2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性离散系统的有限频域集员故障检测观测器设计

李佶桃 王振华 沈毅

李佶桃, 王振华, 沈毅. 线性离散系统的有限频域集员故障检测观测器设计. 自动化学报, 2020, 46(7): 1531-1538. doi: 10.16383/j.aas.c170725
引用本文: 李佶桃, 王振华, 沈毅. 线性离散系统的有限频域集员故障检测观测器设计. 自动化学报, 2020, 46(7): 1531-1538. doi: 10.16383/j.aas.c170725
LI Ji-Tao, WANG Zhen-Hua, SHEN Yi. Set-membership Fault Detection Observer Design in Finite-Frequency Domain for Linear Discrete-Time System. ACTA AUTOMATICA SINICA, 2020, 46(7): 1531-1538. doi: 10.16383/j.aas.c170725
Citation: LI Ji-Tao, WANG Zhen-Hua, SHEN Yi. Set-membership Fault Detection Observer Design in Finite-Frequency Domain for Linear Discrete-Time System. ACTA AUTOMATICA SINICA, 2020, 46(7): 1531-1538. doi: 10.16383/j.aas.c170725

线性离散系统的有限频域集员故障检测观测器设计

doi: 10.16383/j.aas.c170725
基金项目: 

国家自然科学基金 61973098

国家自然科学基金 61773145

国家重点研发计划项目 2019YFC0117400

详细信息
    作者简介:

    李佶桃  哈尔滨工业大学航天学院博士研究生.主要研究方向为基于区间分析的故障诊断与容错控制. E-mail:lijitaonuaa5@gmail.com

    王振华  哈尔滨工业大学航天学院副教授.主要研究方向为故障诊断与容错控制技术. E-mail:zhenhua.wang@hit.edu.cn

    通讯作者:

    沈毅  哈尔滨工业大学航天学院教授.主要研究方向为故障诊断, 飞行器控制, 超声信号处理.本文通信作者. E-mail: yishen_hit@126.com

Set-membership Fault Detection Observer Design in Finite-Frequency Domain for Linear Discrete-Time System

Funds: 

National Natural Science Foundation of China 61973098

National Natural Science Foundation of China 61773145

National Key Research and Development Program of China 2019YFC0117400

More Information
    Author Bio:

    LI Ji-Tao Ph.D. candidate at the School of Astronautics, Harbin Institute of Technology. His research interest covers fault diagnosis and fault-tolerant control based on interval analysis

    WANG Zhen-Hua Associate professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers fault diagnosis and fault-tolerant control

    Corresponding author: SHEN Yi Professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers fault diagnosis, flight vehicle control, and ultrasound signal processing. Corresponding author of this paper.
  • 摘要: 本文针对线性离散系统, 提出了一种新的有限频域执行器故障检测方法.利用中心对称多胞体近似未知扰动边界, 本文提出的中心对称多胞体集员故障检测观测器可实时估计残差范围.通过观测零点是否脱离残差生成的中心对称多胞体的范围, 判断故障是否发生.为了提高对干扰的鲁棒性和对故障的敏感性, 基于P半径准则和广义Kalman-Yakubovich-Popov引理, 本文给出了故障检测观测器的设计条件, 并将其转化为便于求解的矩阵不等式形式.最后, 车辆横向动态系统的仿真结果验证了所提方法的有效性.
    Recommended by Associate Editor MENG Fan-Li
    1)  本文责任编委 孟凡利
  • 图  1  考虑有限频域特性的残差生成中心对称多胞体$ \mathcal{Z}_r $的变化过程

    Fig.  1  Zonotopes $ \mathcal{Z}_r $ generated by residual considering the finite-frequency characteristics

    图  2  考虑有限频域特性的故障检测结果

    Fig.  2  Result of fault detection by considering the finite-frequency characteristics

    图  3  不考虑有限频域特性的残差生成中心对称多胞体$ \mathcal{Z}_r $的变化过程

    Fig.  3  Zonotopes $ \mathcal{Z}_r $ generated by residual without considering the finite-frequency characteristics

    图  4  不考虑有限频域特性的故障检测结果

    Fig.  4  Result of fault detection without considering the finite-frequency characteristics

    图  5  本文的方法和文献[19]的方法所得残差r的变化过程

    Fig.  5  Residual r generated by the proposed method and the method in [19]

    图  6  本文方法和文献[19]方法所得故障到残差传递函数的最小奇异值和扰动到残差传递函数的最大奇异值的比值

    Fig.  6  Ratios of the minimum singular value of transfer function from fault to residual to the maximum singular value of transfer function from disturbance to residual by the the proposed method and the method in [19]

    表  1  集合$\Theta $与矩阵$\Xi $在不同频域的取值

    Table  1  $\Theta $ and $\Xi $ for different frequency ranges

    $\Theta $ $\Xi $
    低频 $|\theta | \le {\vartheta _1}$ $\left[ {\begin{array}{*{20}{c}} { - P}&Q\\ Q&{P - 2{\rm{cos}}{\vartheta _l}Q} \end{array}} \right]$
    中频 ${\vartheta _1} \le \theta \le {\vartheta _2}$ $\left[ {\begin{array}{*{20}{c}} { - P}&{{e^{j\theta }}cQ}\\ {{e^{ - j\theta c}}Q}&{P - 2{\rm{cos}}{\vartheta _w}Q} \end{array}} \right]$
    高频 $|\theta | \ge {\vartheta _h}$ $\left[ {\begin{array}{*{20}{c}} { - P}&{ - Q}\\ { - Q}&{P + 2{\rm{cos}}{\vartheta _h}Q} \end{array}} \right]$
    下载: 导出CSV
  • [1] Chen J, Patton R J. Robust Model-Based Fault Diagnosis for Dynamic Systems Norwell, MA, USA: Kluwer Academic Publishers, 1999.
    [2] Zhang K, Jiang B, Shi P. Observer-Based Fault Estimation and Accomodation for Dynamic Systems Berlin: Springer, 2012.
    [3] 周东华, 叶银忠.现代故障诊断与容错控制.北京:清华大学出版社, 2000.

    Zhou Dong-Hua, Ye Yin-Zhong. Modern Fault Diagnosis and Fault Tolerant Control Beijing: Tsinghua University Press, 2000.
    [4] 姜斌, 冒泽慧, 杨浩, 张友民.控制系统的故障诊断与故障调节.北京:国防工业出版社, 2009.

    Jiang Bin, Mao Ze-Hui, Yang Hao, Zhang You-Ming. Fault Diagnosis and Fault Accommodation for Control Systems Beijing: National Defend Industry Press, 2009.
    [5] 李岳炀, 钟麦英.具有多测量数据包丢失的线性离散时变系统故障检测滤波器设计.自动化学报, 2015, 41(9): 1638-1648 doi: 10.16383/j.aas.2015.c150075

    Li Yue-Yang, Zhong Mai-Ying. Fault detection filter design for linear discrete time-varying systems with multiple packet dropouts. Acta Automatica Sinica 2015, 41(9): 1638-1648 doi: 10.16383/j.aas.2015.c150075
    [6] Zhong M Y, Song Y, Ding S X. Parity space-based fault detection for linear discrete time-varying systems with unknown input. Automatica 2015, 59: 120-126 doi: 10.1016/j.automatica.2015.06.013
    [7] 汤文涛, 王振华, 王烨, 沈毅.基于未知输入集员滤波器的不确定系统故障诊断.自动化学报, 2018, 44(9): 1717-1724 doi: 10.16383/j.aas.2017.c170123

    Tang Wen-Tao, Wang Zhen-Hua, Wang Ye, Shen Yi. Fault diagnosis for uncertain systems based on unknown input set-membership filters. Acta Automatica Sinica 2018, 44(9): 1717-1724 doi: 10.16383/j.aas.2017.c170123
    [8] Xu F, Puig V, Ocampo-Martinez C, Stoican F, Olaru S. Actuator-fault detection and isolation based on set-theoretic approaches. Journal of Process Control 2014, 24(6): 947-956 doi: 10.1016/j.jprocont.2014.04.016
    [9] Xu F, Tan J B, Wang X Q, Puig V, Liang B, Yuan B, et al. Generalized set-theoretic unknown input observer for LPV systems with application to state estimation and robust fault detection. International Journal of Robust and Nonlinear Control 2017, 27(17): 3812-3832 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a13fcaecedf66bfeba0f9263a713c33d
    [10] Wang Y, Zhou M, Puig V, Cembrano G, Wang Z H. Zonotopic fault detection observer with H_ performance. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 7230-7235
    [11] Zhou M, Wang Z H, Shen Y, Shen M Q. H_/H fault detection observer design in finite-frequency domain for lipschitz non-linear systems. IET Control Theory and Applications 2017, 11(14): 2361-2369 doi: 10.1049/iet-cta.2017.0357
    [12] Liu J, Wang J L, Yang G H. An LMI approach to minimum sensitivity analysis with application to fault detection. Automatica 2005, 41(11): 1995-2004 doi: 10.1016/j.automatica.2005.06.005
    [13] Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Transactions on Cybernetics 2014, 44(8): 1446-1458 doi: 10.1109/TCYB.2013.2286209
    [14] Iwasake T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control 2005, 50(1): 41-59 https://ieeexplore.ieee.org/document/1381647/
    [15] Li X J, Yang G H. Fault detection in finite frequency domains for multi-delay uncertain systems with application to ground vehicle. International Journal of Robust and Nonlinear Control 2015, 25(18): 3780-3798 doi: 10.1002/rnc.3296
    [16] Wang Z H, Shi P, Lim C C. H_/H fault detection observer in finite frequency domain for linear parameter-varying descriptor systems. Automatica 2017, 86: 38-45 doi: 10.1016/j.automatica.2017.08.021
    [17] Zhang K, Jiang B, Shi P, Xu J F. Analysis and design of robust H fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems. IEEE Transactions on Cybernetics 2015, 45(7): 1225-1235 doi: 10.1109/TCYB.2014.2347697
    [18] Chen J L, Cao Y Y, Zhang W D. A fault detection observer design for LPV systems in finite frequency domain. International Journal of Control 2015, 88(3): 571-584 doi: 10.1080/00207179.2014.966326
    [19] Wang H, Yang G H. A finite frequency domain approach to fault detection for linear discrete-time systems. International Journal of Control 2008, 81(7): 1162-1171 doi: 10.1080/00207170701691513
    [20] Zhai D, An L W, Li J H, Zhang Q L. Finite frequency fault detection for T-S fuzzy singular multiple timedelay systems. International Journal of Control, Automation and Systems 2016, 14(4): 977-985 doi: 10.1007/s12555-014-0509-2
    [21] Le V T H, Stoica C, Alamo T, Camacho E F, Dumur D. Zonotopes: From Guaranteed State-Estimation to Control Hoboken, NJ: John Wiley & Sons, 2013. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy200802018
    [22] Combastel C. Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence. Automatica 2015, 55: 265-273 doi: 10.1016/j.automatica.2015.03.008
    [23] 李贤伟, 高会军.有限频域分析与设计的广义KYP引理方法综述.自动化学报, 2016, 42(11): 1605-1619 doi: 10.16383/j.aas.2016.c160303

    Li Xian-Wei, Gao Hui-Jun. An overview of generalized KYP lemma based methods for finite frequency analysis and design. Acta Automatica Sinica 2016, 42(11): 1605-1619 doi: 10.16383/j.aas.2016.c160303
    [24] 杨光红, 王恒, 李霄剑.基于模型的线性控制系统故障检测方法.北京:科学出版社, 2010.

    Yang Guang-Hong, Wang Heng, Li Xiao-Jian. Model Based Fault Detection Methods for Linear Control System Beijing: Science Press, 2010.
    [25] Le V T H, Stoica C, Alamo T, Camacho E F, Dumur D. Zonotopic guaranteed state estimation for uncertain systems. Automatica 2013, 49(11): 3418-3424 doi: 10.1016/j.automatica.2013.08.014
    [26] Varrier S, Koenig D, Martinez J J. Robust fault detection for uncertain unknown inputs LPV system. Control Engineering Practice 2014, 22: 125-134 doi: 10.1016/j.conengprac.2013.10.002
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1643
  • HTML全文浏览量:  229
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 录用日期:  2018-05-30
  • 刊出日期:  2020-07-24

目录

    /

    返回文章
    返回