[1]
|
Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587):484-489 doi: 10.1038/nature16961
|
[2]
|
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi: 10.1038/nature14539
|
[3]
|
Schmidhuber J. Deep learning in neural networks:an overview. Neural Networks, 2015, 61:85-117 doi: 10.1016/j.neunet.2014.09.003
|
[4]
|
Haykin S. Neural Networks: A Comprehensive Foundation (Second edition). Upper Saddle River, NJ: Prentice-Hall, 1999.
|
[5]
|
Sutton R S, Barto A G. Reinforcement Learning:An Introduction. Cambridge, MA:MIT Press, 1998.
|
[6]
|
Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of Go without human knowledge. Nature, 2017, 550:354-359 doi: 10.1038/nature24270
|
[7]
|
Bellman R E. Dynamic Programming. Princeton, NJ:Princeton University Press, 1957.
|
[8]
|
Lewis F L, Vrabie D, Syrmos V L. Optimal Control (Third edition). New York:Wiley, 2012.
|
[9]
|
Werbos P J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences[Ph. D. dissertation], Harvard University, Cambridge, MA, 1974
|
[10]
|
Werbos P J. Advanced forecasting methods for global crisis warning and models of intelligence. General Systems Yearbook, 1977, 22(6):25-38
|
[11]
|
Werbos P J. Approximate dynamic programming for realtime control and neural modeling. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. New York, NY: Van Nostrand Reinhold, 1992.
|
[12]
|
Prokhorov D V, Wunsch D C. Adaptive critic designs. IEEE Transactions on Neural Networks, 1997, 8(5):997-1007 doi: 10.1109/72.623201
|
[13]
|
Murray J J, Cox C J, Lendaris G G, Saeks R. Adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2002, 32(2):140-153 doi: 10.1109/TSMCC.2002.801727
|
[14]
|
Si J, Wang Y T. Online learning control by association and reinforcement. IEEE Transactions on Neural Networks, 2001, 12(2):264-276 doi: 10.1109/72.914523
|
[15]
|
Saridis G N, Wang F Y. Suboptimal control of nonlinear stochastic systems. Control Theory and Advanced Technology, 1994, 10(4):847-871
|
[16]
|
Beard R W, Saridis G N, Wen J T. Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12):2159-2177 doi: 10.1016/S0005-1098(97)00128-3
|
[17]
|
Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica, 2005, 41(5):779-791 doi: 10.1016/j.automatica.2004.11.034
|
[18]
|
Wang D, Liu D R, Wei Q L, Zhao D B, Jin N. Optimal control of unknown nona-ne nonlinear discrete-time systems based on adaptive dynamic programming. Automatica, 2012, 48(8):1825-1832 doi: 10.1016/j.automatica.2012.05.049
|
[19]
|
Xu B, Yang C G, Shi Z K. Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(3):635-641 doi: 10.1109/TNNLS.2013.2292704
|
[20]
|
王鼎, 穆朝絮, 刘德荣.基于迭代神经动态规划的数据驱动非线性近似最优调节.自动化学报, 2017, 43(3):366-375 http://www.aas.net.cn/CN/abstract/abstract19015.shtmlWang Ding, Mu Chao-Xu, Liu De-Rong. Data-driven nonlinear near-optimal regulation based on iterative neural dynamic programming. Acta Automatica Sinica, 2017, 43(3):366-375 http://www.aas.net.cn/CN/abstract/abstract19015.shtml
|
[21]
|
Mu C X, Wang D, He H B. Novel iterative neural dynamic programming for data-based approximate optimal control design. Automatica, 2017, 81:240-252 doi: 10.1016/j.automatica.2017.03.022
|
[22]
|
Vamvoudakis K G, Lewis F L. Online actor-critic algorithm to solve the continuous-time inflnite horizon optimal control problem. Automatica, 2010, 46(5):878-888 doi: 10.1016/j.automatica.2010.02.018
|
[23]
|
Vamvoudakis K G, Miranda M F, Hespanha J P. Asymptotically stable adaptive-optimal control algorithm with saturating actuators and relaxed persistence of excitation. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(11):2386-2398 doi: 10.1109/TNNLS.2015.2487972
|
[24]
|
Bhasin S, Kamalapurkar R, Johnson M, Vamvoudakis K G, Lewis F L, Dixon W E. A novel actor-critic-identifler architecture for approximate optimal control of uncertain nonlinear systems. Automatica, 2013, 49(1):82-92 doi: 10.1016/j.automatica.2012.09.019
|
[25]
|
Modares H, Lewis F L. Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning. Automatica, 2014, 50(7):1780-1792 doi: 10.1016/j.automatica.2014.05.011
|
[26]
|
Nodland D, Zargarzadeh H, Jagannathan S. Neural network-based optimal adaptive output feedback control of a helicopter UAV. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7):1061-1073 doi: 10.1109/TNNLS.2013.2251747
|
[27]
|
Lv Y F, Na J, Yang Q M, Wu X, Guo Y. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics. International Journal of Control, 2016, 89(1):99-112 doi: 10.1080/00207179.2015.1060362
|
[28]
|
Vrabie D, Lewis F. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Networks, 2009, 22(3):237-246 doi: 10.1016/j.neunet.2009.03.008
|
[29]
|
Zhang H G, Cui L L, Zhang X, Luo Y H. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Transactions on Neural Networks, 2011, 22(12):2226-2236 doi: 10.1109/TNN.2011.2168538
|
[30]
|
Jiang Y, Jiang Z P. Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(11):2917-2929 doi: 10.1109/TAC.2015.2414811
|
[31]
|
Bian T, Jiang Z P. Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design. Automatica, 2016, 71:348-360 doi: 10.1016/j.automatica.2016.05.003
|
[32]
|
Lee J Y, Park J B, Choi Y H. Integral reinforcement learning for continuous-time input-a-ne nonlinear systems with simultaneous invariant explorations. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(5):916-932 doi: 10.1109/TNNLS.2014.2328590
|
[33]
|
Ha M M, Wang D, Liu D R. Event-triggered adaptive critic control design for discrete-time constrained nonlinear systems. IEEE Transactions on Systems, Man and Cybernetics:Systems, 2019, DOI: 10.1109/TSMC.2018.2868510
|
[34]
|
Wang F Y, Zhang H G, Liu D R. Adaptive dynamic programming:an introduction. IEEE Computational Intelligence Magazine, 2009, 4(2):39-47 doi: 10.1109/MCI.2009.932261
|
[35]
|
Lewis F L, Liu D R. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Hoboken, NJ: John Wiley & Sons, Inc., 2012.
|
[36]
|
Zhang H G, Liu D R, Luo Y H, Wang D. Adaptive Dynamic Programming for Control: Algorithms and Stability. London, UK: Springer-Verlag, 2013.
|
[37]
|
张化光, 张欣, 罗艳红, 杨珺.自适应动态规划综述.自动化学报, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtmlZhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml
|
[38]
|
刘德荣, 李宏亮, 王鼎.基于数据的自学习优化控制:研究进展与展望.自动化学报, 2013, 39(11):1858-1870 http://www.aas.net.cn/CN/abstract/abstract18225.shtmlLiu De-Rong, Li Hong-Liang, Wang Ding. Data-based selflearning optimal control:research progress and prospects. Acta Automatica Sinica, 2013, 39(11):1858-1870 http://www.aas.net.cn/CN/abstract/abstract18225.shtml
|
[39]
|
Wang D, He H B, Liu D R. Adaptive critic nonlinear robust control:a survey. IEEE Transactions on Cybernetics, 2017, 47(10):3429-3451 doi: 10.1109/TCYB.2017.2712188
|
[40]
|
Wang D, Mu C X. Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems. Singapore: Springer Singapore, 2019.
|
[41]
|
Liu D R, Wei Q L, Wang D, Yang X, Li H L. Adaptive Dynamic Programming with Applications in Optimal Control. Switzerland: Springer, 2017.
|
[42]
|
Jiang Y, Jiang Z P. Robust Adaptive Dynamic Programming. Hoboken, NJ:Wiley-IEEE Press, 2017.
|
[43]
|
王飞跃.平行控制:数据驱动的计算控制方法.自动化学报, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtmlWang Fei-Yue. Parallel control:a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml
|
[44]
|
Hou Z S, Wang Z. From model-based control to datadriven control:Survey, classiflcation and perspective. Information Sciences, 2013, 235:3-35 doi: 10.1016/j.ins.2012.07.014
|
[45]
|
Lavretsky E, Wise K A. Robust and Adaptive Control: with Aerospace Applications. London, UK: SpringerVerlag, 2013.
|
[46]
|
Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York, NY: John Wiley & Sons, 1995.
|
[47]
|
Lewis F L, Jagannathan S, Yesildirek A. Neural Network Control of Robot Manipulators and Non-linear Systems. London: Taylor & Francis, 1999.
|
[48]
|
Corless M, Leitmann G. Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control, 1981, 26(5):1139-1144 doi: 10.1109/TAC.1981.1102785
|
[49]
|
Lin F. Robust Control Design: An Optimal Control Approach. Chichester: John Wiley & Sons, 2007.
|
[50]
|
Lin F, Brand R D, Sun J. Robust control of nonlinear systems:Compensating for uncertainty. International Journal of Control, 1992, 56(6):1453-1459 doi: 10.1080/00207179208934374
|
[51]
|
Adhyaru D M, Kar I N, Gopal M. Fixed flnal time optimal control approach for bounded robust controller design using Hamilton-Jacobi-Bellman solution. IET Control Theory & Applications, 2009, 3(9):1183-1195
|
[52]
|
Adhyaru D M, Kar I N, Gopal M. Bounded robust control of nonlinear systems using neural network-based HJB solution. Neural Computing & Applications, 2011, 20(1):91-103
|
[53]
|
Wang D, Liu D R, Li H L. Policy iteration algorithm for online design of robust control for a class of continuoustime nonlinear systems. IEEE Transactions on Automation Science and Engineering, 2014, 11(2):627-632 doi: 10.1109/TASE.2013.2296206
|
[54]
|
Wang D, Liu D R, Li H L, Ma H W. Neural-network-based robust optimal control design for a class of uncertain nonlinear systems via adaptive dynamic programming. Information Sciences, 2014, 282:167-179 doi: 10.1016/j.ins.2014.05.050
|
[55]
|
Wang D, Liu D R, Zhang Q C, Zhao D B. Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(11):1544-1555 doi: 10.1109/TSMC.2015.2492941
|
[56]
|
Liu D R, Yang X, Wang D, Wei Q L. Reinforcementlearning-based robust controller design for continuoustime uncertain nonlinear systems subject to input constraints. IEEE Transactions on Cybernetics, 2015, 45(7):1372-1385 doi: 10.1109/TCYB.2015.2417170
|
[57]
|
Wang D, Liu D R, Li H L, Luo B, Ma H W. An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(5):713-717 doi: 10.1109/TSMC.2015.2466191
|
[58]
|
Wang D. Adaptation-oriented near-optimal control and robust synthesis of an overhead crane system. In: Proceedings of the 2017 International Conference on Neural Information Processing. Guangzhou, China: Springer, 2017. 42-50
|
[59]
|
Zhong X N, He H B, Prokhorov D V. Robust controller design of continuous-time nonlinear system using neural network. In: Proceedings of the 2013 International Joint Conference on Neural Networks. Dallas, TX, USA: IEEE, 2013. 1-8
|
[60]
|
Sun J L, Liu C S, Ye Q. Robust difierential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming. International Journal of Control, 2017, 90(5):990-1004 doi: 10.1080/00207179.2016.1192687
|
[61]
|
Wang D, Li C, Liu D R, Mu C X. Data-based robust optimal control of continuous-time a-ne nonlinear systems with matched uncertainties. Information Sciences, 2016, 366:121-133 doi: 10.1016/j.ins.2016.05.034
|
[62]
|
Yang X, Liu D R, Luo B, Li C. Data-based robust adaptive control for a class of unknown nonlinear constrained-input systems via integral reinforcement learning. Information Sciences, 2016, 369:731-747 doi: 10.1016/j.ins.2016.07.051
|
[63]
|
Fan Q Y, Yang G H. Adaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):165-177 doi: 10.1109/TNNLS.2015.2472974
|
[64]
|
Jiang Y, Jiang Z P. Robust adaptive dynamic programming for large-scale systems with an application to multimachine power systems. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2012, 59(10):693-697 doi: 10.1109/TCSII.2012.2213353
|
[65]
|
Jiang Z P, Jiang Y. Robust adaptive dynamic programming for linear and nonlinear systems:an overview. European Journal of Control, 2013, 19(5):417-425 doi: 10.1016/j.ejcon.2013.05.017
|
[66]
|
Jiang Y, Jiang Z P. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(5):882-893 doi: 10.1109/TNNLS.2013.2294968
|
[67]
|
Bian T, Jiang Y, Jiang Z P. Decentralized adaptive optimal control of large-scale systems with application to power systems. IEEE Transactions on Industrial Electronics, 2015, 62(4):2439-2447 doi: 10.1109/TIE.2014.2345343
|
[68]
|
Gao W N, Jiang Y, Jiang Z P, Chai T Y. Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming. Automatica, 2016, 72:37-45 doi: 10.1016/j.automatica.2016.05.008
|
[69]
|
Dierks T, Jagannathan S. Optimal control of a-ne nonlinear continuous-time systems. In: Proceedings of the 2010 American Control Conference. Baltimore, MD, USA: IEEE, 2010. 1568-1573
|
[70]
|
Zhang H G, Cui L L, Luo Y H. Near-optimal control for nonzero-sum difierential games of continuous-time nonlinear systems using single-network ADP. IEEE Transactions on Cybernetics, 2013, 43(1):206-216 doi: 10.1109/TSMCB.2012.2203336
|
[71]
|
Yang X, Liu D R, Ma H W, Xu Y C. Online approximate solution of HJI equation for unknown constrained-input nonlinear continuous-time systems. Information Sciences, 2016, 328:435-454 doi: 10.1016/j.ins.2015.09.001
|
[72]
|
Wang D, Mu C. Developing nonlinear adaptive optimal regulators through an improved neural learning mechanism. Science China Information Sciences, 2017, 60(5):058201 doi: 10.1007/s11432-016-9022-1
|
[73]
|
Wang D, Mu C X. A novel neural optimal control framework with nonlinear dynamics:Closed-loop stability and simulation veriflcation. Neurocomputing, 2017, 266:353-360 doi: 10.1016/j.neucom.2017.05.051
|
[74]
|
Wang D, Liu D R, Mu C X, Zhang Y. Neural network learning and robust stabilization of nonlinear systems with dynamic uncertainties. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1342-1351 doi: 10.1109/TNNLS.2017.2749641
|
[75]
|
Yang X, He H B. Self-learning robust optimal control for continuous-time nonlinear systems with mismatched disturbances. Neural Networks, 2018, 99:19-30 doi: 10.1016/j.neunet.2017.11.022
|
[76]
|
Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 1994, 7(2):95-120 doi: 10.1007/BF01211469
|
[77]
|
Mu C X, Sun C Y, Wang D, Song A G. Adaptive tracking control for a class of continuous-time uncertain nonlinear systems using the approximate solution of HJB equation. Neurocomputing, 2017, 260:432-442 doi: 10.1016/j.neucom.2017.04.043
|
[78]
|
Wang D, Mu C X. Adaptive-critic-based robust trajectory tracking of uncertain dynamics and its application to a spring-mass-damper system. IEEE Transactions on Industrial Electronics, 2018, 65(1):654-663 doi: 10.1109/TIE.2017.2722424
|
[79]
|
Wang D, Liu D R, Zhang Y, Li H Y. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems. Neural Networks, 2018, 97:11-18 doi: 10.1016/j.neunet.2017.09.005
|
[80]
|
Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 2007, 52(9):1680-1685 doi: 10.1109/TAC.2007.904277
|
[81]
|
Tallapragada P, Chopra N. On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(9):2343-2348 doi: 10.1109/TAC.2013.2251794
|
[82]
|
Vamvoudakis K G. Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems. IEEE/CAA Journal of Automatica Sinica, 2014, 1(3):282-293 doi: 10.1109/JAS.2014.7004686
|
[83]
|
Sahoo A, Xu H, Jagannathan S. Neural networkbased event-triggered state feedback control of nonlinear continuous-time systems. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(3):497-509 doi: 10.1109/TNNLS.2015.2416259
|
[84]
|
Zhong X N, He H B. An event-triggered ADP control approach for continuous-time system with unknown internal states. IEEE Transactions on Cybernetics, 2017, 47(3):683-694 doi: 10.1109/TCYB.2016.2523878
|
[85]
|
Dong L, Tang Y F, He H B, Sun C Y. An event-triggered approach for load frequency control with supplementary ADP. IEEE Transactions on Power Systems, 2017, 32(1):581-589 doi: 10.1109/TPWRS.2016.2537984
|
[86]
|
Zhu Y H, Zhao D B, He H B, Ji J H. Event-triggered optimal control for partially unknown constrained-input systems via adaptive dynamic programming. IEEE Transactions on Industrial Electronics, 2017, 64(5):4101-4109 doi: 10.1109/TIE.2016.2597763
|
[87]
|
Wang D, Mu C X, He H B, Liu D R. Adaptive-critic-based event-driven nonlinear robust state feedback. In: Proceedings of the IEEE 55th Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2016. 5813-5818
|
[88]
|
Wang D, Mu C X, He H B, Liu D R. Event-driven adaptive robust control of nonlinear systems with uncertainties through NDP strategy. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(7):1358-1370 doi: 10.1109/TSMC.2016.2592682
|
[89]
|
Wang D, Liu D R. Neural robust stabilization via eventtriggering mechanism and adaptive learning technique. Neural Networks, 2018, 102:27-35 doi: 10.1016/j.neunet.2018.02.007
|
[90]
|
Zhang Q C, Zhao D B, Wang D. Event-based robust control for uncertain nonlinear systems using adaptive dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1):37-50 doi: 10.1109/TNNLS.2016.2614002
|
[91]
|
Abu-Khalaf M, Lewis F L, Huang J. Policy iterations on the Hamilton-Jacobi-Isaacs equation for H∞ state feedback control with input saturation. IEEE Transactions on Automatic Control, 2006, 51(12):1989-1995 doi: 10.1109/TAC.2006.884959
|
[92]
|
Vamvoudakis K G, Lewis F L. Online solution of nonlinear two-player zero-sum games using synchronous policy iteration. International Journal of Robust and Nonlinear Control, 2012, 22(13):1460-1483 doi: 10.1002/rnc.v22.13
|
[93]
|
Modares H, Lewis F L, Sistani M B N. Online solution of nonquadratic two-player zero-sum games arising in the H∞ control of constrained input systems. International Journal of Adaptive Control and Signal Processing, 2014, 28(3-5):232-254 doi: 10.1002/acs.v28.3-5
|
[94]
|
Luo B, Wu H N, Huang T W. Ofi-policy reinforcement learning for H∞ control design. IEEE Transactions on Cybernetics, 2015, 45(1):65-76 doi: 10.1109/TCYB.2014.2319577
|
[95]
|
Zhang H G, Qin C B, Jiang B, Luo Y H. Online adaptive policy learning algorithm for H∞ state feedback control of unknown a-ne nonlinear discrete-time systems. IEEE Transactions on Cybernetics, 2014, 44(12):2706-2718 doi: 10.1109/TCYB.2014.2313915
|
[96]
|
Song R Z, Lewis F L, Wei Q L, Zhang H G. Ofi-policy actor-critic structure for optimal control of unknown systems with disturbances. IEEE Transactions on Cybernetics, 2016, 46(5):1041-1050 doi: 10.1109/TCYB.2015.2421338
|
[97]
|
Wang D, He H B, Liu D R. Improving the critic learning for event-based nonlinear H∞ control design. IEEE Transactions on Cybernetics, 2017, 47(10):3417-3428 doi: 10.1109/TCYB.2017.2653800
|
[98]
|
Zhang Q C, Zhao D B, Zhu Y H. Event-triggered H∞ control for continuous-time nonlinear system via concurrent learning. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(7):1071-1081 doi: 10.1109/TSMC.2016.2531680
|
[99]
|
Mu C X, Wang D, Sun C Y, Zong Q. Robust adaptive critic control design with network-based event-triggered formulation. Nonlinear Dynamics, 2017, 90(3):2023-2035 doi: 10.1007/s11071-017-3778-5
|
[100]
|
Werbos P J. Computational intelligence for the smart gridhistory, challenges, and opportunities. IEEE Computational Intelligence Magazine, 2011, 6(3):14-21 doi: 10.1109/MCI.2011.941587
|
[101]
|
Tang Y F, He H B, Wen J Y, Liu J. Power system stability control for a wind farm based on adaptive dynamic programming. IEEE Transactions on Smart Grid, 2015, 6(1):166-177 doi: 10.1109/TSG.2014.2346740
|
[102]
|
Wang D, He H B, Mu C X, Liu D R. Intelligent critic control with disturbance attenuation for a-ne dynamics including an application to a microgrid system. IEEE Transactions on Industrial Electronics, 2017, 64(6):4935-4944 doi: 10.1109/TIE.2017.2674633
|
[103]
|
Wang D, He H B, Zhong X N, Liu D R. Event-driven nonlinear discounted optimal regulation involving a power system application. IEEE Transactions on Industrial Electronics, 2017, 64(10):8177-8186 doi: 10.1109/TIE.2017.2698377
|
[104]
|
Wei Q L, Lewis F L, Shi G, Song R Z. Error-tolerant iterative adaptive dynamic programming for optimal renewable home energy scheduling and battery management. IEEE Transactions on Industrial Electronics, 2017, 64(12):9527-9537 doi: 10.1109/TIE.2017.2711499
|
[105]
|
Liu D R, Xu Y C, Wei Q L, Liu X L. Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1):36-46 doi: 10.1109/JAS.2017.7510739
|
[106]
|
Wang D, He H B, Liu D R. Intelligent optimal control with critic learning for a nonlinear overhead crane system. IEEE Transactions on Industrial Informatics, 2018, 14(7):2932-2940 doi: 10.1109/TII.2017.2771256
|
[107]
|
赵冬斌, 刘德荣, 易建强.基于自适应动态规划的城市交通信号优化控制方法综述.自动化学报, 2009, 35(6):676-681 http://www.aas.net.cn/CN/abstract/abstract13331.shtmlZhao Dong-Bin, Liu De-Rong, Yi Jian-Qiang. An overview on the adaptive dynamic programming based urban city tra-c signal optimal control. Acta Automatica Sinica, 2009, 35(6):676-681 http://www.aas.net.cn/CN/abstract/abstract13331.shtml
|
[108]
|
Gao W N, Jiang Z P, Ozbay K. Data-driven adaptive optimal control of connected vehicles. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5):1122-1133 doi: 10.1109/TITS.2016.2597279
|
[109]
|
Bertsekas D P. Value and policy iterations in optimal control and adaptive dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3):500-509 doi: 10.1109/TNNLS.2015.2503980
|
[110]
|
Werbos P J. From ADP to the brain: Foundations, roadmap, challenges and research priorities. In: Proceedings of the 2014 International Joint Conference on Neural Networks. Beijing, China: IEEE, 2014. 107-111
|