2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车队速度滚动时域动态规划及非线性控制

王琼 郭戈

王琼, 郭戈. 车队速度滚动时域动态规划及非线性控制. 自动化学报, 2019, 45(5): 888-896. doi: 10.16383/j.aas.c170442
引用本文: 王琼, 郭戈. 车队速度滚动时域动态规划及非线性控制. 自动化学报, 2019, 45(5): 888-896. doi: 10.16383/j.aas.c170442
WANG Qiong, GUO Ge. Platoon Speed Receding Horizon Dynamic Programming and Nonlinear Control. ACTA AUTOMATICA SINICA, 2019, 45(5): 888-896. doi: 10.16383/j.aas.c170442
Citation: WANG Qiong, GUO Ge. Platoon Speed Receding Horizon Dynamic Programming and Nonlinear Control. ACTA AUTOMATICA SINICA, 2019, 45(5): 888-896. doi: 10.16383/j.aas.c170442

车队速度滚动时域动态规划及非线性控制

doi: 10.16383/j.aas.c170442
基金项目: 

国家自然科学基金 61273107

国家自然科学基金 61573077

详细信息
    作者简介:

    王琼  大连理工大学控制理论与控制工程专业博士.主要研究方向为车辆协作控制技术.E-mail:wangqiong0705@163.com

    通讯作者:

    郭戈  东北大学教授.1998年获得东北大学控制理论与控制工程专业博士学位.主要研究方向为智能交通系统, 运动目标检测跟踪网络.本文通信作者.E-mail:geguo@yeah.net

Platoon Speed Receding Horizon Dynamic Programming and Nonlinear Control

Funds: 

National Natural Science Foundation of China 61273107

National Natural Science Foundation of China 61573077

More Information
    Author Bio:

    Ph. D. candidate in control theory and control engineering, Dalian University of Technology. Her main research interest is vehicle cooperative control technology

    Corresponding author: GUO Ge Professor at Northeastern University. He received his Ph. D. degree from Northeastern University in 1998. His research interest covers intelligent transportation system, moving target detection and tracking with network. Corresponding author of this paper
  • 摘要: 考虑自主车辆队列的节能安全问题,本文提出一种车辆队列协同控制方法,该方法可保证车队低能耗安全行驶.首先,充分考虑道路坡度以及车队异质性建立车队非线性模型,利用基于油耗模型的优化指标构建车队速度优化问题,提出一种滚动时域动态规划算法(Receding horizon dynamic programming,RHDP),获得车队的参考速度.然后,基于非线性车辆模型,运用反步法设计车辆跟踪控制器,并进行车队队列稳定性分析.这种协同控制方法的有效性已通过数值仿真和智能交通实验平台的验证.
    1)  本文责任编委 吕宜生
  • 图  1  车辆队列

    Fig.  1  A vehicular platoon

    图  2  滚动时域动态规划

    Fig.  2  Illustration of the receding dynamic programming

    图  3  路况图

    Fig.  3  Scenario of road

    图  4  最优参考速度曲线

    Fig.  4  The profile of the fuel-efficient velocity

    图  5  车辆速度曲线

    Fig.  5  Profile of the velocity

    图  6  车间距误差曲线

    Fig.  6  Profile of the spacing error

    图  7  领头车速度曲线

    Fig.  7  Profile of the leader's velocity

    图  8  车辆速度曲线

    Fig.  8  Profile of the velocity

    图  9  车间距误差曲线

    Fig.  9  Profile of the spacing error

    图  10  车队实验

    Fig.  10  Arduino platoon in the experiment

    图  11  Arduino小车实验

    Fig.  11  Arduino car experiments

    表  1  油耗对比

    Table  1  Comparison on fuel consumed

    第$i$辆车,基于速度基于速度
    车重规划的油耗(mL)设定的油耗[9] (mL)
    0, 20 t476.7625.4
    1, 20 t302.3384.1
    2, 35 t396.2488.5
    3, 40 t427.7523.4
    4, 40 t427.6523.3
    总油耗2 030.52 544.7
    下载: 导出CSV
  • [1] Alam A. Fuel-Efficient Heavy-Duty Vehicle Platooning [Ph. D. dissertation], KTH Royal Institute of Technology, 2014.
    [2] European Commission. EU Transport in Figures-Statistical Pocketbook. Luxembourg: European Commission, 2014. http://www.chinautc.com/templates/H_guojidongtai/content.aspx?nodeid=3998&page=ContentPage&contentid=77934
    [3] Shladover S E. PATH at 20-history and major milestones. In: Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada: IEEE, 2006. 1-22-1-29 https://www.researchgate.net/publication/3428064_PATH_at_20-History_and_Major_Milestones
    [4] Hellström E, Åslund J, Nielsen L. Design of an efficient algorithm for fuel-optimal look-ahead control. Control Engineering Practice, 2010, 18(11): 1318-1327 doi: 10.1016/j.conengprac.2009.12.008
    [5] Bonnet C, Fritz H. Fuel consumption reduction in a platoon: experimental results with two electronically coupled trucks at close spacing. In: Proceedings of the Future Transportation Technology Conference & Exposition. Costa Mesa, USA, 2000.
    [6] Al Alam A, Gattami A, Johansson K H. An experimental study on the fuel reduction potential of heavy duty vehicle platooning. In: Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Funchal: IEEE, 2010. 306-311 https://www.researchgate.net/publication/224190659_An_experimental_study_on_the_fuel_reduction_potential_of_heavy_duty_vehicle_platooning
    [7] Shladover S E. Longitudinal control of automotive vehicles in close-formation platoons. Journal of Dynamic Systems, Measurement, and Control, 1991, 113(2): 231-241 doi: 10.1115/1.2896370
    [8] Dolk V S, Ploeg J, Heemels W P M H. Event-triggered control for string-stable vehicle platooning. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3486-3500 doi: 10.1109/TITS.2017.2738446
    [9] Stankovic S S, Stanojevic M J, Siljak D D. Decentralized overlapping control of a platoon of vehicles. IEEE Transactions on Control Systems Technology, 2000, 8(5): 816-832 doi: 10.1109/87.865854
    [10] Guo G, Yue W. Autonomous platoon control allowing range-limited sensors. IEEE Transactions on Vehicular Technology, 2012, 61(7): 2901-2912 doi: 10.1109/TVT.2012.2203362
    [11] Yue W, Wang L Y, Guo G. Event-triggered platoon control of vehicles with time-varying delay and probabilistic faults. Mechanical Systems and Signal Processing, 2017, 87: 96-117 doi: 10.1016/j.ymssp.2016.09.042
    [12] Wang Q, Guo G, Cai B B. Distributed receding horizon control for fuel-efficient and safe vehicle platooning. Science China Technological Sciences, 2016, 59(12): 1953-1962 doi: 10.1007/s11431-016-0856-8
    [13] Wang C, Nijmeijer H. String stable heterogeneous vehicle platoon using cooperative adaptive cruise control. In: Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas, Spain: IEEE, 2015. 1977-1982 https://www.researchgate.net/publication/308819306_String_Stable_Heterogeneous_Vehicle_Platoon_Using_Cooperative_Adaptive_Cruise_Control
    [14] Zheng Y, Li S E, Wang J Q, Cao D P, Li K Q. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 14-26 doi: 10.1109/TITS.2015.2402153
    [15] Guo X G, Wang J L, Liao F, Teo R S H. Distributed adaptive integrated-sliding-mode controller synthesis for string stability of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2419-2429 doi: 10.1109/TITS.2016.2519941
    [16] Harfouch Y A, Yuan S, Baldi S. An adaptive switched control approach to heterogeneous platooning with inter-vehicle communication losses. IEEE Transactions on Control of Network Systems, 2017, DOI: 10.1109/TCNS.2017.2718359
    [17] 田涛涛, 侯忠生, 刘世达, 邓志东.基于无模型自适应控制的无人驾驶汽车横向控制方法.自动化学报, 2017, 43(11): 1931-1940 http://www.aas.net.cn/CN/abstract/abstract19168.shtml

    Tian Tao-Tao, Hou Zhong-Sheng, Liu Shi-Da, Deng Zhi-Dong. Model-free adaptive control based lateral control of self-driving car. Acta Automatica Sinica, 2017, 43(11): 1931-1940 http://www.aas.net.cn/CN/abstract/abstract19168.shtml
    [18] 孙景亮, 刘春生.基于自适应动态规划的导弹制导律研究综述.自动化学报, 2017, 43(7): 1101-1113 http://www.aas.net.cn/CN/abstract/abstract19086.shtml

    Sun Jing-Liang, Liu Chun-Sheng. An overview on the adaptive dynamic programming based missile guidance law. Acta Automatica Sinica, 2017, 43(7): 1101-1113 http://www.aas.net.cn/CN/abstract/abstract19086.shtml
    [19] Schwarzkopf A B, Leipnik R B. Control of highway vehicles for minimum fuel consumption over varying terrain. Transportation Research, 1977, 11(4): 279-286 doi: 10.1016/0041-1647(77)90093-4
    [20] Hooker J N. Optimal driving for single-vehicle fuel economy. Transportation Research, Part A: General, 1988, 22(3): 183-201 doi: 10.1016/0191-2607(88)90036-2
    [21] Hellström E, Åslund J, Nielsen L. Design of a well-behaved algorithm for on-board look-ahead control. IFAC Proceedings of Volumes, 2008, 41(2): 3350-3355 doi: 10.3182/20080706-5-KR-1001.00569
    [22] Van Mierlo J, Maggetto G, Van de Burgwal E, Gense R. Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004, 218(1): 43-50 doi: 10.1243/095440704322829155
    [23] Taniguchi M. Eco-driving and fuel economy of passenger cars. In: Proceedings of the Annual Meeting of IEE Japan. IEE, 2008. S215-S218
    [24] Kamal M A S, Mukai M, Murata J, Kawabe T. Ecological driver assistance system using model-based anticipation of vehicle-road-traffic information. IET Intelligent Transport Systems, 2010, 4(4): 244-251 doi: 10.1049/iet-its.2009.0127
    [25] 丁进良, 杨翠娥, 陈立鹏, 柴天佑.基于参考点预测的动态多目标优化算法.自动化学报, 2017, 43(2): 313-320 http://www.aas.net.cn/CN/abstract/abstract19009.shtml

    Ding Jin-Liang, Yang Cui-E, Chen Li-Peng, Chai Tian-You. Dynamic multi-objective optimization algorithm based on reference point prediction. Acta Automatica Sinica, 2017, 43(2): 313-320 http://www.aas.net.cn/CN/abstract/abstract19009.shtml
    [26] Kamal M A S, Mukai M, Murata J, Kawabe T. Ecological vehicle control on roads with up-down slopes. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 783-794 doi: 10.1109/TITS.2011.2112648
    [27] Kamal A S, Mukai M, Murata J, Kawabe T. Model predictive control of vehicles on urban roads for improved fuel economy. IEEE Transactions on Control Systems Technology, 2013, 21(3): 831-841 doi: 10.1109/TCST.2012.2198478
    [28] Zhang B, Gao Z Y, Guo G. Fuel optimal vehicle control via traffic light prediction. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 10004-10009 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KZLL201707007015.htm
    [29] Goeke D, Schneider M. Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 2015, 245(1): 81-99 doi: 10.1016/j.ejor.2015.01.049
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2252
  • HTML全文浏览量:  401
  • PDF下载量:  675
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-02
  • 录用日期:  2018-03-12
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回