2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互补色小波颜色恒常性/白平衡方法

陈扬 李旦 张建秋

陈扬, 李旦, 张建秋. 互补色小波颜色恒常性/白平衡方法. 自动化学报, 2020, 46(7): 1378-1389. doi: 10.16383/j.aas.c180037
引用本文: 陈扬, 李旦, 张建秋. 互补色小波颜色恒常性/白平衡方法. 自动化学报, 2020, 46(7): 1378-1389. doi: 10.16383/j.aas.c180037
CHEN Yang, LI Dan, ZHANG Jian-Qiu. Color Constancy With Complementary Color Wavelets. ACTA AUTOMATICA SINICA, 2020, 46(7): 1378-1389. doi: 10.16383/j.aas.c180037
Citation: CHEN Yang, LI Dan, ZHANG Jian-Qiu. Color Constancy With Complementary Color Wavelets. ACTA AUTOMATICA SINICA, 2020, 46(7): 1378-1389. doi: 10.16383/j.aas.c180037

互补色小波颜色恒常性/白平衡方法

doi: 10.16383/j.aas.c180037
基金项目: 

国家自然科学基金 61571131

详细信息
    作者简介:

    陈扬  复旦大学电子工程系博士研究生.主要研究方向为图像/视频处理. E-mail: 13110720040@fudan.edu.cn

    张建秋  复旦大学电子工程系教授.主要研究方向为信号处理及其在通信、控制、测量、图像和雷达中的应用. E-mail: jqzhang@ieee.org

    通讯作者:

    李旦  复旦大学电子工程系讲师.主要研究方向为数字信号处理及应用.本文通信作者. E-mail: lidan@fudan.edu.cn

Color Constancy With Complementary Color Wavelets

Funds: 

National Natural Science Foundation of China 61571131

More Information
    Author Bio:

    CHEN Yang   Ph. D. candidate in the Department of Electronic Engineering, Fudan University. His research interest covers the multiresolution filtering and image/video processing

    ZHANG Jian-Qiu   Professor in the Department of Electronic Engineering, Fudan University. His research interest covers signal processing and its application

    Corresponding author: LI Dan   Lecturer in Department of Electronic Engineering, Fudan University. His research interest covers digital signal processing and its application to nondestructive testing. Corresponding author of this paper
  • 摘要: 借助于互补色小波, 本文提出一种新的颜色恒常性统计方法.分析表明:标准光照图像的互补色小波子带关系, 可以利用联合拉普拉斯分布来进行描述.统计学习标准光照图像, 可获得拉普拉斯分布的参数, 为图像建立起标准光照的基准模型.该基准模型可为光照偏移(颜色恒常偏移)的图像提供光照补偿依据, 使偏光图像通过光照补偿恢复为标准光照图像, 从而得到光照参数.基于该基准模型对补偿光照参数进行最大似然估计的实验结果表明:本文所提方法的处理效果与列出的最好文献算法相当, 其在常用数据库上估计到的光照参数误差中值小0.1°, 而均值和最大值则小0.3°.
    Recommended by Associate Editor SANG Nong
    1)  本文责任编委 桑农
  • 图  1  色环与互补色小波

    Fig.  1  The hue ring and the CCWT

    图  2  互补色小波的方向与相位, 每列对应$n = k\pi /8, k = 1, 2, \cdots, 8$中的一个方向, 每行对应$\theta = 0, 2\pi /3, 4\pi /3$中的一种相位

    Fig.  2  Orientations and phases of the CCWT. Each column denotes one of the $n = k\pi /8, k = 1, 2, \cdots, 8$ orientations and each row denotes one of the $\theta = 0, 2\pi /3, 4\pi /3$ phases

    图  3  白色背景中一维边缘信号的互补色小波分解示例

    Fig.  3  CCWT operators running over a line segment on the white background

    图  4  互补色小波子带统计特性

    Fig.  4  Statistical characteristics of the CCWT subbands

    表  1  RAW格式数据库各种颜色恒常性算法结果的角度误差

    Table  1  Angular errors for different color constancy methods on the COLOR CHECKER RAW database

    方法 误差均值(°) 误差中值(°) 误差最大值(°)
    White-patch [3] 7.4 5.6 40.6
    Gray-world [4] 6.3 6.3 24.8
    Shades-of-gray [5] 4.9 4.0 20.0
    1st-order grey-edge [8] 5.2 4.5 19.7
    2nd-order grey-edge [8] 5.0 4.4 16.9
    Natural image statistics [24] 4.0 3.1 26.2
    Gamut mapping [11] 4.1 2.3 23.2
    Edge-based gamut mapping [12] 6.5 5.0 29.0
    Exemplar-based [16] 3.1 2.3 16.3
    Improved specular edge [7] 4.9 3.3 28.3
    Multi-cue tree-structured [25] 3.3 2.2 18.2
    AlexNet+SVR [18] 4.7 3.1 29.2
    Using CNNs [34] 2.9 2.1 14.8
    Bayesian [13] 4.7 3.5 24.5
    Spatio-spectral statistics [15] 3.1 2.3 14.8
    Proposed CCWT statistics 2.8 2.2 14.5
    下载: 导出CSV

    表  2  贝叶斯颜色恒常性算法结果比较

    Table  2  Comparison between Bayesian color constancy methods

    方法 误差均值(°) 误差中值(°) 误差最大值(°)
    Spatio-spectral statistics [15] 3.1 2.3 14.8
    CCWT with fixed $\alpha $ 2.9 2.2 14.6
    Proposed CCWT statistics 2.8 2.2 14.5
    下载: 导出CSV

    表  3  SFU HDR数据库各种颜色恒常性算法结果的角度误差

    Table  3  Angular errors for different color constancy methods on the SFU HDR database

    方法 误差均值(°) 误差中值(°) 最差25 %样本均值(°)
    White-patch [3] 6.3 3.9 -
    Gray-world [4] 8.0 7.4 15.0
    Shades-of-gray [5] 5.7 3.9 12.7
    1st-order grey-edge [8] 6.0 3.9 13.6
    Corrected-moment [9] 4.0 3.2 -
    Double-opponency [35] 6.2 3.5 14.0
    Proposed CCWT statistics 4.4 3.1 9.8
    下载: 导出CSV
  • [1] West G, Brill M H. Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy. Journal of Mathematical Biology, 1982, 15(2): 249-258 doi: 10.1007/BF00275077
    [2] Land E H, McCann J J. Lightness and retinex theory. JOSA, 1971, 61(1): 1-11 doi: 10.1364/JOSA.61.000001
    [3] Land E H. The retinex theory of color vision. Scientific American, 1977, 237(6): 108-128 doi: 10.1038/scientificamerican1277-108
    [4] Buchsbaum G. A spatial processor model for object colour perception. Journal of the Franklin Institute, 1980, 310(1): 1-26 doi: 10.1016/0016-0032(80)90058-7
    [5] Finlayson G D, Trezzi E. Shades of gray and colour constancy. In: Proceedings of the 12th Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications. Scottsdale, USA: The Society for Imaging Science and Technology, 2004. 37-41
    [6] 张锐, 韩慧健, 梁秀霞, 方靖, 张彩明.基于色度一致性的室外场景光照参数估计.计算机科学, 2018, 45(3): 58-62, 82 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201803010

    Zhang Rui, Han Hui-Jian, Liang Xiu-Xia, Fang Jing, Zhang Cai-Ming. Illumination parameter estimation of outdoor scene using chromaticity consistency. Computer Science, 2018, 45(3): 58-62, 82 http://d.old.wanfangdata.com.cn/Periodical/jsjkx201803010
    [7] 张玉萍, 杨学志, 方帅, 郑鑫, 李国强.改进的高光边缘颜色恒常性算法研究.仪器仪表学报, 2015, 36(9): 2076-2082 doi: 10.3969/j.issn.0254-3087.2015.09.020

    Zhang Yu-Ping, Yang Xue-Zhi, Fang Shuai, Zheng Xin, Li Guo-Qiang. Research on improved specular edge color constancy algorithm. Chinese Journal of Scientific Instrument, 2015, 36(9): 2076-2082 doi: 10.3969/j.issn.0254-3087.2015.09.020
    [8] van de Weijer J, Gevers T, Gijsenij A. Edge-based color constancy. IEEE Transactions on Image Processing, 2007, 16(9): 2207-2214 doi: 10.1109/TIP.2007.901808
    [9] Finlayson G D. Corrected-moment illuminant estimation. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013. 1904-1911
    [10] Forsyth D A. A novel algorithm for color constancy. International Journal of Computer Vision, 1990, 5(1): 5-35 doi: 10.1007/BF00056770
    [11] Finlayson G D, Hordley S D, Tastl I. Gamut constrained illuminant estimation. International Journal of Computer Vision, 2006, 67(1): 93-109 doi: 10.1007/s11263-006-4100-z
    [12] Gijsenij A, Gevers T, van de Weijer J. Generalized gamut mapping using image derivative structures for color constancy. International Journal of Computer Vision, 2010, 86(2-3): 127-139 doi: 10.1007/s11263-008-0171-3
    [13] Gehler P V, Rother C, Blake A, Minka T, Sharp T. Bayesian color constancy revisited. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008. 1-8
    [14] Gijsenij A, Gevers T, van de Weijer J. Computational color constancy: survey and experiments. IEEE Transactions on Image Processing, 2011, 20(9): 2475-2489 doi: 10.1109/TIP.2011.2118224
    [15] Chakrabarti A, Hirakawa K, Zickler T. Color constancy with spatio-spectral statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1509-1519 doi: 10.1109/TPAMI.2011.252
    [16] Joze H R V, Drew M S. Exemplar-based color constancy and multiple illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 860-873 doi: 10.1109/TPAMI.2013.169
    [17] 吴克伟, 杨学志, 谢昭.面向区域的非均匀光照估计方法.光学学报, 2016, 36(2): 233001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201602042

    Wu Ke-Wei, Yang Xue-Zhi, Xie Zhao. Regional-oriented non-uniform illumination estimation. Acta Optica Sinica, 2016, 36(2): 233001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201602042
    [18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada: MIT, 2012. 1097-1105
    [19] Hu Y M, Wang B Y, Lin S. FC4: fully convolutional color constancy with confidence-weighted pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 330-339
    [20] 唐贤伦, 杜一铭, 刘雨微, 李佳歆, 马艺玮.基于条件深度卷积生成对抗网络的图像识别方法.自动化学报, 2018, 44(5): 855-864 doi: 10.16383/j.aas.2018.c170470

    Tang Xian-Lun, Du Yi-Ming, Liu Yu-Wei, Li Jia-Xin, Ma Yi-Wei. Image recognition with conditional deep convolutional generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 855-864 doi: 10.16383/j.aas.2018.c170470
    [21] 随婷婷, 王晓峰.一种基于CLMF的深度卷积神经网络模型.自动化学报, 2016, 42(6): 875-882 doi: 10.16383/j.aas.2016.c150741

    Sui Ting-Ting, Wang Xiao-Feng. Convolutional neural networks with candidate location and multi-feature fusion. Acta Automatica Sinica, 2016, 42(6): 875-882 doi: 10.16383/j.aas.2016.c150741
    [22] Qian Y L, Chen K, Nikkanen J, Kämäräinen J K, Matas J. Recurrent color constancy. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 5459-5467
    [23] Bianco S, Ciocca G, Cusano C, Schettini R. Automatic color constancy algorithm selection and combination. Pattern Recognition, 2010, 43(3): 695-705 doi: 10.1016/j.patcog.2009.08.007
    [24] Gijsenij A, Gevers T. Color constancy using natural image statistics and scene semantics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(4): 687-698 doi: 10.1109/TPAMI.2010.93
    [25] Li B, Xiong W H, Hu W M, Funt B, Xing J L. Multi-cue illumination estimation via a tree-structured group joint sparse representation. International Journal of Computer Vision, 2016, 117(1): 21-47 doi: 10.1007/s11263-015-0844-7
    [26] Pridmore R W. Complementary colors theory of color vision: physiology, color mixture, color constancy and color perception. Color Research & Application, 2011, 36(6): 394-412 http://cn.bing.com/academic/profile?id=eb59ed7c79fa446e6be659163ed5d7fe&encoded=0&v=paper_preview&mkt=zh-cn
    [27] Pridmore R W. Complementary colors: the structure of wavelength discrimination, uniform hue, spectral sensitivity, saturation, chromatic adaptation, and chromatic induction. Color Research & Application, 2009, 34(3): 233-252 http://cn.bing.com/academic/profile?id=3d94177ce7b59ac5b8afdd5b602e7e7f&encoded=0&v=paper_preview&mkt=zh-cn
    [28] 朱叶, 申铉京, 陈海鹏.基于彩色LBP的隐蔽性复制–粘贴篡改盲鉴别算法.自动化学报, 2017, 43(3): 390-397 http://www.cnki.com.cn/Article/CJFDTotal-MOTO201703006.htm

    Zhu Ye, Shen Xuan-Jing, Chen Hai-Peng. Covert copy-move forgery detection based on color LBP. Acta Automatica Sinica, 2017, 43(3): 390-397 http://www.cnki.com.cn/Article/CJFDTotal-MOTO201703006.htm
    [29] 卢红阳, 刘且根, 熊娇娇, 王玉皞, 邓晓华.基于最大加权投影求解的彩色图像灰度化对比度保留算法.自动化学报, 2017, 43(5): 843-854 http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201705016.htm

    Lu Hong-Yang, Liu Qie-Gen, Xiong Jiao-Jiao, Wang YuHao, Deng Xiao-Hua. Maximum weighted projection solver for contrast preserving decolorization. Acta Automatica Sinica, 2017, 43(5): 843-854 http://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201705016.htm
    [30] Chen Y, Li D, Zhang J Q. Complementary color wavelet: a novel tool for the color image/video analysis and processing. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2776239
    [31] Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756 doi: 10.1109/TSP.2002.804091
    [32] Shi F, Selesnick I W. An elliptically contoured exponential mixture model for wavelet based image denoising. Applied and Computational Harmonic Analysis, 2007, 23(1): 131-151 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbba68d31616341c71c2d318dc8e1ea0
    [33] Shi L, Funt B. Re-processed version of the Gehler color constancy dataset of 568 images. http://www.cs.sfu.ca/colour/data/, 2000.
    [34] Bianco S, Cusano C, Schettini R. Color constancy using CNNs. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston, MA, USA: IEEE, 2015. 81-89
    [35] Gao S B, Yang K F, Li C Y, Li Y J. Color constancy using double-opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973-1985 doi: 10.1109/TPAMI.2015.2396053
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  66
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-17
  • 录用日期:  2018-08-14
  • 刊出日期:  2020-07-24

目录

    /

    返回文章
    返回