2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多重多尺度熵的孤独症静息态脑电信号分析

李昕 安占周 李秋月 蔡二娟 王欣

李昕, 安占周, 李秋月, 蔡二娟, 王欣. 基于多重多尺度熵的孤独症静息态脑电信号分析. 自动化学报, 2020, 46(6): 1255-1263. doi: 10.16383/j.aas.c170687
引用本文: 李昕, 安占周, 李秋月, 蔡二娟, 王欣. 基于多重多尺度熵的孤独症静息态脑电信号分析. 自动化学报, 2020, 46(6): 1255-1263. doi: 10.16383/j.aas.c170687
LI Xin, AN Zhan-Zhou, LI Qiu-Yue, CAI Er-Juan, WANG Xin. Autistic Resting EEG Signals Analysis via Multiple Multi-scale Entropies. ACTA AUTOMATICA SINICA, 2020, 46(6): 1255-1263. doi: 10.16383/j.aas.c170687
Citation: LI Xin, AN Zhan-Zhou, LI Qiu-Yue, CAI Er-Juan, WANG Xin. Autistic Resting EEG Signals Analysis via Multiple Multi-scale Entropies. ACTA AUTOMATICA SINICA, 2020, 46(6): 1255-1263. doi: 10.16383/j.aas.c170687

基于多重多尺度熵的孤独症静息态脑电信号分析

doi: 10.16383/j.aas.c170687
基金项目: 

国家自然科学基金 51677162

中国博士后科学基金 2014M550 582

河北省自然科学基金 F20142 03244

河北省自然科学基金 F2019203515

详细信息
    作者简介:

    安占周  燕山大学硕士研究生. 2016年于燕山大学获得学士学位.主要研究方向为医学信息处理和情感计算. E-mail: 18332553763@163.com

    李秋月  燕山大学硕士研究生. 2015年于燕山大学里仁学院获得学士学位.主要研究方向为医学信息处理和情感计算. E-mail: 18233586099@163.com

    蔡二娟  燕山大学硕士研究生. 2015年于燕山大学里仁学院获得学士学位.主要研究方向为孤独症儿童脑电信息的处理和计算. E-mail: 18233587424@163.com

    王欣  燕山大学硕士研究生. 2017年于燕山大学里仁学院获得学士学位.主要研究方向为医学信息处理和情感计算. E-mail: yddywangxin@163.com

    通讯作者:

    李昕  燕山大学教授. 1992年于东北重型机械学院获得学士学位, 2002年于燕山大学获得硕士学位, 2008年于燕山大学获得博士学位.主要研究方向为医学信息处理, 情感计算.本文通信作者. E-mail: yddylixin@ysu.edu.cn

Autistic Resting EEG Signals Analysis via Multiple Multi-scale Entropies

Funds: 

National Natural Science Foundation of China 51677162

China Postdoctoral Science Foundation 2014M550 582

Hebei Provincial Natural Science Foundation F20142 03244

Hebei Provincial Natural Science Foundation F2019203515

More Information
    Author Bio:

    LI Xin  Professor at Yanshan University. She received her bachelor degree in 1992 from Northeast Heavy Machinery Institute, her master degree in 2002 and Ph. D. degree in 2008 from Yanshan University, respectively. Her research interest covers medical information processing and afiective computing. Corresponding author of this paper

    AN Zhan-Zhou  Master student at Yanshan University. He received his bachelor degree in 2016 from Yanshan University. His research interest covers medical information processing and afiective computing

    LI Qiu-Yue  Master student at Yanshan University. She received her bachelor degree in 2015 from Liren College of Yanshan University. Her research interest covers medical information processing and afiective computing

    WANG Xin  Master student at Yanshan University. She received her bachelor degree in 2015 from Liren College of Yanshan University. Her research interest covers medical information processing and afiective computing

    Corresponding author: CAI Er-Juan  Master student at Yanshan University. She received her bachelor degree in 2015 from Liren College of Yanshan University. Her research interest covers the EEG information processing and computing for autism children
  • 摘要: 面向孤独症儿童脑功能状态评估问题, 提出一种多重多尺度熵脑电特征提取算法.算法针对传统多尺度熵信息丢失问题, 在移动均值粗粒化基础上, 采用延搁取值法构建多个尺度上的多重脑电信号序列, 再进一步计算各个尺度的样本熵.算法不仅克服了传统多尺度熵的信息丢失问题, 还能充分挖掘脑电信号的细节信息, 同时减小了尺度间的波动.基于该算法分析了16名孤独症儿童和16名正常儿童的19个通道的脑电信号.结果表明:正常儿童F7、F8、T4、P3通道的多重多尺度熵和复杂度均高于孤独症儿童, 且存在显著性差异(P < 0.05).表明前颞叶(F7、F8)可以作为孤独症儿童脑功能状态评估的敏感脑区, T4、P3可以作为辅助干预的敏感通道.
    Recommended by Associate Editor XU Bin
    1)  本文责任编委 许斌
  • 图  1  均值粗粒化过程

    Fig.  1  Coarse graining process

    图  2  移动均值粗粒化过程

    Fig.  2  Moving averaging process

    图  3  熵值结果对比

    Fig.  3  Comparison of entropy

    图  4  熵值标准差与方差比较

    Fig.  4  Comparison of standard deviation and variance between entropy

    图  5  国际10~20电极放置系统

    Fig.  5  International 10~20 electrode placement system

    图  6  孤独症儿童与正常儿童复杂度比较

    Fig.  6  Complexity comparison of autistic and normal children

    图  7  多重多尺度熵随尺度变化情况

    Fig.  7  Multiple multiscale entropy change with scale

    图  8  6通道多重多尺度熵

    Fig.  8  Multiple multiscale entropy of 6 channels

    图  9  多重多尺度熵与传统多尺度熵脑电信号结果对比

    Fig.  9  EEG comparison of traditional multiscale entropy and multiple multiscale entropy

    表  1  孤独症与正常儿童复杂度显著性检验结果

    Table  1  Autistic children with normal complexity signiflcant test results

    通道名称显著性(P值)通道名称显著性(P值)
    FP10.009FP20.134
    F30.094F40.067
    F70.003F80.028
    T30.001T40.001
    T50.032T60.019
    C30.041C40.080
    P30.003P40.019
    O10.036O20.079
    下载: 导出CSV

    表  2  孤独症与正常儿童多重多尺度熵显著性检验结果

    Table  2  Autistic and normal children multiple multiscale entropy significant test results

    通道名称显著性(P值)通道名称显著性(P值)
    F70.001F80.017
    T30.148T40.001
    P30.001P40.060
    下载: 导出CSV
  • [1] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th edition). USA: American Psychiatric Publishing, 2013.
    [2] Saemundsen E, Magnússon P, Georgsdóttir I, Egilsson E, Rafnsson V. Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open, 2013, 3(6): e002748 doi: 10.1136/bmjopen-2013-002748
    [3] Wang J, Barstein J, Ethridge L E, Mosconi M W, Takarae Y, Sweeney J A. Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 2013, 5(1): 1-14 doi: 10.1186/1866-1955-5-1
    [4] Sutton S K, Burnette C P, Mundy P C, Meyer J, Vaughan A, Sanders C, et al. Resting cortical brain activity andsocial behavior in higher functioning children with autism. Journal of Child Psychology and Psychiatry, 2005, 46(2): 211-222 doi: 10.1111/j.1469-7610.2004.00341.x
    [5] Sheikhani A, Behnam H, Mohammadi M R, Noroozian M, Mohammadi M. Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 2012, 36(2): 957-963 doi: 10.1007/s10916-010-9560-6
    [6] Fan Y M, Zeng L L, Shen H, Qin J, Li F Q, Hu D W. Lifespan development of the human brain revealed by large-scale network eigen-entropy. Entropy, 2017, 19(9): 471 doi: 10.3390/e19090471
    [7] Song Y D, Crowcroft J, Zhang J X. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. Journal of Neuroscience Methods, 2012, 210(2): 132-146 doi: 10.1016/j.jneumeth.2012.07.003
    [8] Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on Permutation entropy and support vector machines. Expert Systems with Applications, 2012, 39(1): 202-209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deeb57a35ad92924a4c9025ccccd3ca3
    [9] 雷敏, 孟光, 张文明, Sarkar N.基于虚拟开车环境的自闭症儿童脑电样本熵.物理学报, 2016, 65(10): 108701 doi: 10.7498/aps.65.108701

    Lei Min, Meng Guang, Zhang Wen-Ming, Sarkar N. Sample entropy of electro encephalogram for children with autism based on virtual driving game. Acta Physica Sinica, 2016, 65(10): 108701 doi: 10.7498/aps.65.108701
    [10] Lei M, Meng G, Zhang W M, Wade J, Sarkar N. Symplectic entropy as a novel measure for complex systems. Entropy, 2016, 18(11): 412 doi: 10.3390/e18110412
    [11] Bornas X, Llabrés J, Noguera M, López A M, Gelabert J M, Vila I. Fear induced complexity loss in the electrocardiogram of flight phobics: a multiscale entropy analysis. Biological Psychology, 2006, 73(3): 272-279 doi: 10.1016/j.biopsycho.2006.05.004
    [12] Thuraisingham R A, Gottwald G A. On multiscale entropy analysis for physiological data. Physica A: Statistical Mechanics and Its Applications, 2006, 366(1): 323-332 http://www.maths.usyd.edu.au/u/gottwald/preprints/MultiscaleEntropy.pdf
    [13] Zavala-Yoé R, Ramírez-Mendoza R, Cordero L M. Novel way to investigate evolution of children refractory epilepsy by complexity metrics in massive information. SpringerPlus, 2015, 4(1): 437 doi: 10.1186/s40064-015-1173-6
    [14] Mclntosh A R, Kovacevic N, Itier R J. Increased brain signal variability accompanies lower behavioral variability in development. PLoS Computational Biology, 2008, 4(7): e1000106 doi: 10.1371/journal.pcbi.1000106
    [15] Bosl W, Tierney A, Tager-Flusberg H, Nelson C. EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine, 2011, 9(1): 18 doi: 10.1186/1741-7015-9-18
    [16] Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H. Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis. Clinical Neurophysiology, 2011, 122(12): 2375-2383 doi: 10.1016/j.clinph.2011.05.004
    [17] Zhao M Y, Xu G. Feature extraction of power transformer vibration signals based on empirical wavelet transform and multiscale entropy. IET Science, Measurement and Technology, 2018, 12(1): 63-71 doi: 10.1049/iet-smt.2017.0188
    [18] 高军峰, 司慧芳, 余彬, 顾凌云, 梁莹, 杨勇.基于脑电样本熵的测谎分析.电子学报, 2017, 45(8): 1836-1841 doi: 10.3969/j.issn.0372-2112.2017.08.005

    Gao Jun-Feng, Si Hui-Fang, Yu Bin, Gu Ling-Yun, Liang Ying, Yang Yong. Lie detection analysis based on the sample entropy of EEG. Acta Electronica Sinica, 2017, 45(8): 1836-1841 doi: 10.3969/j.issn.0372-2112.2017.08.005
    [19] 刘志勇, 孙金玮, 卜宪庚.单通道脑电信号眼电伪迹去除算法研究.自动化学报, 2017, 43(10): 1726-1735 doi: 10.16383/j.aas.2017.c160191

    Liu Zhi-Yong, Sun Jin-Wei, Bu Xian-Geng. EOG artifact removing method for single-channel EEG signal. Acta Automatica Sinica, 2017, 43(10): 1726-1735 doi: 10.16383/j.aas.2017.c160191
    [20] Kaspar F, Schuster H G. Easily calculable measure for the complexity of spatiotemporal patterns. Physical Review A, 1987, 36(2): 842-848 doi: 10.1103/PhysRevA.36.842
    [21] Marwaha P, Sunkaria R K. Complexity quantification of cardiac variability time series using improved sample entropy (I-SampEn). Australasian Physical and Engineering Sciences in Medicine, 2016, 39(3): 755-763 doi: 10.1007/s13246-016-0457-7
    [22] 张毅, 尹春林, 蔡军, 罗久飞. Bagging RCSP脑电特征提取算法.自动化学报, 2017, 43(11): 2044-2050 doi: 10.16383/j.aas.2017.c160094

    Zhang Yi, Yin Chun-Lin, Cai Jun, Luo Jiu-Fei. Bagging RCSP algorithm for extracting EEG feature. Acta Automatica Sinica, 2017, 43(11): 2044-2050 doi: 10.16383/j.aas.2017.c160094
    [23] 王金甲, 陈春.分层向量自回归的多通道脑电信号的特征提取研究.自动化学报, 2016, 42(8): 1215-1226 doi: 10.16383/j.aas.2016.c150461

    Wang Jin-Jia, Chen Chun. Multi-channel EEG feature extraction using hierarchical vector autoregression. Acta Automatica Sinica, 2016, 42(8): 1215-1226 doi: 10.16383/j.aas.2016.c150461
    [24] Sheikhani A, Behnam H, Mohammadi M R, Noroozian M, Golabi P. Analysis of quantitative electroencephalogram background activity in autism disease patients with Lempel-Ziv complexity and short time fourier transform measure. In: Proceedings of the 4th IEEE/EMBS International Summer School and Symposium on Medical Devices and Biosensors. Cambridge, UK: IEEE, 2007. 111-114
    [25] Jaime M, McMahon C M, Davidson B C, Newell L C, Mundy P C, Henderson H A. Brief report: reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 2016, 46(4): 1477 -1489 doi: 10.1007/s10803-015-2667-3
    [26] Greimel E, Nehrkorn B, Schulte-Rüther M, Fink G R, Nickl-Jockschat T, Herpertz-Dahlmann B, et al. Changes in grey matter development in autism spectrum disorder. Brain Structure and Function, 2013, 218(4): 929-942 doi: 10.1007/s00429-012-0439-9
    [27] Ecker C, Suckling J, Deoni S C, Lombardo M V, Bullmore E T, Baron-Cohen S, et al. Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Archives of General Psychiatry, 2012, 69(2): 195-209 doi: 10.1001/archgenpsychiatry.2011.1251
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  81
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-05
  • 录用日期:  2018-05-18
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回