0.001***
    $V230$横向小波分解90度共生矩阵Entropy特征(Entropy_3_180)$-$3.573315< 0.001***
    $V591$表面积与体积的比例(Surface to volume ratio)$-$1.411426< 0.001***
    下载: 导出CSV 
    | 显示表格

    $V591$为表面积与体积的比例; 将三个组学特征与$N$分期进行单因素分析, 其$P$值都是小于0.05, 表示与淋巴结转移有显著相关性.根据Lasso选择后的三个变量建立Logistics模型并计算出Rad-score, 详见式(9).并且同时建立SVM (Support vector machine)模型.

    NB (Naive Bayesian)模型, 进行训练与预测, LLR模型训练集AUC为0.710, 测试集为0.712, 表现较优; 如表 3所示.将实验中使用的三个机器学习模型的结果进行对比, 可以发现, LLR的实验结果是最好的.

    表 3  不同方法对比结果
    Table 3  Comparison results of different methods
    方法训练集(AUC)测试集(AUC)召回率
    LLR0.7100.7120.75
    SVM0.6980.6540.75
    NB0.7180.6810.74
    下载: 导出CSV 
    | 显示表格
    $$ \begin{equation} \begin{aligned} &\text{Rad-score}=2.328373+{\rm Contrast}\_2\_90\times\\ &\qquad 0.0000106 -{\rm entropy}\_3\_180\times 3.838207 +\\ &\qquad\text{Maximum 3D diameter}\times 0.0000002 -\\ &\qquad\text{Surface to volume ratio}\times 1.897416 \\ \end{aligned} \end{equation} $$ (9)

    为了体现诺模图的临床意义, 融合Rad-score, 吸烟情况和EGFR基因因素等有意义的变量进行分析, 绘制出个性化预测的诺模图, 如图 7所示.为了给每个病人在最后得到一个得分, 需要将其对应变量的得分进行相加, 然后在概率线找到对应得分的概率, 从而实现非小细胞肺癌淋巴结转移的个性化预测.我们通过一致性指数(Concordance index, $C$-index)对模型进行了衡量, 其对应的$C$-index为0.724.

    图 6  测试集ROC曲线
    Fig. 6  ROC curve of test set
    图 7  验证诺模图
    Fig. 7  Verifies the nomogram

    本文中使用校正曲线来验证诺模图的预测效果, 如图 8所示, 由校正曲线可以看出, 预测结果基本上没有偏离真实标签的结果, 表现良好, 因此, 该模型具有可靠的预测性能[15].

    图 8  一致性曲线
    Fig. 8  Consistency curves

    在构建非小细胞肺癌淋巴结转移的预测模型中, 使用LLR筛选组学特征并构建组学标签, 并与显著的临床特征构建多元Logistics模型, 绘制个性化预测的诺模图.其中LLR模型在训练集上的AUC值为0.710, 在测试集上的AUC值为0.712, 利用多元Logistics模型绘制个性化预测的诺模图, 得到模型表现能力$C$-index为0.724 (95 % CI: 0.678 $\sim$ 0.770), 并且在校正曲线上表现良好, 所以个性化预测的诺模图在临床决策上可起重要参考意义.[16].


  • 本文责任编委 桑农
  • 图  1  色环与互补色小波

    Fig.  1  The hue ring and the CCWT

    图  2  互补色小波的方向与相位, 每列对应$n = k\pi /8, k = 1, 2, \cdots, 8$中的一个方向, 每行对应$\theta = 0, 2\pi /3, 4\pi /3$中的一种相位

    Fig.  2  Orientations and phases of the CCWT. Each column denotes one of the $n = k\pi /8, k = 1, 2, \cdots, 8$ orientations and each row denotes one of the $\theta = 0, 2\pi /3, 4\pi /3$ phases

    图  3  白色背景中一维边缘信号的互补色小波分解示例

    Fig.  3  CCWT operators running over a line segment on the white background

    图  4  互补色小波子带统计特性

    Fig.  4  Statistical characteristics of the CCWT subbands

    表  1  RAW格式数据库各种颜色恒常性算法结果的角度误差

    Table  1  Angular errors for different color constancy methods on the COLOR CHECKER RAW database

    方法 误差均值(°) 误差中值(°) 误差最大值(°)
    White-patch [3] 7.4 5.6 40.6
    Gray-world [4] 6.3 6.3 24.8
    Shades-of-gray [5] 4.9 4.0 20.0
    1st-order grey-edge [8] 5.2 4.5 19.7
    2nd-order grey-edge [8] 5.0 4.4 16.9
    Natural image statistics [24] 4.0 3.1 26.2
    Gamut mapping [11] 4.1 2.3 23.2
    Edge-based gamut mapping [12] 6.5 5.0 29.0
    Exemplar-based [16] 3.1 2.3 16.3
    Improved specular edge [7] 4.9 3.3 28.3
    Multi-cue tree-structured [25] 3.3 2.2 18.2
    AlexNet+SVR [18] 4.7 3.1 29.2
    Using CNNs [34] 2.9 2.1 14.8
    Bayesian [13] 4.7 3.5 24.5
    Spatio-spectral statistics [15] 3.1 2.3 14.8
    Proposed CCWT statistics 2.8 2.2 14.5
    下载: 导出CSV

    表  2  贝叶斯颜色恒常性算法结果比较

    Table  2  Comparison between Bayesian color constancy methods

    方法 误差均值(°) 误差中值(°) 误差最大值(°)
    Spatio-spectral statistics [15] 3.1 2.3 14.8
    CCWT with fixed $\alpha $ 2.9 2.2 14.6
    Proposed CCWT statistics 2.8 2.2 14.5
    下载: 导出CSV

    表  3  SFU HDR数据库各种颜色恒常性算法结果的角度误差

    Table  3  Angular errors for different color constancy methods on the SFU HDR database

    方法 误差均值(°) 误差中值(°) 最差25 %样本均值(°)
    White-patch [3] 6.3 3.9 -
    Gray-world [4] 8.0 7.4 15.0
    Shades-of-gray [5] 5.7 3.9 12.7
    1st-order grey-edge [8] 6.0 3.9 13.6
    Corrected-moment [9] 4.0 3.2 -
    Double-opponency [35] 6.2 3.5 14.0
    Proposed CCWT statistics 4.4 3.1 9.8
    下载: 导出CSV
  • [1] West G, Brill M H. Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy. Journal of Mathematical Biology, 1982, 15(2): 249-258 doi: 10.1007/BF00275077
    [2] Land E H, McCann J J. Lightness and retinex theory. JOSA, 1971, 61(1): 1-11 doi: 10.1364/JOSA.61.000001
    [3] Land E H. The retinex theory of color vision. Scientific American, 1977, 237(6): 108-128 doi: 10.1038/scientificamerican1277-108
    [4] Buchsbaum G. A spatial processor model for object colour perception. Journal of the Franklin Institute, 1980, 310(1): 1-26 doi: 10.1016/0016-0032(80)90058-7
    [5] Finlayson G D, Trezzi E. Shades of gray and colour constancy. In: Proceedings of the 12th Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications. Scottsdale, USA: The Society for Imaging Science and Technology, 2004. 37-41
    [6] 张锐, 韩慧健, 梁秀霞, 方靖, 张彩明.基于色度一致性的室外场景光照参数估计.计算机科学, 2018, 45(3): 58-62, 82 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201803010

    Zhang Rui, Han Hui-Jian, Liang Xiu-Xia, Fang Jing, Zhang Cai-Ming. Illumination parameter estimation of outdoor scene using chromaticity consistency. Computer Science, 2018, 45(3): 58-62, 82 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201803010
    [7] 张玉萍, 杨学志, 方帅, 郑鑫, 李国强.改进的高光边缘颜色恒常性算法研究.仪器仪表学报, 2015, 36(9): 2076-2082 doi: 10.3969/j.issn.0254-3087.2015.09.020

    Zhang Yu-Ping, Yang Xue-Zhi, Fang Shuai, Zheng Xin, Li Guo-Qiang. Research on improved specular edge color constancy algorithm. Chinese Journal of Scientific Instrument, 2015, 36(9): 2076-2082 doi: 10.3969/j.issn.0254-3087.2015.09.020
    [8] van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy. IEEE Transactions on Image Processing, 2007, 16(9): 2207-2214 doi: 10.1109/TIP.2007.901808
    [9] Finlayson G D. Corrected-moment illuminant estimation. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013. 1904-1911
    [10] Forsyth D A. A novel algorithm for color constancy. International Journal of Computer Vision, 1990, 5(1): 5-35 doi: 10.1007/BF00056770
    [11] Finlayson G D, Hordley S D, Tastl I. Gamut constrained illuminant estimation. International Journal of Computer Vision, 2006, 67(1): 93-109 doi: 10.1007/s11263-006-4100-z
    [12] Gijsenij A, Gevers T, van de Weijer J. Generalized gamut mapping using image derivative structures for color constancy. International Journal of Computer Vision, 2010, 86(2-3): 127-139 doi: 10.1007/s11263-008-0171-3
    [13] Gehler P V, Rother C, Blake A, Minka T, Sharp T. Bayesian color constancy revisited. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008. 1-8
    [14] Gijsenij A, Gevers T, van de Weijer J. Computational color constancy: survey and experiments. IEEE Transactions on Image Processing, 2011, 20(9): 2475-2489 doi: 10.1109/TIP.2011.2118224
    [15] Chakrabarti A, Hirakawa K, Zickler T. Color constancy with spatio-spectral statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1509-1519 doi: 10.1109/TPAMI.2011.252
    [16] Joze H R V, Drew M S. Exemplar-based color constancy and multiple illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 860-873 doi: 10.1109/TPAMI.2013.169
    [17] 吴克伟, 杨学志, 谢昭.面向区域的非均匀光照估计方法.光学学报, 2016, 36(2): 233001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201602042

    Wu Ke-Wei, Yang Xue-Zhi, Xie Zhao. Regional-oriented non-uniform illumination estimation. Acta Optica Sinica, 2016, 36(2): 233001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201602042
    [18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada: MIT, 2012. 1097-1105
    [19] Hu Y M, Wang B Y, Lin S. FC4: fully convolutional color constancy with confidence-weighted pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 330-339
    [20] 唐贤伦, 杜一铭, 刘雨微, 李佳歆, 马艺玮.基于条件深度卷积生成对抗网络的图像识别方法.自动化学报, 2018, 44(5): 855-864 doi: 10.16383/j.aas.2018.c170470

    Tang Xian-Lun, Du Yi-Ming, Liu Yu-Wei, Li Jia-Xin, Ma Yi-Wei. Image recognition with conditional deep convolutional generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 855-864 doi: 10.16383/j.aas.2018.c170470
    [21] 随婷婷, 王晓峰.一种基于CLMF的深度卷积神经网络模型.自动化学报, 2016, 42(6): 875-882 doi: 10.16383/j.aas.2016.c150741

    Sui Ting-Ting, Wang Xiao-Feng. Convolutional neural networks with candidate location and multi-feature fusion. Acta Automatica Sinica, 2016, 42(6): 875-882 doi: 10.16383/j.aas.2016.c150741
    [22] Qian Y L, Chen K, Nikkanen J, Kämäräinen J K, Matas J. Recurrent color constancy. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 5459-5467
    [23] Bianco S, Ciocca G, Cusano C, Schettini R. Automatic color constancy algorithm selection and combination. Pattern Recognition, 2010, 43(3): 695-705 doi: 10.1016/j.patcog.2009.08.007
    [24] Gijsenij A, Gevers T. Color constancy using natural image statistics and scene semantics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 687-698 doi: 10.1109/TPAMI.2010.93
    [25] Li B, Xiong W H, Hu W M, Funt B, Xing J L. Multi-cue illumination estimation via a tree-structured group joint sparse representation. International Journal of Computer Vision, 2016, 117(1): 21-47 doi: 10.1007/s11263-015-0844-7
    [26] Pridmore R W. Complementary colors theory of color vision: physiology, color mixture, color constancy and color perception. Color Research & Application, 2011, 36(6): 394-412 http://cn.bing.com/academic/profile?id=eb59ed7c79fa446e6be659163ed5d7fe&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Pridmore R W. Complementary colors: the structure of wavelength discrimination, uniform hue, spectral sensitivity, saturation, chromatic adaptation, and chromatic induction. Color Research & Application, 2009, 34(3): 233-252 http://cn.bing.com/academic/profile?id=3d94177ce7b59ac5b8afdd5b602e7e7f&encoded=0&v=paper_preview&mkt=zh-cn
    [28] 朱叶, 申铉京, 陈海鹏.基于彩色LBP的隐蔽性复制–粘贴篡改盲鉴别算法.自动化学报, 2017, 43(3): 390-397 http://www.cnki.com.cn/Article/CJFDTotal-MOTO201703006.htm

    Zhu Ye, Shen Xuan-Jing, Chen Hai-Peng. Covert copy-move forgery detection based on color LBP. Acta Automatica Sinica, 2017, 43(3): 390-397 http://www.cnki.com.cn/Article/CJFDTotal-MOTO201703006.htm
    [29] 卢红阳, 刘且根, 熊娇娇, 王玉皞, 邓晓华.基于最大加权投影求解的彩色图像灰度化对比度保留算法.自动化学报, 2017, 43(5): 843-854 http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201705016.htm

    Lu Hong-Yang, Liu Qie-Gen, Xiong Jiao-Jiao, Wang YuHao, Deng Xiao-Hua. Maximum weighted projection solver for contrast preserving decolorization. Acta Automatica Sinica, 2017, 43(5): 843-854 http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201705016.htm
    [30] Chen Y, Li D, Zhang J Q. Complementary color wavelet: a novel tool for the color image/video analysis and processing. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2776239
    [31] Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756 doi: 10.1109/TSP.2002.804091
    [32] Shi F, Selesnick I W. An elliptically contoured exponential mixture model for wavelet based image denoising. Applied and Computational Harmonic Analysis, 2007, 23(1): 131-151 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbba68d31616341c71c2d318dc8e1ea0
    [33] Shi L, Funt B. Re-processed version of the Gehler color constancy dataset of 568 images. http://www.cs.sfu.ca/colour/data/, 2000.
    [34] Bianco S, Cusano C, Schettini R. Color constancy using CNNs. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston, MA, USA: IEEE, 2015. 81-89
    [35] Gao S B, Yang K F, Li C Y, Li Y J. Color constancy using double-opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973-1985 doi: 10.1109/TPAMI.2015.2396053
  • 期刊类型引用(14)

    1. 王圣洁,刘乾义,文超,李忠灿,田文华. 考虑致因的初始晚点影响列车数预测模型研究. 综合运输. 2024(02): 105-110 . 百度学术
    2. 刘鲁岳,肖宝弟,岳丽丽. 基于改进RF-XGBoost算法的列车运行晚点预测研究. 铁道标准设计. 2023(03): 38-43 . 百度学术
    3. 李建民,许心越,丁忻. 基于多阶段特征优选的高速铁路列车晚点预测模型. 中国铁道科学. 2023(04): 219-229 . 百度学术
    4. 林鹏,田宇,袁志明,张琦,董海荣,宋海锋,阳春华. 高速铁路信号系统运维分层架构模型研究. 自动化学报. 2022(01): 152-161 . 本站查看
    5. 文超,李津,李忠灿,智利军,田锐,宋邵杰. 机器学习在铁路列车调度调整中的应用综述. 交通运输工程与信息学报. 2022(01): 1-14 . 百度学术
    6. 张芸鹏,朱志强,王子维. 高速铁路行车调度作业风险管控信息系统设计研究. 铁道运输与经济. 2022(03): 47-52+59 . 百度学术
    7. 张红斌,李军,陈亚茹. 京沪高铁列车运行晚点预测方法研究. 铁路计算机应用. 2022(05): 1-6 . 百度学术
    8. 俞胜平,韩忻辰,袁志明,崔东亮. 基于策略梯度强化学习的高铁列车动态调度方法. 控制与决策. 2022(09): 2407-2417 . 百度学术
    9. 唐涛,甘婧. 基于国内外铁路运营数据的列车运行时间预测模型. 中国安全科学学报. 2022(06): 123-130 . 百度学术
    10. 刘睿,徐传玲,文超. 基于马尔科夫链的高铁列车连带晚点横向传播. 铁道科学与工程学报. 2022(10): 2804-2812 . 百度学术
    11. 廖璐,张亚东,葛晓程,郭进,禹倩. 基于GBDT的列车晚点时长预测模型研究. 铁道标准设计. 2021(08): 149-154+176 . 百度学术
    12. 闫璐,张琦,王荣笙,丁舒忻. 基于动力学特性的列车运行态势分析. 铁道运输与经济. 2021(08): 64-70 . 百度学术
    13. 张俊,张欣愉,叶玉玲. 高速铁路非正常事件下初始延误场景聚类研究. 物流科技. 2021(06): 1-4+9 . 百度学术
    14. 徐传玲,文超,胡瑞,冯永泰. 高速铁路列车连带晚点产生机理及其判定. 交通运输工程与信息学报. 2020(04): 31-37 . 百度学术

    其他类型引用(28)

  • 加载中
  • 图(4) / 表(3)
    计量
    • 文章访问数:  1333
    • HTML全文浏览量:  87
    • PDF下载量:  117
    • 被引次数: 42
    出版历程
    • 收稿日期:  2018-01-17
    • 录用日期:  2018-08-14
    • 刊出日期:  2020-07-24

    目录

    /

    返回文章
    返回