Set-membership Fault Detection Observer Design in Finite-Frequency Domain for Linear Discrete-Time System
-
摘要: 本文针对线性离散系统, 提出了一种新的有限频域执行器故障检测方法.利用中心对称多胞体近似未知扰动边界, 本文提出的中心对称多胞体集员故障检测观测器可实时估计残差范围.通过观测零点是否脱离残差生成的中心对称多胞体的范围, 判断故障是否发生.为了提高对干扰的鲁棒性和对故障的敏感性, 基于P半径准则和广义Kalman-Yakubovich-Popov引理, 本文给出了故障检测观测器的设计条件, 并将其转化为便于求解的矩阵不等式形式.最后, 车辆横向动态系统的仿真结果验证了所提方法的有效性.Abstract: This paper proposes a novel finite-frequency domain actuator fault detection method for discrete-time linear system. By considering disturbances are unkown but bounded by zonotopes, a zonotopic set-membership fault detection obsever is presented to estimate the bounds of residual. Faults can be detected by checking whether the zero value is included by the zonotopes of residual or not. To improve the robustness to disturbance and sensitivity to fault, sufficient design conditions are derived based on the P radius criterion and the generalized Kalman-Yakubovich-Popov lemma. Moreover, the design conditions are converted as linear matrix inequalities, which can be solved easily. Finally, simulation results of vehicle lateral dynamic systems are given to show the effectiveness of the proposed method.
-
Key words:
- Fault detection /
- set-membership estimation /
- zonotopes /
- finite-frequency domain
1) 本文责任编委 孟凡利 -
表 1 集合$\Theta $与矩阵$\Xi $在不同频域的取值
Table 1 $\Theta $ and $\Xi $ for different frequency ranges
$\Theta $ $\Xi $ 低频 $|\theta | \le {\vartheta _1}$ $\left[ {\begin{array}{*{20}{c}} { - P}&Q\\ Q&{P - 2{\rm{cos}}{\vartheta _l}Q} \end{array}} \right]$ 中频 ${\vartheta _1} \le \theta \le {\vartheta _2}$ $\left[ {\begin{array}{*{20}{c}} { - P}&{{e^{j\theta }}cQ}\\ {{e^{ - j\theta c}}Q}&{P - 2{\rm{cos}}{\vartheta _w}Q} \end{array}} \right]$ 高频 $|\theta | \ge {\vartheta _h}$ $\left[ {\begin{array}{*{20}{c}} { - P}&{ - Q}\\ { - Q}&{P + 2{\rm{cos}}{\vartheta _h}Q} \end{array}} \right]$ -
[1] Chen J, Patton R J. Robust Model-Based Fault Diagnosis for Dynamic Systems Norwell, MA, USA: Kluwer Academic Publishers, 1999. [2] Zhang K, Jiang B, Shi P. Observer-Based Fault Estimation and Accomodation for Dynamic Systems Berlin: Springer, 2012. [3] 周东华, 叶银忠.现代故障诊断与容错控制.北京:清华大学出版社, 2000.Zhou Dong-Hua, Ye Yin-Zhong. Modern Fault Diagnosis and Fault Tolerant Control Beijing: Tsinghua University Press, 2000. [4] 姜斌, 冒泽慧, 杨浩, 张友民.控制系统的故障诊断与故障调节.北京:国防工业出版社, 2009.Jiang Bin, Mao Ze-Hui, Yang Hao, Zhang You-Ming. Fault Diagnosis and Fault Accommodation for Control Systems Beijing: National Defend Industry Press, 2009. [5] 李岳炀, 钟麦英.具有多测量数据包丢失的线性离散时变系统故障检测滤波器设计.自动化学报, 2015, 41(9): 1638-1648 doi: 10.16383/j.aas.2015.c150075Li Yue-Yang, Zhong Mai-Ying. Fault detection filter design for linear discrete time-varying systems with multiple packet dropouts. Acta Automatica Sinica 2015, 41(9): 1638-1648 doi: 10.16383/j.aas.2015.c150075 [6] Zhong M Y, Song Y, Ding S X. Parity space-based fault detection for linear discrete time-varying systems with unknown input. Automatica 2015, 59: 120-126 doi: 10.1016/j.automatica.2015.06.013 [7] 汤文涛, 王振华, 王烨, 沈毅.基于未知输入集员滤波器的不确定系统故障诊断.自动化学报, 2018, 44(9): 1717-1724 doi: 10.16383/j.aas.2017.c170123Tang Wen-Tao, Wang Zhen-Hua, Wang Ye, Shen Yi. Fault diagnosis for uncertain systems based on unknown input set-membership filters. Acta Automatica Sinica 2018, 44(9): 1717-1724 doi: 10.16383/j.aas.2017.c170123 [8] Xu F, Puig V, Ocampo-Martinez C, Stoican F, Olaru S. Actuator-fault detection and isolation based on set-theoretic approaches. Journal of Process Control 2014, 24(6): 947-956 doi: 10.1016/j.jprocont.2014.04.016 [9] Xu F, Tan J B, Wang X Q, Puig V, Liang B, Yuan B, et al. Generalized set-theoretic unknown input observer for LPV systems with application to state estimation and robust fault detection. International Journal of Robust and Nonlinear Control 2017, 27(17): 3812-3832 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a13fcaecedf66bfeba0f9263a713c33d [10] Wang Y, Zhou M, Puig V, Cembrano G, Wang Z H. Zonotopic fault detection observer with H_ performance. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 7230-7235 [11] Zhou M, Wang Z H, Shen Y, Shen M Q. H_/H∞ fault detection observer design in finite-frequency domain for lipschitz non-linear systems. IET Control Theory and Applications 2017, 11(14): 2361-2369 doi: 10.1049/iet-cta.2017.0357 [12] Liu J, Wang J L, Yang G H. An LMI approach to minimum sensitivity analysis with application to fault detection. Automatica 2005, 41(11): 1995-2004 doi: 10.1016/j.automatica.2005.06.005 [13] Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Transactions on Cybernetics 2014, 44(8): 1446-1458 doi: 10.1109/TCYB.2013.2286209 [14] Iwasake T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control 2005, 50(1): 41-59 https://ieeexplore.ieee.org/document/1381647/ [15] Li X J, Yang G H. Fault detection in finite frequency domains for multi-delay uncertain systems with application to ground vehicle. International Journal of Robust and Nonlinear Control 2015, 25(18): 3780-3798 doi: 10.1002/rnc.3296 [16] Wang Z H, Shi P, Lim C C. H_/H∞ fault detection observer in finite frequency domain for linear parameter-varying descriptor systems. Automatica 2017, 86: 38-45 doi: 10.1016/j.automatica.2017.08.021 [17] Zhang K, Jiang B, Shi P, Xu J F. Analysis and design of robust H∞ fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems. IEEE Transactions on Cybernetics 2015, 45(7): 1225-1235 doi: 10.1109/TCYB.2014.2347697 [18] Chen J L, Cao Y Y, Zhang W D. A fault detection observer design for LPV systems in finite frequency domain. International Journal of Control 2015, 88(3): 571-584 doi: 10.1080/00207179.2014.966326 [19] Wang H, Yang G H. A finite frequency domain approach to fault detection for linear discrete-time systems. International Journal of Control 2008, 81(7): 1162-1171 doi: 10.1080/00207170701691513 [20] Zhai D, An L W, Li J H, Zhang Q L. Finite frequency fault detection for T-S fuzzy singular multiple timedelay systems. International Journal of Control, Automation and Systems 2016, 14(4): 977-985 doi: 10.1007/s12555-014-0509-2 [21] Le V T H, Stoica C, Alamo T, Camacho E F, Dumur D. Zonotopes: From Guaranteed State-Estimation to Control Hoboken, NJ: John Wiley & Sons, 2013. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200802018 [22] Combastel C. Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence. Automatica 2015, 55: 265-273 doi: 10.1016/j.automatica.2015.03.008 [23] 李贤伟, 高会军.有限频域分析与设计的广义KYP引理方法综述.自动化学报, 2016, 42(11): 1605-1619 doi: 10.16383/j.aas.2016.c160303Li Xian-Wei, Gao Hui-Jun. An overview of generalized KYP lemma based methods for finite frequency analysis and design. Acta Automatica Sinica 2016, 42(11): 1605-1619 doi: 10.16383/j.aas.2016.c160303 [24] 杨光红, 王恒, 李霄剑.基于模型的线性控制系统故障检测方法.北京:科学出版社, 2010.Yang Guang-Hong, Wang Heng, Li Xiao-Jian. Model Based Fault Detection Methods for Linear Control System Beijing: Science Press, 2010. [25] Le V T H, Stoica C, Alamo T, Camacho E F, Dumur D. Zonotopic guaranteed state estimation for uncertain systems. Automatica 2013, 49(11): 3418-3424 doi: 10.1016/j.automatica.2013.08.014 [26] Varrier S, Koenig D, Martinez J J. Robust fault detection for uncertain unknown inputs LPV system. Control Engineering Practice 2014, 22: 125-134 doi: 10.1016/j.conengprac.2013.10.002