2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磨矿破碎过程粒度分布的分布式参数蒙特卡洛动力学模拟及加速方法

卢绍文 蔚润琴 崔玉洁

卢绍文, 蔚润琴, 崔玉洁. 磨矿破碎过程粒度分布的分布式参数蒙特卡洛动力学模拟及加速方法. 自动化学报, 2019, 45(9): 1655-1665. doi: 10.16383/j.aas.c180020
引用本文: 卢绍文, 蔚润琴, 崔玉洁. 磨矿破碎过程粒度分布的分布式参数蒙特卡洛动力学模拟及加速方法. 自动化学报, 2019, 45(9): 1655-1665. doi: 10.16383/j.aas.c180020
LU Shao-Wen, YU Run-Qin, CUI Yu-Jie. A Distributed Parameter Kinetic Monte Carlo Simulation Algorithm of Grinding Process and Its Acceleration. ACTA AUTOMATICA SINICA, 2019, 45(9): 1655-1665. doi: 10.16383/j.aas.c180020
Citation: LU Shao-Wen, YU Run-Qin, CUI Yu-Jie. A Distributed Parameter Kinetic Monte Carlo Simulation Algorithm of Grinding Process and Its Acceleration. ACTA AUTOMATICA SINICA, 2019, 45(9): 1655-1665. doi: 10.16383/j.aas.c180020

磨矿破碎过程粒度分布的分布式参数蒙特卡洛动力学模拟及加速方法

doi: 10.16383/j.aas.c180020
基金项目: 

国家自然科学基金 61833004

国家自然科学基金 61473071

详细信息
    作者简介:

    蔚润琴  东北大学信息科学与工程学院硕士生, 2012年获太原理工大学自动化专业学士学位.主要研究方向为蒙特卡洛仿真.E-mail:18842300547@163.com

    崔玉洁  东北大学秦皇岛分校控制工程学院副教授.主要研究方向为机电一体化, 机器人技术.E-mail:cyjhjn@163.com

    通讯作者:

    卢绍文  东北大学流程工业综合自动化国家重点实验室教授.于2006年获得伦敦大学皇后玛丽学院电子工程学博士学位.主要研究方向为多尺度随机建模方法, 模拟软件设计和数据可视化方法.本文通信作者.E-mail:lusw@mail.neu.edu.cn

A Distributed Parameter Kinetic Monte Carlo Simulation Algorithm of Grinding Process and Its Acceleration

Funds: 

National Natural Science Foundation of China 61833004

National Natural Science Foundation of China 61473071

More Information
    Author Bio:

    Master student at Information Science and Engineering College, Northeastern University. She received her bachelor degree in automation from Taiyuan University of Technology in 2012. Her research interest covers Monte Carlo simulation methods

    Associate professor at the Control Engineering College, Northeastern University at Qinhuangdao. Her research interest covers mechanical electronics and robotics

    Corresponding author: LU Shao-Wen Professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. He received his Ph. D. degree in electronic engineering from the Queen Mary University of London. His research interest covers multi-scale modeling, working with both stochastic simulation and visualization methods. Corresponding author of this paper
  • 摘要: 本文针对磨矿破碎过程,提出一种分布式参数蒙特卡洛动力学方法的粒度分布预测模型和模拟算法.该算法采用了分段思想,将磨机沿着轴向分为若干个虚拟的子磨机;根据破裂、前向和后向移动三类微观事件定义了倾向函数和系统状态矩阵,并设计了分布式算法的调度策略.此外,针对蒙特卡洛动力学算法效率低的问题,提出了基于τ-leap的磨矿过程分布式参数蒙特卡洛模拟加速算法.为了解决分布式参数更新过程中状态不一致的问题,创新性地提出了一种基于缓冲区的同步方法.通过对仿真案例的分析表明,本文提出的分布式参数蒙特卡洛动力学算法具有较高的精度,提出的基于τ-leap的加速算法能够显著提高计算效率,同时保持较好的精度.
    1)  本文责任编委 吴立刚
  • 图  1  离散径向分布参数磨机模型示意图

    Fig.  1  Illustration of the distributed parameter grinding mill model

    图  2  分段子磨机缓冲区示意图

    Fig.  2  The buffer zones for sub-grinding mill

    图  3  分布参数MC算法(图中简称MC)和$\tau $-leap加速算法计算得到的平均粒径随时间变化趋势

    Fig.  3  The averaged particle size over simulation time for distributed parameter MC algorithm and the $\tau$-leap accelerated algorithm

    图  4  各子磨机系统的输入和输出物料的累积粒度分布曲线对比

    Fig.  4  The cumulative particle size distribution of the input and output of each sub-mill

    图  5  不同$\epsilon$值所对应的$M_p $值随时间变化图

    Fig.  5  The values of $M_p $ during the simulation under different $\epsilon$

    图  6  基于$\tau$-leap的加速算法在不同$\epsilon$取值下的WSCV与分布式参数MC算法相对误差

    Fig.  6  The relative difference of WSCV of the $\tau$-leap acceleration algorithm comparing with the MC algorithm

    图  7  基于$\tau$-leap的加速算法相对于分布式参数MC算法的TSS加速倍数

    Fig.  7  The magnitude of speedup achieved by $\tau$-leap over the MC algorithm

    表  1  离散差分数值算法和$\tau$-leap方法相对于分布参数MC算法的相对误差比较

    Table  1  The relative errors of the discrete numerical algorithm and the $\tau$-leap algorithm with the MC algorithm

    子磨机编号12345678910
    第1组最大误差8.63.84.97.28.67.25.86.75.45.7
    $(\times 10^{-3})$平均误差2.20.71.02.12.91.22.22.71.92.7
    %第2组最大误差4.43.37.37.21.17.56.41.19.56.7
    $(\times 10^{-3} )$平均误差1.01.21.71.83.12.22.62.91.41.8
    下载: 导出CSV

    表  2  基于$\tau$-leap的加速算法在不同$\epsilon$取值下与分布式参数MC算法的$M_p $的相对误差($\%$)

    Table  2  The relative difference of $M_p $ ($\%$) of the $\tau$-leap acceleration algorithm comparing with the MC algorithm

    $t$ (min)0$\sim$0.10.1$\sim$0.20.2$\sim$0.30.3$\sim$0.40.4$\sim$0.50.5$\sim$0.60.6$\sim$0.70.7$\sim$0.80.8$\sim$0.90.9$\sim$1.0
    $M_p $ ($\epsilon$ = 1$\times10^4$)0.01250.00770.00380.00340.00370.00290.00250.00190.00230.0026
    $M_p $ ($\epsilon$ = 1$\times10^3$)0.26540.14260.08020.07380.06650.07380.06710.05330.05160.0532
    $M_p $ ($\epsilon$ = 1$\times10^2$)0.45650.36050.18250.07700.17200.16490.10710.08190.08090.0426
    $t$ (min)1.0$\sim$1.11.1$\sim$1.21.2$\sim$1.31.3$\sim$1.41.4$\sim$1.51.5$\sim$1.61.6$\sim$1.71.7$\sim$1.81.8$\sim$1.91.9$\sim$2.0
    $M_p $ ($\epsilon$ = 1$\times10^4$)0.00190.00350.00440.00440.00350.00350.00270.00260.00280.0023
    $M_p $ ($\epsilon$ = 1$\times10^3$)0.04710.05800.03280.04200.04480.03370.03690.04880.05280.0445
    $M_p $ ($\epsilon$ = 1$\times10^2$)0.04470.05860.04950.05040.05240.05740.05340.05590.08720.1015
    下载: 导出CSV

    表  3  基于$\tau$-leap的加速算法在不同$\epsilon$取值下与分布式参数MC算法的$M_p $的相对误差($\%$)

    Table  3  The relative difference of $M_p $ ($\%$) of the $\tau$-leap acceleration algorithm comparing with the MC algorithm

    $t$ (min)0$\sim$0.10.1$\sim$0.20.2$\sim$0.30.3$\sim$0.40.4$\sim$0.50.5$\sim$0.60.6$\sim$0.70.7$\sim$0.80.8$\sim$0.90.9$\sim$1.0
    WSCV ($\epsilon$ = 1$\times10^4$)27.659916.42195.56946.45396.39022.07111.62680.84611.40142.8565
    WSCV ($\epsilon$ = 1$\times10^3$)29.365419.564312.405714.14408.94999.06857.70185.32124.57024.0914
    WSCV ($\epsilon$ = 1$\times10^2$)30.556420.564115.23516.21658.98738.18398.48926.19735.05655.9391
    $t$ (min)1.0$\sim$1.11.1$\sim$1.21.2$\sim$1.31.3$\sim$1.41.4$\sim$1.51.5$\sim$1.61.6$\sim$1.71.7$\sim$1.81.8$\sim$1.91.9$\sim$2.0
    WSCV ($\epsilon$ = 1$\times10^4$)2.28582.61923.03023.59393.35105.31692.51862.15691.74431.1591
    WSCV ($\epsilon$ = 1$\times10^3$)6.69346.83026.34396.93641.68102.78253.39074.01335.68123.2316
    WSCV ($\epsilon$ = 1$\times10^2$)7.21657.61277.37527.90852.37252.67084.39175.49316.39143.9081
    下载: 导出CSV

    表  4  基于$\tau$-leap的加速算法相对于分布式参数MC算法的TSS加速倍数

    Table  4  The magnitude of speedup achieved by $\tau$-leap over the MC algorithm

    $t$ (min)0$\sim$0.10.1$\sim$0.20.2$\sim$0.30.3$\sim$0.40.4$\sim$0.50.5$\sim$0.60.6$\sim$0.70.7$\sim$0.80.8$\sim$0.90.9$\sim$1.0
    TSS ($\epsilon$ = 1$\times10^4$)1.26541.03611.02560.80220.81220.82220.83220.84610.85220.9578
    TSS ($\epsilon$ = 1$\times10^3$)3.03403.21203.61364.19044.74866.02067.176010.104612.058613.5427
    TSS ($\epsilon$ = 1$\times10^2$)30.556433.672242.877550.771959.095577.153094.5627106.1508115.3813120.9510
    $t$ (min)1.0$\sim$1.11.1$\sim$1.21.2$\sim$1.31.3$\sim$1.41.4$\sim$1.51.5$\sim$1.61.6$\sim$1.71.7$\sim$1.81.8$\sim$1.91.9$\sim$2.0
    TSS ($\epsilon$ = 1$\times10^4$)1.06951.16491.29731.39041.53101.64981.72701.82651.99382.3590
    TSS ($\epsilon$ = 1$\times10^3$)14.830715.921017.445318.554420.065721.957822.831224.185227.216130.1375
    TSS ($\epsilon$ = 1$\times10^2$)129.0026140.3950147.3712161.3876175.1282180.8352184.7492191.9528226.3620227.326
    下载: 导出CSV
  • [1] Chai T Y. Optimal operational control for complex industrial processes. The International Federation of Automatic Control, 2012, 722-731 https://www.sciencedirect.com/science/article/pii/S1367578814000066
    [2] Wang X L, Wang Y L, Yang C H, Xu D G, Gui W H. Hybrid modeling of an industrial grinding-classification process. Powder Technology, 2015, 279(7):75-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2266f26bbab8fb16cf65ee99acbad2c8
    [3] Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4):730-743 doi: 10.1109/TASE.2008.2011562
    [4] Dai W, Zhou P, Zhao D Y, Lu S W, Chai T Y. Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder Technology, 2016, 288(Supplement C):422-434 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8814690c2a8cab20abb98292e02cd38
    [5] Lu S W, Zhou P, Chai T Y, Dai W. Modeling and simulation of whole ball mill grinding plant for integrated control. IEEE Transactions on Automation Science and Engineering, 2014, 1(4):1004-1019 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a303e693f3001ea5460d0f447ae32e0f
    [6] Zhou P, Lu S W, Yuan M, Chai T Y. Survey on higher-level advanced control for grinding circuits operation. Powder Technology, 2016, 288(Supplement C):324-338 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af33416855da7824ffb08730514bd0e5
    [7] Ballantyne G R, Powell M S. Benchmarking comminution energy consumption for the processing of copper and gold ores. Minerals Engineering, 2014, 65:109-114 doi: 10.1016/j.mineng.2014.05.017
    [8] 化成城, 王宏, 卢绍文, 王宏.面向知识自动化的磨矿系统操作员脑认知特征与控制效果的相关分析.自动化学报, 2017, 43(11):1898-1907 http://www.aas.net.cn/CN/abstract/abstract19165.shtml

    Hua Cheng-Cheng, Wang Hong, LU Shao-Wen, Wang Hong. Knowledge automation-oriented brain cognitive feature and control effect analysis of operator in mineral grinding process. Acta Automatica Sinica, 2017, 43(11):1898-1907 http://www.aas.net.cn/CN/abstract/abstract19165.shtml
    [9] Pani A K, Mohanta H K. Soft sensing of particle size in a grinding process:Application of support vector regression, fuzzy inference and adaptive neuro fuzzy inference techniques for online monitoring of cement fineness. Powder Technology, 2014, 264(9):484-497 https://www.sciencedirect.com/science/article/pii/S003259101400518X
    [10] Zhang W, You C F. Numerical approach to predict particle breakage in dense flows by coupling multiphase particle-in-cell and monte carlo methods. Powder Technology, 2015, 283(10):128-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d57aa1adef2fd57e7f72f56d27a6464f
    [11] King R P. Modeling and Simulation of Mineral Processing Systems. Butterworth-Heinemann, Oxford, Second Edition, 2001
    [12] Lynch A J, Morrison R D. Simulation in mineral processing history, present status and possibilities. The Journal of The South African Institute of Mining and Metallurgy, 1999, 99(4):283-288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efc4c839de26f93824c1708631ba6bd7
    [13] Ramkrishna D. Analysis of population balance-iv:The precise connection between Monte Carlo simulation and population balances. Chemical Engineering Science, 1981, 36(7):1203-1209 doi: 10.1016/0009-2509(81)85068-3
    [14] Berthiaux H. Analysis of grinding processes by markov chains. Chemical Engineering Science, 2000, 55(19):4117-4127 doi: 10.1016/S0009-2509(00)00086-5
    [15] Hasseine A, Senouci S, Attarakih M, Bart H J. Application of two analytical approaches for the solution of the population balance equations:Particle breakage process. Chemical Engineering and Technology, 2015, 38(9):1574-1584 doi: 10.1002/ceat.201400769
    [16] 苏军伟, 顾兆林, Yun X X.离散相系统群体平衡模型的求解算法.中国科学.化学, 2010, 40(2):144-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201002004

    Su Jun-Wei, Gu Zhao-Lin, Yun X X. Advances of solution methods of population balance equation for disperse phase system. Scientia Sinica Chimica, 2010, 40(2):144-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201002004
    [17] 卢绍文, 余策.磨矿粒度动态过程的一种快速Monte Carlo仿真方法.自动化学报, 2014, 40(9):1903-1911 http://www.aas.net.cn/CN/abstract/abstract18460.shtml

    Lu Shao-Wen, Yu Ce. A fast Monte Carlo algorithm for dynamic simulation of particle size distribution of grinding processes. Acta Automatica Sinica, 2014, 40(9):1903-1911 http://www.aas.net.cn/CN/abstract/abstract18460.shtml
    [18] Mishra B K. Monte Carlo Method for the Analysis of Particle Breakage, chapter 15. Elsevier, 2007, 637-660
    [19] Khalili S, Lin Y L, Armaou A, Matsoukas T. Constant number Monte Carlo simulation of population balances with multiple growth mechanisms. AIChE Journal, 2010, 56(12):3137-3145 doi: 10.1002/aic.12233
    [20] Yu M J, Lin J Z, Cao J J, Seipenbusch M. An analytical solution for the population balance equation using a moment method. Particuology, 2015, 18:194-200 doi: 10.1016/j.partic.2014.06.006
    [21] Lu S W. Acceleration of kinetic Monte Carlo simulation of particle breakage process during grinding with controlled accuracy. Powder Technology, 2016, 301(Supplement C):186-196 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99970805b132e60136e084e7a1547a19
    [22] Gillespie D T. Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 2007, 58(1):35-55 doi: 10.1146/annurev.physchem.58.032806.104637
    [23] Kis P B, Mihalyko C, Lakatos B G. Discrete model for analysis and design of grinding mill-classifier systems. Chemical Engineering and Processing, 2006, 45(5):340-349 doi: 10.1016/j.cep.2005.09.006
    [24] Battaile C C. The kinetic Monte Carlo method:Foundation, implementation, and application. Computer Methods in Applied Mechanics and Engineering, 2008, 197(41-42):3386-3398 doi: 10.1016/j.cma.2008.03.010
    [25] Liu X, Lu S W. Acceleration of the dynamic simulation of grinding particle size distribution based on tau-leap method. In:Proceedings of the 11th World Congress on Intelligent Control and Automation (WCICA). Shenyang, China:2014, 772-776
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1432
  • HTML全文浏览量:  208
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-10
  • 录用日期:  2018-07-02
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回