2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区间二型T-S模糊模型的网络控制系统的输出反馈预测控制

唐晓铭 邓梨 虞继敏 屈洪春

唐晓铭, 邓梨, 虞继敏, 屈洪春. 基于区间二型T-S模糊模型的网络控制系统的输出反馈预测控制. 自动化学报, 2019, 45(3): 604-616. doi: 10.16383/j.aas.c170554
引用本文: 唐晓铭, 邓梨, 虞继敏, 屈洪春. 基于区间二型T-S模糊模型的网络控制系统的输出反馈预测控制. 自动化学报, 2019, 45(3): 604-616. doi: 10.16383/j.aas.c170554
TANG Xiao-Ming, DENG Li, YU Ji-Min, QU Hong-Chun. Output Feedback Model Predictive Control for Interval Type-2 T-S Fuzzy Networked Control Systems. ACTA AUTOMATICA SINICA, 2019, 45(3): 604-616. doi: 10.16383/j.aas.c170554
Citation: TANG Xiao-Ming, DENG Li, YU Ji-Min, QU Hong-Chun. Output Feedback Model Predictive Control for Interval Type-2 T-S Fuzzy Networked Control Systems. ACTA AUTOMATICA SINICA, 2019, 45(3): 604-616. doi: 10.16383/j.aas.c170554

基于区间二型T-S模糊模型的网络控制系统的输出反馈预测控制

doi: 10.16383/j.aas.c170554
基金项目: 

重庆市基础与前沿研究项目 cstc2017jcyjAX0453

国家自然科学基金 61871061

重庆市教委科学技术项目 KJQN201800645

重庆市基础与前沿研究项目 cstc2018jcyjAX0691

国家自然科学基金 61403055

详细信息
    作者简介:

    邓梨    重庆邮电大学自动化学院硕士研究生.2016年获得重庆邮电大学自动化学院学士学位.主要研究方向为预测控制, 网络控制.E-mail:lddengli@163.com

    虞继敏    重庆邮电大学自动化学院教授.2003年获得郑州大学数学系博士学位.主要研究方向为非线性控制理论, 智能算法.E-mail:yujm@cqupt.edu.cn

    屈洪春    重庆邮电大学自动化学院教授.2009年获得重庆大学计算机系博士学位.主要研究方向为仿真计算模型, 模式识别.E-mail:quhc@cqupt.edu.cn

    通讯作者:

    唐晓铭    重庆邮电大学自动化学院副教授.美国德克萨斯大学阿灵顿分校博士后.2013年获得重庆大学自动化学院博士学位.主要研究方向为预测控制, 网络控制.本文通信作者.E-mail:txmmyeye@126.com

Output Feedback Model Predictive Control for Interval Type-2 T-S Fuzzy Networked Control Systems

Funds: 

Research Project of Chongqing Science and Technology Commission cstc2017jcyjAX0453

National Natural Science Foundation of China 61871061

Science and Technology Project of Chongqing Education Commission KJQN201800645

Research Project of Chongqing Science and Technology Commission cstc2018jcyjAX0691

National Natural Science Foundation of China 61403055

More Information
    Author Bio:

    Master student at the College of Automation, Chongqing University of Posts and Telecommunications. She received her bachelor degree from Chongqing University of Posts and Telecommunications in 2016. Her research interest covers model predictive control and networked control systems

    Professor at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph. D. degree from Zhengzhou University in 2003. His research interest covers nonlinear control theory and intelligent algorithms

    Professor at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph. D. degree from Chongqing University in 2009. His research interest covers simulation calculation model and pattern recognition

    Corresponding author: TANG Xiao-Ming Associate professor at the College of Automation, Chongqing University of Posts and Telecommunications and postdoctor at the University of Texas at Arlington, USA. He received his Ph. D. degree from Chongqing University in 2013. His research interest covers model predictive control and networked control systems. Corresponding author of this paper
  • 摘要: 针对干扰作用下的非线性网络控制系统,给出了带一个自由控制作用的输出反馈预测控制方法.首先,利用区间二型T-S模糊模型描述具有参数不确定性的非线性对象,采用马尔科夫链描述系统中的随机丢包过程,由此建立了丢包网络环境下的非线性网络控制系统的数学模型.然后,通过引入二次有界技术得到了干扰作用下网络控制系统的稳定性描述方法,并在此基础上给出了状态观测器的线性矩阵不等式条件.最后,基于估计状态,通过将无穷时域控制作用参数化为一个自由控制作用加一个线性反馈律得到了输出反馈预测控制方法.论文的特色在于构建了在线更新误差椭圆集合的基本方法,满足了约束条件下输出反馈预测控制保证稳定性的要求.仿真例子验证了所提方法的有效性.
    1)  本文责任编委 刘艳军
  • 图  1  网络控制系统框图

    Fig.  1  Diagram of networked control systems

    图  2  被控对象和控制器的隶属函数

    Fig.  2  Membership functions of plant and controller

    图  3  数据传输状态

    Fig.  3  Data transmission status

    图  4  闭环系统状态响应

    Fig.  4  The closed-loop state responses

    图  5  系统控制输入

    Fig.  5  System control input

    图  6  性能指标上界$\varepsilon$的轨迹

    Fig.  6  Evolutions of performance objective upper bound $\varepsilon$

    图  7  估计误差的界

    Fig.  7  The estimation error bound

    图  8  状态轨迹和估计误差椭圆集合

    Fig.  8  State trajectories and ellipsoidal bounds of estimation error

    表  1  观测器参数, 性能指标及计算时间

    Table  1  Observer parameters, performance objective, and computational time

    H0 Lp $J_0^\infty $ TAverage
    $\left[ \begin{array}{l} 0.7833\;\;\;0.0643\\ 0.0643\;\;\;1.0316 \end{array} \right] $ $\left[ \begin{array}{l} 0.0018\\ 0.5394 \end{array} \right] $ 62.98 0.93 s
    下载: 导出CSV
  • [1] 席裕庚, 李德伟, 林姝.模型预测控制-现状与挑战.自动化学报, 2013, 39(3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml

    Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39(3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml
    [2] Cutler C R, Ramaker B L. Dynamic matrix control-A computer control algorithm. In:Proceedings of the Joint Automatic Control Conference. San Francisco:American Automatic Control Council, 1980.
    [3] Rouhani R, Mehra R K. Model algorithmic control (MAC):basic theoretical properties. Automatica, 1982, 18(4):401-414 doi: 10.1016/0005-1098(82)90069-3
    [4] 席裕庚, 李德伟.预测控制定性综合理论的基本思路和研究现状.自动化学报, 2008, 34(10):1225-1234 http://www.aas.net.cn/CN/abstract/abstract17992.shtml

    Xi Yu-Geng, Li De-Wei. Fundamental philosophy and status of qualitative synthesis of model predictive control. Acta Automatica Sinica, 2008, 34(10):1225-1234 http://www.aas.net.cn/CN/abstract/abstract17992.shtml
    [5] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities. Automatica, 1996, 32(10):1361-1379 doi: 10.1016/0005-1098(96)00063-5
    [6] Cuzzola F A, Geromel J C, Morari M. An improved approach for constrained robust model predictive control. Automatica, 2002, 38(7):1183-1189 doi: 10.1016/S0005-1098(02)00012-2
    [7] Lu Y H, Arkun Y M. Quasi-min-max MPC algorithms for LPV systems. Automatica, 2000, 36(4):527-540 doi: 10.1016/S0005-1098(99)00176-4
    [8] Schuurmans J, Rossiter J A. Robust predictive control using tight sets of predicted states. IEE Proceedings Control Theory & Applications, 2000, 147(1):13-18 http://cn.bing.com/academic/profile?id=4b8a4f310603adad86ed953f3dc23ccb&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Kouvaritakis B, Rossiter J A, Schuurmans J. Efficient robust predictive control. IEEE Transactions on Automatic Control, 2000, 45(8):1545-1549 doi: 10.1109/9.871769
    [10] Wan Z Y, Kothare M V. An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica, 2003, 39(5):837-846 doi: 10.1016/S0005-1098(02)00174-7
    [11] Angeli D, Casavola A, Franzé G, Mosca E. An ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems. Automatica, 2008, 44(12):3113-3119 doi: 10.1016/j.automatica.2008.04.027
    [12] Wan Z Y, Kothare M V. Robust output feedback model predictive control using off-line linear matrix inequalities. Journal of Process Control, 2002, 12(7):763-774 doi: 10.1016/S0959-1524(02)00003-3
    [13] Park J H, Kim T H, Sugie T. Output feedback model predictive control for LPV systems based on quasi-min-max algorithm. Automatica, 2011, 47(9):2052-2058 doi: 10.1016/j.automatica.2011.06.015
    [14] Mayne D Q, Raković S V, Findeisen R, Allgöwer F. Robust output feedback model predictive control of constrained linear systems. Automatica, 2006, 42(7):1217-1222 doi: 10.1016/j.automatica.2006.03.005
    [15] Li H P, Shi Y. Output feedback predictive control for constrained linear systems with intermittent measurements. Systems & Control Letters, 2013, 62(4):345-354 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78f03765e5622206611a804992339894
    [16] Farina M, Giulioni L, Magni L, Scattolini R. An approach to output-feedback MPC of stochastic linear discrete-time systems. Automatica, 2015, 55:140-149 doi: 10.1016/j.automatica.2015.02.039
    [17] Ding B C, Pan H G. Output feedback robust MPC for LPV system with polytopic model parametric uncertainty and bounded disturbance. International Journal of Control, 2016, 89(8):1554-1571 doi: 10.1080/00207179.2016.1138144
    [18] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1):138-162 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e47d717e96da82596eb9456b53ba7d81
    [19] Zhang L X, Gao H J, Kaynak O. Network-induced constraints in networked control systems-a survey. IEEE Transactions on Industrial Informatics, 2013, 9(1):403-416 doi: 10.1109/TII.2012.2219540
    [20] 游科友, 谢立华.网络控制系统的最新研究综述.自动化学报, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml

    You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2):101-118 http://www.aas.net.cn/CN/abstract/abstract17806.shtml
    [21] Selivanov A, Fridman E. Observer-based input-to-state stabilization of networked control systems with large uncertain delays. Automatica, 2016, 74:63-70 doi: 10.1016/j.automatica.2016.07.031
    [22] Peng C, Han Q L. On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays. IEEE Transactions on Industrial Electronics, 2016, 63(2):1239-1248 doi: 10.1109/TIE.2015.2504044
    [23] 张必山, 马忠军, 杨美香.既含有一般多个随机延迟以及多个测量丢失和随机控制丢失的鲁棒H模糊输出反馈控制.自动化学报, 2017, 43(9):1656-1664 http://www.aas.net.cn/CN/abstract/abstract19142.shtml

    Zhang Bi-Shan, Ma Zhong-Jun, Yang Mei-Xiang. Robust H fuzzy output-feedback control with both general multiple probabilistic delays and multiple missing measurements and random missing control. Acta Automatica Sinica, 2017, 43(9):1656-1664 http://www.aas.net.cn/CN/abstract/abstract19142.shtml
    [24] 李秀英, 王金玉, 孙书利.具有一步随机时滞和多丢包的网络系统H滤波器设计.自动化学报, 2014, 40(1):155-160 http://www.aas.net.cn/CN/abstract/abstract18277.shtml

    Li Xiu-Ying, Wang Jin-Yu, Sun Shu-Li. H filter design for networked systems with one-step random delays and multiple packet dropouts. Acta Automatica Sinica, 2014, 40(1):155-160 http://www.aas.net.cn/CN/abstract/abstract18277.shtml
    [25] 马伟伟, 贾新春, 张大伟.双率采样系统的基于观测器的网络化H控制.自动化学报, 2015, 41(10):1788-1797 http://www.aas.net.cn/CN/abstract/abstract18753.shtml

    Ma Wei-Wei, Jia Xin-Chun, Zhang Da-Wei. Observer-based networked H control for dualrate sampling systems. Acta Automatica Sinica, 2015, 41(10):1788-1797 http://www.aas.net.cn/CN/abstract/abstract18753.shtml
    [26] 肖会芹, 何勇, 吴敏, 肖伸平.基于T-S模糊模型的采样数据网络控制系统H输出跟踪控制.自动化学报, 2015, 41(3):661-668 http://www.aas.net.cn/CN/abstract/abstract18642.shtml

    Xiao Hui-Qin, He Yong, Wu Min, Xiao Shen-Ping. H output tracking control for sampled-data networked control systems in T-S fuzzy model. Acta Automatica Sinica, 2015, 41(3):661-668 http://www.aas.net.cn/CN/abstract/abstract18642.shtml
    [27] 宋杨, 董豪, 费敏锐.基于切换频度的马尔科夫网络控制系统均方指数镇定.自动化学报, 2012, 38(5):876-881 http://www.aas.net.cn/CN/abstract/abstract13556.shtml

    Song Yang, Dong Hao, Fei Min-Rui. Mean square exponential stabilization of Markov networked control systems based on switching frequentness. Acta Automatica Sinica, 2012, 38(5):876-881 http://www.aas.net.cn/CN/abstract/abstract13556.shtml
    [28] 王炳林, 康宇, 秦家虎, 李彦梅.网路化双线性系统的预测控制优化算法研究.自动化学报, 2017, 43(7):1234-1240 http://www.aas.net.cn/CN/abstract/abstract19096.shtml

    Wang Bing-Lin, Kang Yu, Qin Jia-Hu, Li Yan-Mei. Optimization algorithms for predictive control approach to networked bilinear systems. Acta Automatica Sinica, 2017, 43(7):1234-1240 http://www.aas.net.cn/CN/abstract/abstract19096.shtml
    [29] Zhang J H, Xia Y Q, Shi P. Design and stability analysis of networked predictive control systems. IEEE Transactions on Control Systems Technology, 2013, 21(4):1495-1501 doi: 10.1109/TCST.2012.2208967
    [30] Pang Z H, Liu G P, Zhou D H. Design and performance analysis of incremental networked predictive control systems. IEEE Transactions on Cybernetics, 2016, 46(6):1400-1410 doi: 10.1109/TCYB.2015.2448031
    [31] Tang X M, Ding B C. Model predictive control of linear systems over networks with data quantizations and packet losses. Automatica, 2013, 49(5):1333-1339 doi: 10.1016/j.automatica.2013.02.033
    [32] Zou Y Y, Lam J, Niu Y G, Li D W. Constrained predictive control synthesis for quantized systems with Markovian data loss. Automatica, 2015, 55:217-225 doi: 10.1016/j.automatica.2015.03.016
    [33] Franzé G, Tedesco F, Famularo D. Model predictive control for constrained networked systems subject to data losses. Automatica, 2015, 54:272-278 doi: 10.1016/j.automatica.2015.02.018
    [34] Liu G P, Xia Y Q, Chen J, Rees D, Hu W S. Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Transactions on Industrial Electronics, 2007, 54(3):1282-1297 doi: 10.1109/TIE.2007.893073
    [35] Liu G P. Predictive controller design of networked systems with communication delays and data loss. IEEE Transactions on Circuits & Systems Ⅱ:Express Briefs, 2010, 57(6):481-485 http://cn.bing.com/academic/profile?id=f8d87bda88cb37b882a440fc56910799&encoded=0&v=paper_preview&mkt=zh-cn
    [36] Zhao Y, Gao H J, Chen T W. Fuzzy constrained predictive control of non-linear systems with packet dropouts. IET Control Theory & Applications, 2010, 4(9):1665-1677 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a15a44b4b7d33170106dd2fbb11c6336
    [37] Quevedo D E, Nešić D. Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses. Automatica, 2012, 48(8):1803-1811 doi: 10.1016/j.automatica.2012.05.046
    [38] 王飞跃, 莫红.关于二型模糊集合的一些基本问题.自动化学报, 2017, 43(7):1114-1141 http://www.aas.net.cn/CN/abstract/abstract19087.shtml

    Wang Fei-Yue, Mo Hong. Some fundamental issues on type-2 fuzzy Sets. Acta Automatica Sinica, 2017, 43(7):1114-1141 http://www.aas.net.cn/CN/abstract/abstract19087.shtml
    [39] Lu Q, Shi P, Lam H K, Zhao Y X. Interval type-2 fuzzy model predictive control of nonlinear networked control systems. IEEE Transactions on Fuzzy Systems, 2015, 23(6):2317-2328 doi: 10.1109/TFUZZ.2015.2417975
    [40] Lam H K, Li H Y, Deters C, Secco E L, Wurdemann H A, Althoefer K. Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Transactions on Industrial Electronics, 2014, 61(2):956-968 doi: 10.1109/TIE.2013.2253064
    [41] Xiao B, Lam H K, Li H Y. Stabilization of interval type-2 polynomial-fuzzy-model-based control systems. IEEE Transactions on Fuzzy Systems, 2017, 25(1):205-217 doi: 10.1109/TFUZZ.2016.2554153
    [42] Zhang H, Shi Y, Wang J M. Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays. International Journal of Control, 2013, 86(10):1824-1836 doi: 10.1080/00207179.2013.797107
    [43] Alessandri A, Baglietto M, Battistelli G. On estimation error bounds for receding-horizon filters using quadratic boundedness. IEEE Transactions on Automatic Control, 2004, 49(8):1350-1355 doi: 10.1109/TAC.2004.832652
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2445
  • HTML全文浏览量:  526
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-28
  • 录用日期:  2018-03-16
  • 刊出日期:  2019-03-20

目录

    /

    返回文章
    返回