2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空双稀疏表示的成人ADHD脑网络检测与分析

龚军辉 刘小燕 周建松 孙刚

龚军辉, 刘小燕, 周建松, 孙刚. 基于时空双稀疏表示的成人ADHD脑网络检测与分析. 自动化学报, 2019, 45(10): 1903-1914. doi: 10.16383/j.aas.c170680
引用本文: 龚军辉, 刘小燕, 周建松, 孙刚. 基于时空双稀疏表示的成人ADHD脑网络检测与分析. 自动化学报, 2019, 45(10): 1903-1914. doi: 10.16383/j.aas.c170680
GONG Jun-Hui, LIU Xiao-Yan, ZHOU Jian-Song, SUN Gang. Detecting and Analyzing Brain Networks of Adult ADHD Using Dual Temporal and Spatial Sparse Representation. ACTA AUTOMATICA SINICA, 2019, 45(10): 1903-1914. doi: 10.16383/j.aas.c170680
Citation: GONG Jun-Hui, LIU Xiao-Yan, ZHOU Jian-Song, SUN Gang. Detecting and Analyzing Brain Networks of Adult ADHD Using Dual Temporal and Spatial Sparse Representation. ACTA AUTOMATICA SINICA, 2019, 45(10): 1903-1914. doi: 10.16383/j.aas.c170680

基于时空双稀疏表示的成人ADHD脑网络检测与分析

doi: 10.16383/j.aas.c170680
基金项目: 

国家自然科学基金 81571341

国家自然科学基金 61973108

湖南省研究生创新项目 CX2016B128

国家自然科学基金 61374149

详细信息
    作者简介:

    龚军辉  湖南大学电气与信息工程学院博士研究生.主要研究方向为医学图像处理与分析, 生物信息检测与识别.E-mail:gongjunhui2003@163.com

    周建松  中南大学湘雅二医院副教授.主要研究方向为司法精神病学, 青少年情绪行为障碍.E-mail:zhoujs2003@aliyun.com

    孙刚  湖南大学电气与信息工程学院博士研究生.主要研究方向为医学图像处理与分析.E-mail:gangsun@hnu.edu.cn

    通讯作者:

    刘小燕  湖南大学电气与信息工程学院教授.主要研究方向为医学图像处理与分析, 复杂系统建模与控制.本文通信作者.E-mail:xiaoyan.liu@hnu.edu.cn

Detecting and Analyzing Brain Networks of Adult ADHD Using Dual Temporal and Spatial Sparse Representation

Funds: 

Supported by National Natural Science Foundation of China 81571341

Supported by National Natural Science Foundation of China 61973108

Hunan Provincial Innovation Foundation for Postgraduate CX2016B128

Supported by National Natural Science Foundation of China 61374149

More Information
    Author Bio:

     Ph. D. candidate at the College of Electrical and Information Engineering, Hunan University. His research interest covers medical image processing and analysis, bioinformatics detection and recognition

     Associate professor at the Second Xiangya Hospital, Central South University. His research interest covers forensic psychiatry, mood and behavior disorder in youth

     Ph. D. candidate at the College of Electrical and Information Engineering, Hunan University. His research interest covers medical image processing and analysis

    Corresponding author: LIU Xiao-Yan  Professor at the College of Electrical and Information Engineering, Hunan University. Her research interest covers medical image processing and analysis, modeling and control of complex system. Corresponding author of this paper
  • 摘要: 注意力缺陷多动障碍(Attention deficit hyperactivity disorder,ADHD)主要表现为注意力分散、多动和冲动,是一种常见的精神障碍疾病.作为一种流行的脑功能成像技术,静息态功能核磁共振成像(Resting-state functional magnetic resonance imaging,rsfMRI)常应用于探索ADHD的神经机制.然而,由于rsfMRI数据的高维和少样本特性,采用传统的独立成分分析方法从rsfMRI数据中获得脑网络后,大多用基于体素级的方法进行推断,这难以检测出可靠的、与ADHD相关的脑网络.针对上述问题,本文提出了一种新颖的基于时空双稀疏表示(Dual temporal and spatial sparse representation,DTSSR)的方法和指标,以22名成人ADHD患者为研究对象,从大尺度脑网络级的角度检测出与ADHD相关的脑网络.首先采用DTSSR从ADHD的rsfMRI数据中提取出组脑网络及相应的耦合参数;然后将耦合参数均值池化作为网络的活跃度指标;最后,将活跃度指标与ADHD的量表分进行Spearman相关性分析,检测出与ADHD相关的脑网络.实验结果表明,背侧注意网络、执行控制网络的活跃度与ADHD量表分具有显著相关性.该结果在脑科学角度有合理的解释,且在不同字典尺寸下具有较高稳定性.本文所提方法,为探讨ADHD的潜在神经机制提供了一种新思路.
    1)  本文责任编委  朱朝喆
  • 图  1  基于DTSSR的ADHD_RSN的检测方法整体框图

    Fig.  1  The framework for detecting adult ADHD_RSN using DTSSR

    图  2  个体全脑BOLD信号的稀疏表示

    Fig.  2  Sparse representation for whole-brain BOLD signals

    图  3  功能脑网络的稀疏表示

    Fig.  3  Sparse representation for brain functional networks

    图  4  通过耦合参数识别ADHD_RSN示例图(RSN#1为例)

    Fig.  4  Illustration of identifying ADHD_RSN by use of coupling parameters (RSN#1 as the example

    图  5  采用DTSSR从ADHD组fMRI数据集中提取组RSN ("激活"体素采用MELODIC推断获得)

    Fig.  5  The inferred group-wise RSNs with DTSSR from the ADHD dataset (The "activated" voxels were inferred by MELODIC)

    图  6  小脑网络的空间分布图("激活"体素采用MELODIC推断获得) ((a)正常人组的小脑网络[37]; (b)采用DTSSR提取出ADHD组的小脑网络(RSN#18))

    Fig.  6  The spatial maps of cerebellum network (The "activated" voxels are inferred by MELODIC)((a) The cerebellum network of healthy group[37]; (b) The obtained cerebellum network (RSN#18) with DTSSR)

    图  7  ADHD_RSN空间分布图("激活"体素采用MELODIC推断)((a)背侧注意网络(RSN#6); (b)执行控制网络(RSN#11))

    Fig.  7  The spatial maps of the ADHD_RSN (The "activated" voxels were inferred by MELODIC)((a) dorsal attention network (RSN#6); (b) executive control network (RSN#11)

    图  8  不同字典尺寸下与背侧注意网络空间相关的ADHD_RSN

    Fig.  8  The detected ADHD_RSNs is correlated to dorsal attention network in different dictionary sizes

    表  1  表 1 ADHD组人口统计学特性

    Table  1  Demographic of the ADHD group

    患者人数 性别比(男:女) 年龄 ADHD分值
    22 17:5 34.6±9.4 30.8±8.6
    下载: 导出CSV

    表  2  ADHD组量表分、脑网络活跃程度指标、相关系数、$P$-$value$及ADHD_RSN检测结果

    Table  2  The obtained ADHD_RSN, indexes for activity of brain networks, correlation\\ coefficients, $P$-$value$ and ADHD_RSN

    患者 量表 RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN RSN
    编号 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20
    Sub. 1 32 61 74 96 75 83 96 90 94 52 73 101 78 72 104 90 111 58 68 54 92
    Sub. 2 31 110 80 70 74 90 107 77 130 56 68 100 70 117 91 80 134 53 70 59 53
    Sub. 3 48 88 85 89 58 97 87 87 92 54 55 125 80 78 80 83 123 38 80 58 68
    Sub. 4 35 94 100 102 70 113 122 102 133 54 64 93 92 83 85 67 158 54 92 59 92
    Sub. 5 21 73 70 74 60 68 84 77 88 65 104 88 75 70 95 66 123 43 68 54 82
    Sub. 6 22 81 85 96 77 81 84 75 96 48 59 81 80 71 83 68 158 47 67 51 76
    Sub. 7 42 72 72 100 65 94 104 77 108 64 83 106 95 93 91 90 106 37 84 57 88
    Sub. 8 37 69 97 106 65 96 101 97 128 77 66 93 90 85 102 105 154 56 70 64 103
    Sub. 9 29 88 55 57 49 66 54 64 92 41 67 67 55 62 58 56 139 29 66 43 85
    Sub. 10 35 70 101 102 70 80 85 75 111 54 75 109 71 80 89 76 133 44 65 46 85
    Sub. 11 41 73 84 61 52 73 92 78 106 85 48 106 65 81 90 65 115 48 61 56 50
    Sub. 12 31 89 97 106 74 93 110 86 99 60 60 97 93 71 98 71 140 40 99 56 84
    Sub. 13 11 56 67 77 64 87 70 77 71 53 43 73 56 66 89 48 124 37 28 44 49
    Sub. 14 44 72 92 91 98 90 109 86 93 62 37 99 110 82 83 77 112 41 66 69 94
    Sub. 15 21 87 56 53 50 85 58 55 90 52 67 65 50 70 50 56 116 37 59 39 102
    Sub. 16 32 116 81 81 50 106 92 73 115 75 92 92 75 98 83 71 142 45 98 51 90
    Sub. 17 23 76 96 81 78 90 102 88 113 67 50 107 106 89 98 83 107 55 70 58 55
    Sub. 18 25 82 89 80 49 84 63 74 107 41 75 87 87 97 76 70 143 43 80 35 83
    Sub. 19 30 63 53 71 65 61 76 77 66 42 31 81 59 55 69 65 107 46 48 60 61
    Sub. 20 31 59 70 121 101 70 118 88 93 59 43 114 87 106 104 100 101 41 38 79 53
    Sub. 21 28 103 86 93 79 145 88 86 156 96 71 108 74 71 86 93 146 56 92 59 106
    Sub. 22 29 58 64 51 52 58 55 71 92 38 63 54 50 81 55 37 134 30 64 34 65
    相关系数 0.01 0.41 0.39 0.12 0.36 0.56 0.40 0.33 0.33 0.06 0.57 0.39 0.44 0.17 0.49 0.14 0.14 0.26 0.47 0.22
    $P$-$value$ 0.953 0.059 0.070 0.594 0.100 0.006 0.061 0.129 0.138 0.801 0.005 0.072 0.042 0.450 0.021 0.541 0.540 0.240 0.024 0.333
    FDR校正 0.95 0.16 0.16 0.66 0.20 0.06 0.16 0.23 0.23 0.84 0.06 0.16 0.16 0.60 0.12 0.64 0.64 0.37 0.12 0.48
    相关网络 × × × × × × × × × × × × × × × × × ×
    注: Sub. 1 $\sim$ Sub. 22表示患者编号; "×"表示与ADHD_RSN无关; "√"表示与ADHD_RSN相关.
    下载: 导出CSV

    表  3  不同字典尺寸下与各模板网络空间相关的ADHD_RSN统计

    Table  3  The count of the ADHD_RSN with each template in different dictionary sizes

    字典尺寸 60 100 140 180 220 260 300
    RSN#1 / 1 / / 1 / /
    RSN#2 / / / / / / /
    RSN#3 1 2 2 3 / / 1
    RSN#4 / / / / / / 1
    RSN#5 1 1 3 3 2 3 1
    RSN#6 2 2 4 5 3 4 3
    RSN#7 1 / 2 3 2 2 4
    RSN#8 5 4 7 4 4 6 6
    RSN#9 2 5 3 2 6 4 3
    RSN#10 / / / / / / /
    RSN#11 2 1 4 3 3 2 2
    RSN#12 / 2 2 1 1 1 /
    RSN#13 / / / / / / /
    RSN#14 / / 1 2 / / /
    RSN#15 / / 1 / 1 2 1
    RSN#16 / 2 1 2 / / 1
    RSN#17 / / 1 1 1 1 1
    RSN#18 / / 1 1 1 / 1
    RSN#19 / / / 1 1 1 2
    RSN#20 / / / 1 2 1 /
    注: "/"表示未检测到与模板网络相关的ADHD_RSN.
    下载: 导出CSV
  • [1] Association A P. Diagnostic and Statistical Manual of Mental Disorders:DSM-IV-TR. Virginia:American Psychiatric Publishing, 2000. 59-66
    [2] Fayyad J, De Graaf R, Kessler R, Alonso J, Angermeyer M, Demyttenaere K, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. British Journal of Psychiatry, 2007, 190(5):402-409 doi: 10.1192/bjp.bp.106.034389
    [3] 曹庆久, 王晓丽, 曲姗, 王鹏, 吴赵敏, 孙黎, 等.认知行为治疗对成人注意缺陷多动障碍静息态局部脑功能影响.中国心理卫生杂志, 2017, 31(3):183-189 doi: 10.3969/j.issn.1000-6729.2017.03.002

    Cao Qing-Jiu, Wang Xiao-Li, Qu Shan, Wang Peng, Wu Zhao-Min, Sun Li, et al. Effects of cognitive-behavioral therapy on regional homogeneity changes in adults with attention-deficit/hyperactivity disorder. Chinese Mental Health Journal, 2017, 31(3):183-189 doi: 10.3969/j.issn.1000-6729.2017.03.002
    [4] Tian L X, Jiang T Z, Liang M, Zang Y F, He Y, Sui M Q, et al. Enhanced resting-state brain activities in ADHD patients:a fMRI study. Brain and Development, 2008, 30(5):342-348 doi: 10.1016/j.braindev.2007.10.005
    [5] Zhu C Z, Zang Y F, Cao Q J, Yan C G, He Y, Jiang T Z, et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage, 2008, 40(1):110-120 doi: 10.1016/j.neuroimage.2007.11.029
    [6] Wang X H, Jiao Y, Tang T Y, Wang H, Lu Z H. Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. European Journal of Radiology, 2013, 82(9):1552-1557 doi: 10.1016/j.ejrad.2013.04.009
    [7] Akdeniz G. Complexity analysis of resting-state fMRI in adult patients with attention deficit hyperactivity disorder: brain entropy. Computational Intelligence and Neuroscience, 2017, 2017: Article ID 3091815
    [8] Zhao Q H, Li H, Yu X Y, Huang F, Wang Y F, Liu L, et al. Abnormal resting-state functional connectivity of insular subregions and disrupted correlation with working memory in adults with attention deficit/hyperactivity disorder. Frontiers in Psychiatry, 2017, 8:200 doi: 10.3389/fpsyt.2017.00200
    [9] Du J Q, Wang L P, Jie B, Zhang D Q. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Computerized Medical Imaging and Graphics, 2016, 52:82-88 doi: 10.1016/j.compmedimag.2016.04.004
    [10] Wang X L, Cao Q J, Wang J H, Wu Z M, Wang P, Sun L, et al. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder. Behaviour Research and Therapy, 2016, 76:32-39 doi: 10.1016/j.brat.2015.11.003
    [11] Mostert J C, Shumskaya E, Mennes M, Onnink A M H, Hoogman M, Kan C C, et al. Characterising resting-state functional connectivity in a large sample of adults with ADHD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67:82-91 doi: 10.1016/j.pnpbp.2016.01.011
    [12] Zang Y F, He Y, Zhu C Z, Cao Q J, Sui M Q, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 2007, 29(2):83-91 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b932672c6ab3b8ff7fbcb6de239794bf
    [13] Sato J R, Takahashi D Y, Hoexter M Q, Massirer K B, Fujita A. Measuring network's entropy in ADHD:a new approach to investigate neuropsychiatric disorders. NeuroImage, 2013, 77:44-51 doi: 10.1016/j.neuroimage.2013.03.035
    [14] Hagmann P, Grant P E, Fair D A. MR connectomics:a conceptual framework for studying the developing brain. Frontiers in Systems Neuroscience, 2012, 6:43 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3374479
    [15] Eklund A, Nichols T E, Knutsson H. Cluster failure:why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28):7900-7905 doi: 10.1073/pnas.1602413113
    [16] Lee K, Tak S, Ye J C. A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Transactions on Medical Imaging, 2011, 30(5):1076-1089 doi: 10.1109/TMI.2010.2097275
    [17] Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, D'Ardenne K, et al. Independent component analysis for brain fMRI does not select for independence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26):10415-10422 doi: 10.1073/pnas.0903525106
    [18] 常振春, 禹晶, 肖创柏, 孙卫东.基于稀疏表示和结构自相似性的单幅图像盲解卷积算法.自动化学报, 2017, 43(11):1908-1919 http://www.aas.net.cn/CN/abstract/abstract19166.shtml

    Chang Zhen-Chun, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Single image blind deconvolution using sparse representation and structural self-similarity. Acta Automatica Sinica, 2017, 43(11):1908-1919 http://www.aas.net.cn/CN/abstract/abstract19166.shtml
    [19] 杨国铮, 禹晶, 肖创柏, 孙卫东.基于形态字典学习的复杂背景SAR图像舰船尾迹检测.自动化学报, 2017, 43(10):1713-1725 http://www.aas.net.cn/CN/abstract/abstract19149.shtml

    Yang Guo-Zheng, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Ship wake detection in SAR images with complex background using morphological dictionary learning. Acta Automatica Sinica, 2017, 43(10):1713-1725 http://www.aas.net.cn/CN/abstract/abstract19149.shtml
    [20] 陈允杰, 葛魏东, 孙乐.一种基于协同稀疏和全变差的高光谱线性解混方法.自动化学报, 2018, 44(1):116-128 http://www.aas.net.cn/CN/abstract/abstract19209.shtml

    Chen Yun-Jie, Ge Wei-Dong, Sun Le. A novel linear hyperspectral unmixing method based on collaborative sparsity and total variation. Acta Automatica Sinica, 2018, 44(1):116-128 http://www.aas.net.cn/CN/abstract/abstract19209.shtml
    [21] Pessoa L. Beyond brain regions:network perspective of cognition-emotion interactions. Behavioral and Brain Sciences, 2012, 35(3):158-169 doi: 10.1017/S0140525X11001567
    [22] Quiroga R Q, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature, 2005, 435(7045):1102-1107 doi: 10.1038/nature03687
    [23] Rosa M J, Portugal L, Hahn T, Fallgatter A J, Garrido M I, Shawe-Taylor J, et al. Sparse network-based models for patient classification using fMRI. NeuroImage, 2015, 105:493-506 doi: 10.1016/j.neuroimage.2014.11.021
    [24] Lv J L, Jiang X, Li X, Zhu D J, Chen H B, Zhang T, et al. Sparse representation of whole-brain FMRI signals for identification of functional networks. Medical Image Analysis, 2015, 20(1):112-134 http://cn.bing.com/academic/profile?id=b3e922463feca4c39b85aff49cf00381&encoded=0&v=paper_preview&mkt=zh-cn
    [25] Gong J H, Liu X Y, Liu T M, Zhou J S, Sun G, Tian J X. Dual temporal and spatial sparse representation for inferring group-wise brain networks from resting-state fMRI dataset. IEEE Transactions on Biomedical Engineering, 2018, 65(5):1035-1048 http://cn.bing.com/academic/profile?id=46bcd417fad04c25f69fb4b3349ad1a5&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Kessler R C, Adler L, Ames M, Demler O, Faraone S, Hiripi E, et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS):a short screening scale for use in the general population. Psychological Medicine, 2005, 35(2):245-256 doi: 10.1017/S0033291704002892
    [27] Reuter M, Kirsch P, Hennig J. Inferring candidate genes for attention deficit hyperactivity disorder (ADHD) assessed by the World Health Organization Adult ADHD Self-Report Scale (ASRS). Journal of Neural Transmission, 2006, 113(7):929-938 doi: 10.1007/s00702-005-0366-5
    [28] Zhang S, Li X, Lv J L, Jiang X, Guo L, Liu T M. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging and Behavior, 2016, 10(1):21-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e1cee730ba9fab6433842610202b44f
    [29] Zhao S J, Han J W, Lv J L, Jiang X, Hu X T, Zhao Y, et al. Supervised dictionary learning for inferring concurrent brain networks. IEEE Transactions on Medical Imaging, 2015, 34(10):2036-2045 doi: 10.1109/TMI.2015.2418734
    [30] Park H J, Friston K. Structural and functional brain networks:from connections to cognition. Science, 2013, 342(6158):1238411-1238411 doi: 10.1126/science.1238411
    [31] Zhang S, Li X, Lv J L, Jiang X, Zhu D J, Chen H B, et al. Sparse representation of higher-order functional interaction patterns in task-based fMRI data. In: Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention-MICCAI. Berlin, Heidelberg, Germany: Springer, 2013. 626-634
    [32] Zubair S, Yan F, Wang W W. Dictionary learning based sparse coefficients for audio classification with max and average pooling. Digital Signal Processing, 2013, 23(3):960-970 doi: 10.1016/j.dsp.2013.01.004
    [33] Paisitkriangkrai S, Shen C H, van den Hengel A. Pedestrian detection with spatially pooled features and structured ensemble learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(6):1243-1257 doi: 10.1109/TPAMI.2015.2474388
    [34] Coates A, Ng A Y. The importance of encoding versus training with sparse coding and vector quantization. In: Proceedings of the 28th International Conference on Machine Learning. Washington, USA: Omnipress, 2011. 921-928
    [35] Liang X, Zou Q H, He Y, Yang Y H. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5):1929-1934 doi: 10.1073/pnas.1214900110
    [36] Barkhof F, Haller S, Rombouts S A R B. Resting-state functional MR imaging:a new window to the brain. Radiology, 2014, 272(1):29-49 doi: 10.1148/radiol.14132388
    [37] Smith S M, Fox P T, Miller K L, Glahn D C, Fox P M, Mackay C E, et al. Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31):13040-13045 doi: 10.1073/pnas.0905267106
    [38] Kim K I. False Discovery Rate Procedures for High-Dimensional Data[Ph.D. dissertation], Eindhoven University of Technology, Holland, 2008. http://cn.bing.com/academic/profile?id=656b471f63e10a8daf0ce98ab4e85098&encoded=0&v=paper_preview&mkt=zh-cn
    [39] Lei X, Wang Y L, Yuan H, Mantini D. Neuronal oscillations and functional interactions between resting state networks. Human Brain Mapping, 2014, 35(7):3517-3528 doi: 10.1002/hbm.22418
    [40] Sokunbi M O, Fung W, Sawlani V, Choppin S, Linden D E J, Thome J. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Research:Neuroimaging, 2013, 214(3):341-348 doi: 10.1016/j.pscychresns.2013.10.001
    [41] Schneider M F, Krick C M, Retz W, Hengesch G, Retz-Junginger P, Reith W, et al. Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults——a functional magnetic resonance imaging (fMRI) study. Psychiatry Research:Neuroimaging, 2010, 183(1):75-84 doi: 10.1016/j.pscychresns.2010.04.005
    [42] Fan J, McCandliss B D, Fossella J, Flombaum J I, Posner M I. The activation of attentional networks. NeuroImage, 2005, 26(2):471-479 doi: 10.1016/j.neuroimage.2005.02.004
    [43] Posner J, Park C, Wang Z S. Connecting the dots:a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychology Review, 2014, 24(1):3-15 http://cn.bing.com/academic/profile?id=b8bd70bf1cafdc8a8e45b29444d44109&encoded=0&v=paper_preview&mkt=zh-cn
    [44] Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology, 2010, 35(1):278-300 http://cn.bing.com/academic/profile?id=712659b53576c37cff3fd30cec30af47&encoded=0&v=paper_preview&mkt=zh-cn
    [45] Francx W, Oldehinkel M, Oosterlaan J, Heslenfeld D, Hartman C A, Hoekstra P J, et al. The executive control network and symptomatic improvement in attention-deficit/hyperactivity disorder. Cortex, 2015, 73:62-72 doi: 10.1016/j.cortex.2015.08.012
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1606
  • HTML全文浏览量:  279
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 录用日期:  2018-05-18
  • 刊出日期:  2019-10-20

目录

    /

    返回文章
    返回