2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可编辑区块链: 模型、技术与方法

袁勇 王飞跃

李晓航, 朱芳来. 延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法. 自动化学报, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
引用本文: 袁勇, 王飞跃. 可编辑区块链: 模型、技术与方法. 自动化学报, 2020, 46(5): 831−846 doi: 10.16383/j.aas.2020.y000002
LI Xiao-Hang, ZHU Fang-Lai. Simultaneous Estimation of Actuator and Sensor Faults for Uncertain Time-delayed Markovian Jump Systems. ACTA AUTOMATICA SINICA, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
Citation: Yuan Yong, Wang Fei-Yue. Editable blockchain: models, techniques and methods. Acta Automatica Sinica, 2020, 46(5): 831−846 doi: 10.16383/j.aas.2020.y000002

可编辑区块链: 模型、技术与方法

doi: 10.16383/j.aas.2020.y000002
基金项目: 国家重点研发计划(2018AAA0101401), 国家自然科学基金(61533019, 71702182)资助
详细信息
    作者简介:

    袁勇:中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员, 中国自动化学会区块链专委会主任. 2008年获得山东科技大学计算机软件与理论专业博士学位. 主要研究方向为社会计算, 计算广告学与区块链. 本文通信作者.E-mail: yong.yuan@ia.ac.cn

    王飞跃:中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任, 国防科技大学军事计算实验与平行系统技术研究中心主任, 中国科学院大学中国经济与社会安全研究中心主任, 青岛智能产业技术研究院院长. 主要研究方向为平行系统的方法与应用, 社会计算, 平行智能以及知识自动化. E-mail: feiyue.wang@ia.ac.cn

Editable Blockchain: Models, Techniques and Methods

Funds: Supported by National Key R&D Program of China (2018AAA0101401), National Natural Science Foundation of China (61533019, 71702182)
  • 摘要: 可编辑区块链是区块链领域新兴而颇有争议的热点课题, 致力于在保障区块链安全可信等良好性质的前提下实现链上数据的可控编辑操作. 本文系统性地梳理和研究了可编辑区块链技术在信息安全和监管等领域面临的现实需求, 提出了可编辑区块链的工作框架, 并从数据修改、删除、插入、过滤和隐藏五个环节详细阐述了可编辑区块链的技术与方法, 最后讨论了该领域亟需解决的若干关键问题.
  • 马尔科夫跳变系统是一类包含连续时间状态变量和离散时间模态变量的混杂系统.在马尔科夫跳变系统中,离散的模态变量是一个在连续时间下具有离散模态的马尔科夫过程,其模态值取自一个有限的集合.马尔科夫跳变系统被广泛应用于那些存在突发故障或环境变化的系统中,包括电力系统、航空航天系统、制造业系统和网络控制系统等[1].近些年,马尔科夫跳变系统逐渐成为了控制理论领域的一个研究热点,主要研究包括稳定性与控制设计[2-15]、故障检测与容错控制[3, 16-20]、滤波及状态和故障估计[3, 7, 9, 16, 20, 21-24].在针对马尔科夫跳变系统估计问题的研究中,文献[9]针对奇异马尔科夫跳变系统设计了观测器.文献[16]基于描述系统的方法,对一类具有延迟和非线性项的马尔科夫跳变系统设计了滑模观测器,给出了系统状态和传感器故障的估计,并将其应用到容错控制中.文献[20]针对一类具有伊藤型随机运动的马尔科夫跳变系统处理了容错控制问题.针对无法在线实时获得系统模态的广义马尔科夫跳变系统,文献[21]研究了部分模态依赖观测器和控制器设计问题.文献[7, 22]考虑了状态估计和滤波问题.文献[23]针对具有非线性扰动的描述马尔科夫跳变系统设计全维和降维观测器来估计系统的状态.文献[24]基于自适应观测器对马尔科夫跳变系统讨论了故障估计问题.在以上的介绍中,文献[7, 21-23]考虑的是马尔科夫跳变系统不具有执行器和传感器的情形,文献[24]只考虑了执行器故障的估计问题,虽然文献[16, 20]基于滑模观测器给出了执行器和传感器故障的同时估计,但是需要事先获知故障以及其导数的上界.由此可见,目前国内外对同时具有执行器和传感器故障的马尔科夫跳变系统进行状态、执行器故障和传感器故障同时估计的研究并不多见.此外,在实际系统中,延迟环节往往是导致系统不稳定的因素之一,状态转移概率也往往是在线估计获得的,具有一些不确定性,因此对于具有延迟环节和状态转移概率不确定性的情形进行相关议题的讨论具有重大意义.

    综上所述,本文针对一类具有不确定状态转移概率的延迟马尔科夫跳变系统设计了自适应观测器来同时估计执行器和传感器故障.本文的贡献在于:1) 在状态转移概率不确定的情形下,对一类具有延迟环节和参数不确定性的马尔科夫跳变系统给出了执行器和传感器故障的同时估计;2) 本文假设状态转移概率矩阵是其估计值且具有不确定性,相较于基于精确状态转移概率矩阵的文献[16, 20]更具实用性;3) 本文设计过程中无需事先获知执行器或传感器故障的任何信息,比如,文献[16]要求传感器上界已知等,因此本文具有更小的保守性.

    考虑如下在概率空间$({ \rm {\Omega }},{ {F}},{{P}})$上具有参数不确定性的线性延迟马尔科夫跳变系统

    $\left\{ \begin{array}{*{35}{l}} \dot{x}(t)=(A({{r}_{t}})+\Delta A({{r}_{t}}))x(t)~+ \\ ~~~~~~~{{A}_{d}}({{r}_{t}})x(t-\tau )+B({{r}_{t}})u(t)+D({{r}_{t}}){{f}_{a}}(t) \\ y(t)=C({{r}_{t}})x(t)+G({{r}_{t}}){{f}_{s}}(t) \\ x(t)=\phi (t),t\in [\begin{matrix} -\tau &0 \\ \end{matrix}] \\ \end{array} \right.$

    (1)

    其中,${\rm{\Omega }}$是样本空间,${ {F}}$是样本空间上的 $\sigma$-代数子集,${ {P}}$为概率测度. ${\pmb x}(t) \in {{\bf R}^n}$,${\pmb u}(t)\in {{\bf R}^m}$分别为系统状态和控制输入. ${{\pmb f}_a}(t) \in{{\bf R}^q}$和${{\pmb f}_s}(t) \in {{\bf R}^w}$分别是未知的执行器故障和传感器故障[16, 20].$\left\{ {{r_t}} \right\}$是在有限集${ S} = \left\{ {1,\cdots,s}\right\}$内取值的连续时间离散状态的马尔科夫过程,它具有如下状态转移概率:

    ${P_r}({r_{t + h}} = j|{r_t} = i) = \left\{ \begin{array}{l}{\pi _{ij}}h + o(h),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}~~~~~ i \ne j\\1 + {\pi _{ii}}h + o(h),{\kern 1pt} {\kern 1pt} {\kern 1pt} i = j\end{array} \right.$

    其中$h > 0$,$\mathop {\lim }_{h \to 0} {{o(h)}}/{h} = 0$,${\pi _{ij}}$是从时间$t$处状态$i$到时间$t + h$处状态$j$的状态转移概率,且有${\pi _{ii}} = -\sum\nolimits_{j = 1,i \ne j}^s {{\pi _{ij}}} $,${\pi _{ij}}\ge 0$. 定义$\Pi = \left\{ {{\pi _{ij}}}\right\}$为未知的状态转移概率矩阵,且满足

    $\Pi \subseteq \left\{ \hat{\Pi }+\Delta \Pi :\left| \Delta {{\pi }_{ij}} \right|\le {{\kappa }_{ij}},{{\kappa }_{ij}}\ge 0,i\ne j,i,j\in S \right\}$

    其中~$\hat \Pi = \left\{ {{{\hat \pi }_{ij}}}\right\}$是已知的常数矩阵,${\hat \pi _{ij}} \ge 0,~i \ne j,$$i,j \in { S}$ 是${\pi _{ij}}$的估计值,$\Delta \Pi = \left\{ {\Delta {\pi _{ij}}} \right\}$表示状态转移速率矩阵中的不确定性,$\Delta {\pi _{ij}}$为速率估计误差,并且在有限集$[{\begin{array}{*{20}{c}}{ - {\kappa _{ij}}}&{{\kappa _{ij}}}\end{array}}]$中取值,对于$i \in { S}$,有${\hat \pi _{ii}}=-\sum\nolimits_{j = 1,i \ne j}^s {{{\hat \pi }_{ij}}}$和$\Delta {\pi _{ii}} = - \sum\nolimits_{j = 1,i \ne j}^s {\Delta {\pi _{ij}}} $. $A({r_t})$,${A_d}({r_t})$,$B({r_t})$,$D({r_t})$,$C({r_t})$和$G({r_t})$是具有适当维数关于${r_t}$的矩阵函数. $\Delta A({r_t})$是表示参数不确定性的未知矩阵,并假设$\Delta A({r_t}) =M({r_t})F({r_t},t)H({r_t})$,其中$M({r_t})$和$H({r_t})$是已知的常矩阵,$F({r_t},t)$是未知的时变矩阵满足${F^{\rm T}}({r_t},t)F({r_t},t)\le I$. $\tau > 0$是已知的延迟时间.函数${\pmb \phi}(t)$是在$[{\begin{array}{*{20}{c}} { - \tau }&0\end{array}}]$上的初始状态,系统初始模态为${r_0}$.假设${G(r_t)}$是列满秩.

    注 1.本文假设${G(r_t)}$是列满秩是具有一般性的,许多关于传感器故障估计的文献都用到了此假设\[16, 20, 25].关于参数不确定性$\Delta A({r_t}) =M({r_t})F({r_t},t)H({r_t})$的假设也在针对不确定性系统问题的研究中被频繁应用[26-27].

    为了表示方便,我们定义对任意矩阵${ \Psi}$有${ \Psi}({r_t} = i) = {{\Psi}_i}$,${\kern 1pt} i \in {\bf S}$,任意变量${\pmb \chi} (t)$有${\pmb \chi}(t) = {\pmb \chi}$.

    定义 1. 定义变量${\pmb \Im} = \{ {\pmb \Im} (t)\}\in {L_2}[\begin{array}{*{20}{c}} 0&\infty\end{array})$,则它的${L_2}$范数为${\left\| {\pmb \Im} \right\|_{_2}} = \sqrt {\int_0^\infty {{\pmb \Im} {{(t)}^{\rm T}}{\pmb \Im} (t){\rm d}t} } $.

    定义 2[25]. 对于$\tau > 0$,如果对于${\pmb u}\equiv {\bf 0}$,${\Delta}A_i \equiv {\bf 0}$,${\pmb f}_a \equiv{\bf 0}$,${\pmb f}_s \equiv {\bf 0}$,初始条件$({{\pmb x}_0},{r_0})$和所有定义在$[{\begin{array}{*{20}{c}} { - \tau }&0\end{array}}]$上的有限函数${\pmb \phi}(t)$,有

    $\left[{\mathop{\rm E}\nolimits} \int_0^\infty {{{\pmb x}^{\rm T}}(t){\pmb x}}(t){\rm d}t|{{\pmb x}_0},{\pmb \phi}(t),{r_0}\right] \le \infty $

    其中${\mathop{\rm E}\nolimits}$表示数学期望,则系统(1) 是随机稳定的.

    定义 3[28].对马尔科夫跳变系统形如

    \begin{equation}\left\{\begin{array}{l}\dot {\pmb x}(t) = {A_i}{\pmb x}(t) + {B_i}{\pmb u}(t) + {B_{\omega i}}{\pmb \omega} (t)\\{\pmb z}_\omega(t) = {C_i}{\pmb x}(t) + {D_i}{\pmb u}(t) +{D_{\omega i}}{\pmb \omega} (t)\end{array} \right.\end{equation}

    (2)

    其中~${\pmb \omega}(t)$表示干扰. 如果对于$λ >0$,存在常数$M({{\pmb x}_0},{r_0})$且$M(0,{r_0}) = 0$,满足

    $\begin{array}{l}\Big[{\mathop{\rm E}\nolimits} \displaystyle \int_0^\infty {{{\pmb z}_{\omega}^{\rm T}}(t){\pmb z}_{\omega}(t){\rm d}t|{{\pmb x}_0},{r_0}{\Big]^{\frac{1}{2}}}} \le ~~~~~~~~~~~~~~~\\ ~~~~~~~~~~~~~~~~~~~~~~\gamma {[\left\| {{\pmb \omega} (t)} \right\|_2^2 + M({{\pmb x}_0},{r_0})]^{\frac{1}{2}}}\end{array}$

    则系统(2) 是随机稳定且具有${H_\infty }$干扰抑制指数$λ$.

    引理 1. 对于标量$\sigma > 0$和实矩阵${\Theta }_1$,${\Theta}_2$有

    ${{\Theta }_1 ^{\rm T}}{\Theta}_2 + {{\Theta}_2 ^{\rm T}}{\Theta }_1 \le {\sigma ^{ - 1}}{{\Theta }_1 ^{\rm T}}{\Theta }_1 + \sigma {{\Theta}_2 ^{\rm T}}{\Theta}_2 $

    引理 2. 令矩阵$U$,$V'$和$F'(t)$为任意适当的实数矩阵,其中$U$和$V'$为已知,$F'(t)$为未知且满足${F'^{\rm T}}(t)F'(t) \le I$,对于$\varepsilon> 0$,如下不等式

    $UF'(t)V' + {V'^{\rm T}}{F'^{\rm T}}(t){U^{\rm T}}\le \varepsilon U{U^{\rm T}} + {\varepsilon ^{ - 1}}{V'^{\rm T}}V'$

    是成立的.

    假设 1. ${{\pmb f}_a}$是可微的,且${\dot {\pmb f}_a} \in{L_2}[0\ \infty )$.

    注 2.本文所设计方法可以适用于任何有界连续的传感器故障和满足假设1的执行器故障,且设计过程不需要知道有关故障的任何信息,例如故障的上界[16]和故障导数的上界[20]等.在实际应用中,故障往往都是经过一个暂态的变化之后几乎保持不变的,即满足${\dot{\pmb f}_a} \in {L_2}[0\ \infty )$.相比于文献[29]中关于${\dot {\pmb f}_a}$有界的假设,文中对于执行器故障的假设1更具有一般性.

    为了能达到传感器故障和状态同时估计的目的,定义一个新的变量$\bar{\pmb x} = \left[{\begin{array}{*{20}{c}}{\pmb x}\\{{{\pmb f}_s}}\end{array}} \right] \in {{\bf R}^{n + w}}$,相应地,记${\bar A_i} = [{{A_i}}\ {{0_{n × w}}}]$,${\bar C_i} =[{{C_i}}\ {{G_i}}]$,$E =[{{I_n}}\ {{0_{n × w}}}]$.于是,系统(1) 可以写为

    \begin{equation}\left\{ \begin{array}{l}E\dot {\bar {\pmb x}} = {{\bar A}_i}\bar {\pmb x} + \Delta {A_i}{\pmb x} + {A_{di}}{\pmb x}(t - \tau )+ \\ ~~~~~~~~~~{B_i}{\pmb u} + {D_i}{{\pmb f}_a}\\{\pmb y} = {{\bar C}_i}\bar {\pmb x}\end{array} \right.\end{equation}

    (3)

    系统(3) 是一个广义描述系统,状态包括原系统的状态和传感器故障.如果能够针对系统(3) 设计一个观测器,就能够同时得到原系统的状态和传感器故障的估计.

    针对系统(3) ,本节将提出一种能同时估计系统状态、执行器和传感器故障的自适应观测器.

    设计如下自适应观测器系统

    \begin{equation}\left\{ \begin{array}{l}\dot {\pmb z} = {N_i}{\pmb z} + {L_i}{\pmb y} + {T_i}{B_i}{\pmb u}+ \\ ~~~~~~~~{T_i}{D_i}{{\hat {\pmb f}}_a} + {T_i}{A_{di}}\hat {\pmb x}(t - \tau )\\\hat {\bar {\pmb x}} = {\pmb z} + {Q_i}{\pmb y}\\{{\dot {\hat {\pmb f}}}_a} = {\Phi _i}({\pmb y} - \hat {\pmb y})\end{array} \right.\end{equation}

    (4)

    其中${\pmb z} \in {{\bf R}^{n + w}}$为观测器中间变量,$\hat {\bar {\pmb x}} = \left[{\begin{array}{*{20}{c}}{\hat {\pmb x}}\\{{{\hat {\pmb f}}_s}}\end{array}} \right]$为$\bar {\pmb x} = \left[{\begin{array}{*{20}{c}}{\pmb x}\\{{{\pmb f}_s}}\end{array}} \right]$的估计,${\hat {\pmb f}_a}$为执行器故障${{\pmb f}_a}$的估计,$\hat {\pmb x}(t - \tau )$为延迟状态${\pmb x}(t - \tau )$的估计. ${N_i}$,${L_i}$,${T_i}$,${Q_i}$和${\Phi _i}$为适当维数的待定矩阵.本文的主要目标就是求取矩阵${N_i}$,${L_i}$,${T_i}$,${Q_i}$和${\Phi _i}$使得系统(4) 可以在${H_\infty }$的意义下估计系统(3) 的状态,同时可以给出执行器故障${{\pmb f}_a}$在${H_\infty }$意义下的估计.

    因为${G_i}$是列满秩,我们可以得到$\left[{\begin{array}{*{20}{c}}E\\{{{\bar C}_i}}\end{array}} \right] = \left[{\begin{array}{*{20}{c}}{{I_n}}&{{0_{n × w}}}\\{{C_i}}&{{G_i}}\end{array}} \right]$也是列满秩的.因此存在矩阵${T_i} \in {{\bf R}^{(n + w) × n}}$和${Q_i} \in {{\bf R}^{(n + w) × p}}$满足

    \begin{equation}{T_i}E + {Q_i}{\bar C_i} = {I_{n + w}}\end{equation}

    (5)

    且其中一组特解为

    $\begin{align} &{{T}_{i}}={{\left[ \begin{matrix} E \\ {{{\bar{C}}}_{i}} \\ \end{matrix} \right]}^{-1}}\left[ \begin{array}{*{35}{l}} {{I}_{n}} \\ {{0}_{p\times n}} \\ \end{array} \right] \\ &{{Q}_{i}}={{\left[ \begin{matrix} E \\ {{{\bar{C}}}_{i}} \\ \end{matrix} \right]}^{-1}}\left[ \begin{array}{*{35}{l}} {{0}_{p\times n}} \\ {{I}_{p}} \\ \end{array} \right] \\ \end{align}$

    (6)

    其中"$-1$''为矩阵的Moore-Penrose逆.

    定义观测误差${\pmb { e}} = \bar {\pmb x} - \hat {\bar {\pmb x}}$,由系统(4) 中的第二式和式(5) 可得

    ${\pmb { e}} = \bar {\pmb x} -{\pmb z} - {Q_i}{\bar C_i}\bar {\pmb x} = ({I_{n + w}} -{Q_i}{\bar C_i})\bar {\pmb x} - {\pmb z} = {T_i}E\bar {\pmb x} -{\pmb z}$

    因此误差的动态方程为

    \begin{equation}\begin{array}{l}\dot {\pmb { e}} = {T_i}E\dot {\bar {\pmb x}} - \dot {\pmb z} =\\ ~~~~~~~~{T_i}{{\bar A}_i}\bar {\pmb x} + {T_i}\Delta {A_i}{\pmb x} + {T_i}{A_{di}}{\pmb x}(t - \tau ) + {T_i}{B_i}{\pmb u}+ \\ ~~~~~~~~{T_i}{D_i}{{\pmb f}_a} - {N_i}{\pmb z} - {L_i}{\pmb y}- \\ ~~~~~~~~{T_i}{B_i}{\pmb u} - {T_i}{D_i}{{\hat {\pmb f}}_a} - {T_i}{A_{di}}\hat {\pmb x}(t - \tau ) =\\ ~~~~~~~~ {T_i}{{\bar A}_i}\bar {\pmb x} + {T_i}\Delta {A_i}{\pmb x} + {T_i}{A_{di}}{\pmb x}(t - \tau )+ \\ ~~~~~~~~ {T_i}{B_i}{\pmb u} + {T_i}{D_i}{{\pmb f}_a} - {N_i}{\pmb z} - {L_i}{\pmb y}- \\ ~~~~~~~~{T_i}{B_i}{\pmb u} - {T_i}{D_i}{{\hat {\pmb f}}_a} - {T_i}{A_{di}}\hat {\pmb x}(t - \tau )+ \\ ~~~~~~~~ {N_i}{T_i}E\bar {\pmb x} - {N_i}{T_i}E\bar {\pmb x} =\\ ~~~~~~~~{N_i}{\pmb { e}} + ({T_i}{{\bar A}_i} - {L_i}{{\bar C}_i} - {N_i}{T_i}E)\bar {\pmb x}+ \\ ~~~~~~~~{T_i}{D_i}{{\tilde {\pmb f}}_a} + {T_i}{A_{di}}\tilde {\pmb x}(t - \tau ) + {T_i}\Delta {A_i}{\pmb x}\end{array}\end{equation}

    (7)

    其中${\tilde {\pmb f}_a} = {{\pmb f}_a} - {\hat {\pmb f}_a}$,$\tilde {\pmb x}(t - \tau ) = {\pmb x}(t - \tau ) - \hat {\pmb x}(t - \tau )$. 如果待定矩阵${N_i} \in {{\bf R}^{(n + w) × (n + w)}}$ 和${L_i} \in {{\bf R}^{(n + w) × p}}$满足

    \begin{equation}{T_i}{\bar A_i} - {L_i}{\bar C_i} - {N_i}{T_i}E = 0\end{equation}

    (8)

    则式(7) 可以化简为

    \begin{equation}\dot {\pmb { e}} = {N_i}{\pmb { e}} + {T_i}{D_i}{\tilde {\pmb f}_a} + {T_i}{A_{di}}\tilde {\pmb x}(t - \tau ) + {T_i}\Delta {A_i}{\pmb x}\end{equation}

    (9)

    不难发现满足式(8) 的一组解为

    \begin{equation}{N_i} = {T_i}{\bar A_i} - {K_i}{\bar C_i}\end{equation}

    (10)

    \begin{equation}{L_i} = {K_i} + {N_i}{Q_i}\end{equation}

    (11)

    其中${K_i}$为具有适当维数的任意矩阵.

    由系统(4) 中第三式和假设1可以得到

    \begin{equation}{\dot {\tilde{\pmb f}}_a}={\dot {\pmb f}_a} - {\Phi _i}{\bar C_i}{\pmb {e}}\end{equation}

    (12)

    为了能够方便地求取矩阵${K_i}$和${\Phi_i}$,定义一个新的变量${\pmb \zeta} = \left[{\begin{array}{*{20}{c}}{\pmb { e}}\\{{{\tilde {\pmb f}}_a}}\end{array}} \right] \in {{\bf R}^{n + w + q}}$,则误差方程(9) 和(12) 可以合并为

    \begin{equation}\dot {\pmb \zeta} = ({\hat A_i} - {\hat L_i}{\hat C_i}){\pmb \zeta} + {\hat D_i}{\pmb v} + {\hat A_{di}}{\pmb \zeta}(t - \tau ) + \Delta {\hat A_i}{\pmb x}\end{equation}

    (13)

    其中${\hat A_i} = \left[{\begin{array}{*{20}{c}}{{T_i}{{\bar A}_i}}&{{T_i}{D_i}}\\{{0_{q × (n + w)}}}&{{0_{q × q}}}\end{array}} \right]$,${\hat L_i} = \left[{\begin{array}{*{20}{c}}{{K_i}}\\{{\Phi _i}}\end{array}} \right]$,${\hat C_i} = \left[{\begin{array}{*{20}{c}}{{{\bar C}_i}}&{{0_{p × q}}}\end{array}} \right]$,${\hat D_i} = \left[{\begin{array}{*{20}{c}}{{0_{(n + w) × q}}}\\{{I_q}}\end{array}} \right]$,${\hat A_{di}} = \left[{\begin{array}{*{20}{c}}{{T_i}{{\bar A}_{di}}}&{{0_{(n + w) × q}}}\\{{0_{q × (n + w)}}}&{{0_{q × q}}}\end{array}} \right]$,$\Delta {\hat A_i} = {\hat M_i}{\hat F_i}(t){\hat N_i}$,${\bar A_{di}} = \left[{\begin{array}{*{20}{c}}{{A_{di}}}&{{0_{n × w}}}\end{array}} \right]$,${\hat M_i} = \left[{\begin{array}{*{20}{c}}{{T_i}{M_i}}&{{0_{(n + w) × 1}}}\\{{0_{q × 1}}}&{{0_{q × 1}}}\end{array}} \right]$,${\hat F_i}(t) ={ \rm diag}\left\{{F_i}(t),{F_i}(t)\right\}$,${\hat N_i} = \left[{\begin{array}{*{20}{c}}{{N_i}}\\{{0_{1 × n}}}\end{array}} \right]$和~${\pmb v} = {\dot {\pmb f}_a}$.由${F_i}(t)$的性质可得${\hat F_i}(t)$同样满足$\hat F_i^{\rm T}(t){\hat F_i}(t) \le I$.

    由式(10) 、(11) 和(13) 可以看出,只要得到矩阵${\hat L_i}$使得式(13) 是鲁棒随机稳定的,观测器(4) 即可以实现.矩阵${K_i}$和${\Phi _i}$可由下式获得

    \begin{equation}\left\{ \begin{array}{l}{K_i} = [{\begin{array}{*{20}{c}} {{I_{n + w}}}&{{0_{(n + w)× q}}}\end{array}}]{{\hat L}_i}\\{\Phi _i} = [{\begin{array}{*{20}{c}} {{0_{q × (n +w)}}}&{{I_q}}\end{array}}]{{\hat L}_i}\end{array} \right.\end{equation}

    (14)

    下面的定理给出了本文的主要结论.该定理不仅给出了式(13) 的鲁棒稳定性的证明,还给出了矩阵${\hat L_i}$的求取方法.

    定理 1. 如果对于${λ _{ij}} > 0$,${\mu _{ij}} >0$,${\varepsilon _{1i}} > 0$ 和${\varepsilon _{2i}} > 0$,$i,j\in { S}$,存在对称正定矩阵 ${P_i} \in {{\bf R}^{(n + w + q)× (n + w + q)}}$,${R_i} \in {{\bf R}^{n× n}}$,$X \in{{\bf R}^{(n + w + q)× (n + w + q)}}$,$Z \in {\bf R}^{n× n}$,矩阵${Y_i} \in {{\bf R}^{(n + w + q) × p}}$和$\gamma> 0$ 使得下述凸优化问题(15) 有解(其中,$ * $表示矩阵的对称部分,这里对对称矩阵${\wp }$,${\wp } <0$表示对称矩阵${\wp }$ 是负定的),则误差系统(13) 是鲁棒随机稳定的,且具有${H_\infty}$干扰抑制水平$\gamma $.其中

    $$\begin{array}{l}{\Gamma _{1i}} = {P_i}{{\hat A}_i} - {Y_i}{{\hat C}_i} + \hat A_i^{\rm T}{P_i} - {({Y_i}{{\hat C}_i})^{\rm T}} + {I_{n + w + q}}+ \\ ~~~~~~~~~~\sum\limits_{j = 1,j \ne i}^s {\frac{{\kappa _{ij}^2}}{4}{λ _{ij}}{I_{n + w + q}} + } \sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j} + X}\end{array}$$ $$\begin{array}{l}{\Gamma _{2i}} = {R_i}{A_i} + A_i^{\rm T}{R_i} +Z+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\~~~~~~~~~~ \sum\limits_{P_i \hat L_i= Y_i}^s {{{\hat \pi }_{ij}}{R_j} + \sum\limits_{j = 1,j \ne i}^s {\frac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n}} }~~~~~~\end{array}$$ $$\begin{array}{l}{{\bar P}_i} = [\begin{array}{*{20}{c}} {{P_1} - {P_i}}& \cdots&{{P_{i-1}} - {P_i}}\end{array}\\~~~~{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}\begin{array}{*{20}{c}} { {P_{i + 1}-{P_i} }}& \cdots &{{P_s} -{P_i}}]\end{array}\end{array}$$ $$\begin{array}{l}{{\bar R}_i} = [\begin{array}{*{20}{c}} {{R_1} - {R_i}}& \cdots&{{R_{i-1}} - {R_i}}\end{array}\\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}\begin{array}{*{20}{c}} {{R_{i+1}} - {R_i}}& \cdots &{{R_s} -{R_i}}]\end{array}\end{array} $$ $$\begin{array}{l}{λ _{1i}} ={\rm diag}\big\{-{λ _{i1}}{I_{n + w + q}},\cdots ,- {λ _{i(i - 1) }}{I_{n + w + q}} ,\\ {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {λ _{i(i + 1) }}{I_{n + w +q}},\cdots ,- {λ _{is}}{I_{n + w + q}}\big\}\end{array} $$ $$\begin{array}{l}{λ _{2i}} = {\rm diag}\big\{-{\mu _{i1}}{I_n},\cdots,- {\mu_{i(i - 1) }}{I_n},\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} ~~~~~~~~~~~~~~~~~{\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\mu_{i(i + 1) }}{I_n},\cdots ,- {\mu_{is}}{I_n}\big\}~~~~~~~~~~~~~~~~~~~\end{array} $$

    \begin{equation} \left[{\begin{array}{*{20}{c}}{{\Gamma _{1i}}}&{{P_i}{{\hat A}_{di}}}&0&0&0&0&{{P_i}{{\hat D}_i}}&{{P_i}{{\hat M}_i}}&{{{\bar P}_i}}&0&0&0&0\\ * &{ - X}&0&0&0&0&0&0&0&0&0&0&0\\ *&* &{{\Gamma _{2i}}}&{{R_i}{A_d}_i}&{{R_i}{B_i}}&{{R_i}{D_i}}&0&0&0&{\hat N_i^{\rm T}}&{{R_i}{M_i}}&{N_i^{\rm T}}&{{{\bar R}_i}}\\ *&*&* &{ - Z}&0&0&0&0&0&0&0&0&0\\ *&*&*&* &{ - {\gamma ^2}{I_m}}&0&0&0&0&0&0&0&0\\ *&*&*&*&* &{ - {\gamma ^2}{I_q}}&0&0&0&0&0&0&0\\ *&*&*&*&*&* &{ - {\gamma ^2}{I_q}}&0&0&0&0&0&0\\ *&*&*&*&*&*&* &{ - \varepsilon _{1i}^{ - 1}{I_2}}&0&0&0&0&0\\ *&*&*&*&*&*&*&* &{ {λ _{1i}}}&0&0&0&0\\ *&*&*&*&*&*&*&*&* &{ - {\varepsilon _{1i}}{I_2}}&0&0&0\\ *&*&*&*&*&*&*&*&*&* &{ - \varepsilon _{2i}^{ - 1}{I_1}}&0&0\\ *&*&*&*&*&*&*&*&*&*&* &{ - {\varepsilon _{2i}}{I_1}}&0\\ *&*&*&*&*&*&*&*&*&*&*&* &{ {λ _{2i}}}\end{array}} \right]< 0\end{equation}

    (15)

    证明. 选取Lyapunov-Krasovskii函数

    $\begin{array}{l}V({\pmb \zeta},{\pmb x},i) = V({\pmb \zeta},i) + {\displaystyle\int}_{t - \tau }^t {{{\pmb \zeta} ^{\rm T}}(} \theta)X{\pmb \zeta} (\theta ){\rm d}\theta~ +\$2mm] ~~~~~~~~~~~~~~~~~~~~~V({\pmb x},i) + \displaystyle\int_{t - \tau }^t {{{\pmb x}^{\rm T}}(} \theta )Z{\pmb x}(\theta ){\rm d}\theta\end{array}$

    其中$V({\pmb \zeta},i) = {{\pmb \zeta}^{\rm T}}{P_i}{\pmb \zeta}$,$V({\pmb x},i) = {{\pmb x}^{\rm T}}{R_i}{\pmb x}$.定义对于具有马尔科夫过程的Lyapunov 函数的弱微分算子为

    $\ell V({\pmb \zeta} ,i) = V({\pmb \zeta},{r_t}) \cdot \frac{{{\rm d}{\pmb \zeta} }}{{\rm d}{t}}{|_{{r_t} = i}} + \sum\limits_{j \in{ S}} {{\pi _{ij}}V({\pmb \zeta},j)} $ $\ell V({\pmb x},i) =V({\pmb x},{r_t}) \cdot \frac{{{\rm d}{\pmb x}}}{{{\rm d}t}}{|_{{r_t} = i}} + \sum\limits_{j \in { S}} {{\pi_{ij}}V({\pmb x},j)} $

    因此对于任意 $i \in { S}$有

    \begin{equation*}\begin{array}{l} \ell V({\pmb\zeta},{\pmb x},i) = {{\pmb \zeta}^{\rm T}}({P_i}({{\hat A}_i} -{{\hat L}_i}{{\hat C}_i})+ \\~~~~~{({{\hat A}_i} -{{\hat L}_i}{{\hat C}_i})^{\rm T}}{P_i}){\pmb \zeta} + 2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat D}_i}{\pmb v}+ \\ ~~~~~2{{\pmb \zeta} ^{\rm T}}{P_i}\Delta {{\hat A}_i}{\pmb x} + 2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat A}_{di}}{\pmb \zeta} (t - \tau )+ \\ ~~~~~{{\pmb \zeta} ^{\rm T}}X{\pmb \zeta} - {{\pmb \zeta} ^{\rm T}}(t - \tau )X{\pmb \zeta} (t - \tau )+ \\ ~~~~~{{\pmb x}^{\rm T}}({R_i}{A_i} + A_i^{\rm T}{R_i}){\pmb x} + {{\pmb x}^{\rm T}}Z{\pmb x}+ \\ ~~~~~2{{\pmb x}^{\rm T}}{R_i}{B_i}{\pmb u} + 2{{\pmb x}^{\rm T}}{R_i}{D_i}{{\pmb f}_a}+ \\ ~~~~~2{{\pmb x}^{\rm T}}{R_i}{A_d}_i{\pmb x}(t - \tau ) + 2{{\pmb x}^{\rm T}}{R_i}\Delta {A_i}{\pmb x}- \\~~~~~{{\pmb x}^{\rm T}}(t - \tau )Z{\pmb x}(t - \tau )+ \\~~~~~ {{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1}^s {{\pi_{ij}}{P_j}{\pmb \zeta} } + {{\pmb x}^{\rm T}}\sum\limits_{j =1}^s {{\pi _{ij}}{R_j}{\pmb x}}\end{array}\end{equation*}

    (16)

    对于上式中的$2{{\pmb \zeta} ^{\rm T}}{P_i}\Delta {\hat A_i}{\pmb x}$和$2{{\pmb x}^{\rm T}}{R_i}\Delta {A_i}{\pmb x}$ 应用引理2可得,对于${\varepsilon _{1i}} > 0 $和${\varepsilon _{2i}} > 0$,$i\in { S}$有

    \begin{equation*}2{{\pmb \zeta} ^{\rm T}}{P_i}\Delta {\hat A_i}{\pmb x} \le {\varepsilon _{1i}}{{\pmb \zeta} ^{\rm T}}{P_i}{\hat M_i}\hat M_i^{\rm T}{P_i}{\pmb \zeta} + \varepsilon_{1i}^{ - 1}{{\pmb x}^{\rm T}}\hat N_i^{\rm T} {\hat N_i}{ {\pmb x}}\end{equation*}

    (17)

    \begin{equation*}2{{\pmb x}^{\rm T}}{R_i}\Delta {A_i}{\pmb x} \le {\varepsilon _{2i}}{{\pmb x}^{\rm T}}{R_i}{M_i}M_i^{\rm T}{R_i}{\pmb x} + \varepsilon _{2i}^{ - 1}{{\pmb x}^{\rm T}}N_i^{\rm T}{N_i}{\pmb x}\end{equation*}

    (18)

    此外,基于状态转移概率矩阵的特性我们可以分析得到

    $\begin{array}{l}\sum\limits_{j = 1}^s {{\pi _{ij}}{P_j}} = \sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} + \sum\limits_{j = 1}^s {\Delta {\pi _{ij}}{P_j}} =\\ ~~~~~~~~~~\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} + \sum\limits_{j = 1,j \ne i}^s {(\frac{{\Delta {\pi _{ij}}}}{2}({P_j} - {P_i})}+ \\ ~~~~~~~~~~\dfrac{{\Delta {\pi _{ij}}}}{2}({P_j} - {P_i}))\end{array}$

    对上式第二行最后一项应用引理1,可以得到对于$i,j \in { S},

    $\begin{align} &\sum\limits_{j=1}^{s}{{{\pi }_{ij}}{{P}_{j}}}\le \sum\limits_{j=1}^{s}{{{{\hat{\pi }}}_{ij}}{{P}_{j}}}+ \\ &\sum\limits_{j=1,j\ne i}^{s}{(\frac{\kappa _{ij}^{2}}{4}{{\lambda }_{ij}}{{I}_{n+w+q}}+\lambda 955;_{ij}^{-1}{{({{P}_{j}}-{{P}_{i}})}^{2}})} \\ \end{align}$

    (19)

    其中${\kappa _{ij}}$为$\Delta {\pi _{ij}}$的上界在第一部分已经被定义,${λ _{ij}} > 0$为任意标量.同理对于$i,j \in { S}$,${\mu _{ij}} > 0$有

    \begin{equation*}\begin{array}{l}\sum\limits_{j = 1}^s {{\pi _{ij}}{R_j}} \le \sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{R_j}} + \\ ~~~~~~~~~~\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n},+,} \mu _{ij}^{ - 1}{({R_j} - {R_i})^2})\end{array}\end{equation*}

    (20)

    将式(17) ~(20) 代入式(16) 可得

    $\begin{array}{l} \ell V({\pmb \zeta},x,i) \le {{\pmb \zeta} ^{\rm T}}({P_i}({{\hat A}_i} -{{\hat L}_i}{{\hat C}_i}) ~+\\~~~~~~ {({{\hat A}_i} - {{\hat L}_i}{{\hat C}_i})^{\rm T}}{P_i}){\pmb \zeta}+ 2{{\pmb \zeta}^{\rm T}}{P_i}{{\hat D}_i}{\pmb v }~+\\~~~~~~{\varepsilon _{1i}}{{\pmb \zeta}^{\rm T}}{P_i}{{\hat M}_i}\hat M_i^{\rm T}{P_i}{\pmb \zeta} +\varepsilon _{1i}^{ - 1}{{\pmb x}^{\rm T}}\hat N_i^{\rm T}{{\hat N}_i}{\pmb x} ~+\\~~~~~~2{{{\pmb \zeta}}^{\rm T}}{P_i}{{\hat A}_{di}}{{\pmb\zeta}} (t -\tau ) + {{ {\pmb \zeta}} ^{\rm T}}X{\pmb \zeta} ~- \\~~~~~~{{ {\pmb\zeta}} ^{\rm T}}(t - \tau )X{\pmb \zeta} (t - \tau)+ {{\pmb x}^{\rm T}}Z{\pmb x} ~+\\ ~~~~~~ {{\pmb x}^{\rm T}}({R_i}{A_i} + A_i^{\rm T}{R_i}){\pmb x}+ 2{{\pmb x}^{\rm T}}{R_i}{B_i}{\pmb u}~+ \\ ~~~~~~2{{\pmb x}^{\rm T}}{R_i}{D_i}{{\pmb f}_a} + {\varepsilon _{2i}}{{\pmb x}^{\rm T}}{R_i}{M_i}M_i^{\rm T}{R_i}{\pmb x} ~+ \\~~~~~~ \varepsilon _{2i}^{ - 1}{{\pmb x}^{\rm T}}N_i^{\rm T}{N_i}{\pmb x}+ 2{{\pmb x}^{\rm T}}{R_i}{A_d}_i{\pmb x}(t - \tau ) ~- \\~~~~~~{{\pmb x}^{\rm T}}(t - \tau )Z{\pmb x}(t - \tau )+ {{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} {\pmb \zeta} ~+\\~~~~~~{{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\displaystyle\frac{{\kappa _{ij}^2}}{4}{λ _{ij}}{I_{n+w+q}}} + λ _{ij}^{ - 1}{({P_j} - {P_i})^2}){\pmb \zeta} ~+\\~~~~~~{{\pmb x}^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{R_j}} {\pmb x}~+ \\~~~~~~ {{\pmb x}^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n} + } \mu _{ij}^{ - 1}{({R_j} - {R_i})^2}){\pmb x}\end{array}$

    令$W = \ell V({\pmb \zeta} ,{\pmb x},i) + {{\pmb \zeta} ^{\rm T}}{\pmb \zeta} - {\gamma ^2}{{\pmb \varpi} ^{\rm T}}{\pmb \varpi} $,其中${\pmb \varpi} = \left[{\begin{array}{*{20}{c}}{\pmb u}\\{{{\pmb f}_a}}\\{\pmb v}\end{array}} \right]$,则有

    $\begin{array}{l}W \le {{\pmb \zeta} ^{\rm T}}({P_i}({{\hat A}_i} - {{\hat L}_i}{{\hat C}_i}) + {({{\hat A}_i} - {{\hat L}_i}{{\hat C}_i})^{\rm T}}{P_i}){\pmb \zeta}+\\ ~~~~~~~~2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat D}_i}{\pmb v} + {\varepsilon _{1i}}{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat M}_i}\hat M_i^{\rm T}{P_i}{\pmb \zeta}+ \\ ~~~~~~~~ \varepsilon _{1i}^{ - 1}{{\pmb x}^{\rm T}}\hat N_i^{\rm T}{{\hat N}_i}{\pmb x} + 2{{\pmb \zeta} ^{\rm T}}{P_i}{{\hat A}_{di}}{\pmb \zeta} (t - \tau )+ \\ ~~~~~~~~ {{\pmb \zeta} ^{\rm T}}X{\pmb \zeta} - {{\pmb \zeta} ^{\rm T}}(t - \tau )X{\pmb \zeta} (t - \tau )+ \\ ~~~~~~~~{{\pmb x}^{\rm T}}({R_i}{A_i} + A_i^{\rm T}{R_i}){\pmb x} + {{\pmb x}^{\rm T}}Z{\pmb x} + 2{{\pmb x}^{\rm T}}{R_i}{B_i}{\pmb u}+ \\\end{array}$$\\ \begin{array}{l} ~~~~~~~~ {\varepsilon _{2i}}{{\pmb x}^{\rm T}}{R_i}{M_i}M_i^{\rm T}{R_i}{\pmb x} + \varepsilon _{2i}^{ - 1}{{\pmb x}^{\rm T}}N_i^{\rm T}{N_i}{\pmb x}+ \\~~~~~~~~2{{\pmb x}^{\rm T}}{R_i}{D_i}{{\pmb f}_a} + 2{{\pmb x}^{\rm T}}{R_i}{A_d}_i{\pmb x}(t - \tau )- \\ ~~~~~~~~{{\pmb x}^{\rm T}}(t - \tau )Z{\pmb x}(t - \tau ) + {{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{P_j}} {\pmb \zeta}+ \\ ~~~~~~~~{{\pmb \zeta} ^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{λ _{ij}}{I_{n + w + q}} + } λ _{ij}^{ - 1}{({P_j} - {P_i})^2}){\pmb \zeta}+ \\ ~~~~~~~~{{\pmb x}^{\rm T}}\sum\limits_{j = 1}^s {{{\hat \pi }_{ij}}{R_j}} {\pmb x} + {{\pmb x}^{\rm T}}\sum\limits_{j = 1,j \ne i}^s {(\dfrac{{\kappa _{ij}^2}}{4}{\mu _{ij}}{I_n}}+ \\ ~~~~~~~~\mu _{ij}^{ - 1}{({R_j} - {R_i})^2}){\pmb x} + {{\pmb \zeta} ^{\rm T}}{\pmb \zeta} - \gamma {{\pmb \varpi} ^{\rm T}}{\pmb \varpi} = {{\pmb \eta} ^{\rm T}}{\Omega _i}{\pmb \eta}\end{array}$

    其中

    $\begin{align} & {{\Omega }_{i}}=\left[ \begin{matrix} {{r}_{1i}} & {{P}_{i}}{{{\hat{A}}}_{di}} & 0 & 0 & 0 & 0 & {{P}_{i}}{{{\hat{D}}}_{i}} \\ * & -X & 0 & 0 & 0 & 0 & 0 \\ * & * & {{r}_{2i}} & {{R}_{i}}{{A}_{d}}_{i} & {{R}_{i}}{{B}_{i}} & {{R}_{i}}{{D}_{i}} & 0 \\ * & * & * & -Z & 0 & 0 & 0 \\ * & * & * & * & -{{\gamma }^{2}}{{I}_{m}} & 0 & 0 \\ * & * & * & * & * & -{{\gamma }^{2}}{{I}_{q}} & 0 \\ * & * & * & * & * & * & -{{\gamma }^{2}}{{I}_{q}} \\ \end{matrix} \right] \\ & {{r}_{1i}}={{P}_{i}}({{{\hat{A}}}_{i}}-{{{\hat{L}}}_{i}}{{{\hat{C}}}_{i}})+{{({{{\hat{A}}}_{i}}-{{{\hat{L}}}_{i}}{{{\hat{C}}}_{i}})}^{\text{T}}}{{P}_{i}}+{{I}_{n+w+q}}+ \\ & {{\varepsilon }_{1i}}{{P}_{i}}{{{\hat{M}}}_{i}}\hat{M}_{i}^{\text{T}}{{P}_{i}}+X+\sum\limits_{j=1}^{s}{{{{\hat{\pi }}}_{ij}}{{P}_{j}}}+ \\ & \sum\limits_{j=1,j\ne i}^{s}{(\frac{\kappa _{ij}^{2}}{4}{{\lambda }_{ij}}{{I}_{n+w+q}}+}\lambda _{ij}^{-1}{{({{P}_{j}}-{{P}_{i}})}^{2}}) \\ & {{r}_{2i}}={{R}_{i}}{{A}_{i}}+A_{i}^{\text{T}}{{R}_{i}}+Z+\sum\limits_{j=1}^{s}{{{{\hat{\pi }}}_{ij}}{{R}_{j}}}+ \\ & \sum\limits_{j=1,j\ne i}^{s}{(\frac{\kappa _{ij}^{2}}{4}{{\mu }_{ij}}{{I}_{n}}+}\mu _{ij}^{-1}{{({{R}_{j}}-{{R}_{i}})}^{2}})+ \\ & {{\varepsilon }_{2i}}{{R}_{i}}{{M}_{i}}M_{i}^{\text{T}}{{R}_{i}}+\varepsilon _{1i}^{-1}\hat{N}_{i}^{\text{T}}{{{\hat{N}}}_{i}}+\varepsilon _{2i}^{-1}N_{i}^{\text{T}}{{N}_{i}} \\ & \eta ={{\left[ \begin{matrix} \zeta & \zeta (t-\tau ) & x & x(t-\tau ) & \varpi \\ \end{matrix} \right]}^{\text{T}}} \\ \end{align}$

    注意到${P_i}{\hat L_i} = {Y_i}$,且对式(15) 计算舒尔补可得$W<0$,即$\ell V + {{\pmb \zeta} ^{\rm T}}{\pmb \zeta} - \gamma {{\pmb\varpi} ^{\rm T}}{\pmb \varpi}<0$.由Dynkin$'$s公式,有

    $\begin{array}{l}{\rm E}\left\{ {V({\pmb \zeta},{\pmb x},i)} \right\} - {\rm E}\left\{ {V({{\pmb \zeta} _0},{{\pmb x}_0},{r_0})} \right\}+ \\ {\rm E}\displaystyle\int_0^\infty {{{\pmb \zeta}^{\rm T}}(\theta ){\pmb \zeta} (\theta ){\rm d}\theta -{\rm E}} \displaystyle\int_0^\infty {{\gamma ^2}{{\pmb \varpi}^{\rm T}}(\theta ){\pmb \varpi} (\theta ){\rm d}\theta } <0\end{array}$

    其中${\pmb \zeta}_0,{\pmb x}_0,r_0$分别为相应量的初始值.因此我们可以得到

    $\begin{array}{l}{\rm E}\displaystyle\int_0^\infty {{{\pmb \zeta} ^{\rm T}}(\theta ){\pmb \zeta} (\theta ){\rm d}\theta - {\rm E}}\displaystyle\int_0^\infty{{\gamma ^2}{{\pmb \varpi} ^{\rm T}}(\theta ){\pmb \varpi} (\theta ){\rm d}\theta }< \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{\mathop{\rm E}\nolimits} V({{\pmb \zeta} _0},{{\pmb x} _0},{r_0})\end{array}$

    由定义1即

    $\begin{align} &{{[\text{ }\int\limits_{0}^{\infty }{{{\zeta }^{\text{T}}}(\theta )}\zeta (\theta )\text{d}\theta ]}^{\frac{1}{2}}}\le [{{\gamma }^{2}}\left\| \varpi (\theta ) \right\|_{2}^{2}+~ \\ &V({{\zeta }_{0}},{{x}_{0}},{{r}_{0}}){{]}^{\frac{1}{2}}} \\ \end{align}$

    (21)

    因此结合定义2和3,系统(13) 鲁棒随机稳定且具有干扰抑制水平$\gamma$.

    注 3.本文引入了Lyapunov-Krasovskii函数来处理带有时滞项的稳定性证明,利用Lyapunov-Krasovskii函数中的积分项可以把系统的时滞项连同状态引入到线性矩阵不等式中,从而利用Lyapunov稳定性理论可以使得整个系统的状态满足定义2的要求.

    由定理1可以得出,系统(4) 是系统(3) 的鲁棒观测器,并且可以估计出系统状态、执行器和传感器故障.具体的算法如下:

    1) 由式(5) 和(6) 计算得出矩阵${T_i}$和${Q_i}$;

    2) 求解凸优化问题(15) ,若有解,则可以得到${\hat L_i} = P_i^{ -1}{Y_i}$,并通过式(14) 计算得到矩阵${K_i}$和${\Phi _i}$;

    3) 将${K_i}$代入式(10) 和(11) 即可得到矩阵${N_i}$和${L_i}$.

    至此观测器的系数矩阵均求取得到,观测器(4) 可以实现.系统的状态和传感器故障可由$\hat{\pmb x} =[{\begin{array}{*{20}{c}} {{I_n}}&{{0_{n × w}}}\end{array}}]\hat {\bar {\pmb x} }$和${\hat {\pmb f} _s} =[{\begin{array}{*{20}{c}}{{0_{w × n}}}&{{I_w}}\end{array}}]\hat {\bar {\pmb x} }$得到. ${\hat {\pmb f} _a}$可由系统(4) 中的第三式在线调节得到.

    注 4[13].系统(4) 中的观测器是依赖于马尔科夫跳变系统的模态的,因此当系统跳变到某一个模态时,观测器相应地切换到这个模态.此外,观测器又依赖于转移概率${\pi_{ij}}$,使得其能够处理跳变所带来的影响.因此,观测器(4) 可以保证在系统跳变的情形下始终能估计出系统状态、执行器和传感器故障.

    注 5 .本文所设计的方法中传感器估计的思路与文献[16]相类似,都是利用了广义描述系统的思想,但是设计观测器的技术手段是不同的.文献[16]将传感器故障引入到描述系统中,然后针对该描述系统设计了滑模观测器,利用滑模控制律抑制了传感器故障,然后对系统状态(包含传感器故障)做出了估计.而本文并没有将传感器故障引入描述系统中,针对描述系统设计了自适应观测器,该观测器不仅可以估计系统状态和传感器故障,还可以在线自动调节出执行器故障.相较于文献[16],本文存在以下优点: 1) 本文考虑的是一类具有参数不确定且状态转移概率不确定的延迟马尔科夫跳变系统,而文献[16]假定状态转移概率精确可得,这具有一定限制性;2) 本文同时估计了状态、执行器和传感器故障,文献[16]并没有涉及到执行器故障的估计;3) 由于文献[16]通过设计滑模观测器估计系统状态和抑制传感器故障,因此需要提前获知传感器故障的上界,而本文设计无需知道其上界.

    为验证本文所提出方法的有效性,考虑一个形如式(1) 的具有两个模态的数值延迟马尔科夫跳变系统,相关参数如下:

    $${A_1}= \left[{\begin{array}{*{20}{c}}{ - 5}&0&1\\0&{ - 7.5}&0\\2&0&{ - 5}\end{array}} \right],{A_2} = \left[{\begin{array}{*{20}{c}}{ - 6}&0&{1.1}\\0&{ - 8}&0\\0&0&{ - 5}\end{array}} \right] $$ $${A_{d1}} = \left[{\begin{array}{*{20}{c}}{0.2}&0&{0.1}\\{0.1}&0&0\\0&{0.1}&0\end{array}} \right],{B_1} = \left[{\begin{array}{*{20}{c}}1\\0\\1\end{array}} \right]$$ $${A_{d2}} = \left[{\begin{array}{*{20}{c}}{0.1}&0&{0.05}\\{0.05}&0&0\\0&{0.05}&0\end{array}} \right],{B_2} = \left[{\begin{array}{*{20}{c}}{0.5}\\0\\{0.5}\end{array}} \right]$$ $${D_1} = \left[{\begin{array}{*{20}{c}}{0.2}\\{0.1}\\{0.1}\end{array}} \right],{D_2} = \left[{\begin{array}{*{20}{c}}{0.3}\\{0.05}\\{0.1}\end{array}} \right]$$ $${C_1} = {C_2} = \left[{\begin{array}{*{20}{c}}1&1&0\\0&1&0\end{array}} \right]$$$${G_1} = {G_2} = \left[{\begin{array}{*{20}{c}}{0.1}\\{ - 0.3}\end{array}} \right],{M_1} = {M_2} = \left[{\begin{array}{*{20}{c}}{0.1}\\{0.2}\\{0.1}\end{array}} \right]$$ $${N_1} = {N_2} = \left[{\begin{array}{*{20}{c}}{0.1}&{0.2}&{0.2}\end{array}} \right]$$$${F_1}(t) = {F_2}(t) = \sin (t)$$

    估计的状态转移概率矩阵为$\hat \Pi {\rm{ ~ = }}\left[{\begin{array}{*{20}{c}}{{\rm{ - }}0.4}&{0.4}\\{0.3}&{{\rm{ - }}0.3}\end{array}} \right]$,${\kappa _{12}} = {\kappa _{21}} = 1$和${λ _{12}} = {λ _{21}} = {\varepsilon _{11}} = {\varepsilon _{12}} = {\varepsilon _{21}} = {\varepsilon _{22}} = {\mu _{12}} = {\mu _{21}} = 1$,且延迟时间为3s. 执行器故障设定为${{ f}_a} = \sin (5t) + { {\rm e}^{ - 2t}} + 2\cos (t)$,传感器故障设定为${{ f}_s} = \sin (t) + 2\cos (5t)$. 本文假设马尔科夫系统有2 个模态${ S} = \left\{ {1,2} \right\}$.

    在仿真中分别设置初始状态${{\pmb x}_0} = {[{\begin{array}{*{20}{c}} 3&{ - 2}&2\end{array}}]^{\rm T}}$,${{\pmb z}_0} = {[{\begin{array}{*{20}{c}}0&0&2\end{array}}]^{\rm T}}$,${r_0} = 1$和${\pmb \phi} (t) = {[{\begin{array}{*{20}{c}}1&0&0\end{array}}]^{\rm T}}$,$t \in [{\begin{array}{*{20}{c}}{ - 3}&0\end{array}}]$.系统状态估计如图 1~3所示.图 4为执行器故障估计效果,图 5为传感器故障估计效果.图 6为马尔科夫跳变系统的切换信号.由图 1~5可以看出本文方法对状态、执行器和传感器故障有很好的估计效果,仿真结果证明了方法的可行性.

    图 1  状态$x_1$的估计曲线
    Fig. 1  The curve of the estimation of $x_1$
    图 2  状态$x_2$的估计曲线
    Fig. 2  The curve of the estimation of $x_2$
    图 3  状态$x_3$的估计曲线
    Fig. 3  The curve of the estimation of $x_3$
    图 4  执行器故障估计曲线
    Fig. 4  The curve of the estimation of actuator fault
    图 5  传感器故障估计曲线
    Fig. 5  The curve of the estimation of sensor fault
    图 6  切换信号
    Fig. 6  Switching signal

    为了进一步验证本文所设计方法,接下来针对一个实际例子进行仿真,以此验证设计方法的实用性.考虑一个线性化的F-404飞行器引擎模型,其中矩阵$A$为

    $A(t)=\left[ \begin{matrix} -1.46&0&2.428 \\ 0.1643+0.5\beta (t)&-0.4+\beta (t)&-0.3788 \\ 0.3107&0&-2.23 \\ \end{matrix} \right]$

    $\beta (t)$是一个不确定的模型参数.假设$\beta (t)$满足一个$N = 2$的Markov过程:

    $\beta (t) = \left\{ \begin{array}{l} - 1,\; \; \; \; r(t) = 1\\ - 2,\; \; \; \; r(t) = 2\end{array} \right.$

    其他矩阵设置如下:

    $${B_1} = \left[{\begin{array}{*{20}{c}}0\\1\\{0.3}\end{array}} \right],{B_2} = \left[{\begin{array}{*{20}{c}}{ - 1}\\{0.2}\\{ - 2}\end{array}} \right],{D_1} = \left[{\begin{array}{*{20}{c}}0\\{ - 0.1}\\0\end{array}} \right]$$ $${D_2} = \left[{\begin{array}{*{20}{c}}{ - 0.1}\\0\\{ - 0.3}\end{array}} \right],{C_1} = {C_2} = \left[{\begin{array}{*{20}{c}}1&0&0\\1&0&1\end{array}} \right]$$ $${G_1} = {G_2} = \left[{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}} \right]$$ $${A_{d1}} = \left[{\begin{array}{*{20}{c}}{0.1}&0&{0.1}\\{0.1}&0&0\\0&{0.1}&{0.2}\end{array}} \right] $$ $${A_{d2}} = \left[{\begin{array}{*{20}{c}}{0.1}&0&{0.05}\\{0.03}&0&0\\0&{0.05}&{0.1}\end{array}} \right]$$ $${M_1} = {M_2} = \left[{\begin{array}{*{20}{c}}{0.1}\\0\\{0.3}\end{array}} \right],{F_1}(t) = {F_2}(t) = \sin (t)$$ $${N_1} = {N_2} = \left[{\begin{array}{*{20}{c}}{0.1}&{0.3}&{0.1}\end{array}} \right]$$

    估计的转移概率矩阵为$\hat \Pi = \left[{\begin{array}{*{20}{c}}{ - 3}&3\\4&{ - 4}\end{array}} \right]$,其他参数选取如同实例1.

    从参数中不难发现系统满足rank$({D_1}) \ne {\rm rank}({C_1}{D_1}) =0$,这与基于滑模观测器利用等价输出注入信号重构故障方法[30]的匹配条件是矛盾的.因此,传统的基于滑模观测器的方法不能用于该系统.此外,由于本文所讨论的系统是随机系统,因此系统的输出也是随机的,这就意味着基于代数重构的故障估计方法[31]也是不可行的,因为该方法中涉及到输出的微分信息.相比于文献[16]中的设计方法要求传感器故障是有界的且上界已知,以及其一阶微分也是有界的且上界已知[20],本文的设计方法中对这两种故障仅作了如下要求${\dot {\pmb f}_a} \in{L_2}[0\ \infty)$,这就使得本文的设计方法在实际应用中具有更广泛的应用范围.

    为了验证本文所设计方法的优越性,选取执行器故障和传感器故障分别为${{f}_a} = 0.3\sin (t) + 0.5\cos (3t)$和${{ f}_s} = \sin (2t)$.

    在仿真中分别设置初始状态${{\pmb x}_0} = {[{\begin{array}{*{20}{c}} 1&1&1\end{array}}]^{\rm T}}$,${{\pmb z}_0} = {[{\begin{array}{*{20}{c}}1&2&{0.3}&0\end{array}}]^{\rm T}}$,${r_0} = 1$和${\pmb \phi} (t) = {[{\begin{array}{*{20}{c}}1&0&0\end{array}}]^{\rm T}}$,$t \in [{\begin{array}{*{20}{c}}{ - 3}&0\end{array}}]$.系统状态估计如图 7~9所示.图 10图 11分别为执行器和传感器故障估计效果.图 12为马尔科夫切换信号.由图 7~11可以看出本文方法对状态、执行器和传感器故障有很好的估计效果,仿真结果也证明了正如注5所示,该方法相较于文献[16, 20]具有优越性.

    图 7  F-404模型状态$x_1$的估计曲线
    Fig. 7  The curve of the estimation of $x_1$ of Model F-404
    图 8  F-404模型状态$x_2$的估计曲线
    Fig. 8  The curve of the estimation of $x_2$ of Model F-404
    图 9  F-404模型状态$x_3$的估计曲线
    Fig. 9  The curve of the estimation of $x_3$ of Model F-404
    图 10  F-404模型执行器故障估计曲线
    Fig. 10  The curve of the estimation of actuator fault of Model F-404
    图 11  F-404模型传感器故障估计曲线
    Fig. 11  The curve of the estimation of sensor fault of Model F-404
    图 12  切换信号
    Fig. 12  Switching signal

    本文针对具有参数不确定和延迟环节的马尔科夫跳变系统,在状态转移概率矩阵不确定的情形下,讨论了执行器和传感器故障同时估计的方法.首先构造一个广义描述系统,接着针对该系统设计自适应状态观测器使得执行器和传感器故障可以同时估计出.该方法的充分条件由线性矩阵不等式给出.仿真分析证明了该方法的可行性.

  • 图  1  可编辑区块链的研究框架

    Fig.  1  Research framework of editable blockchain

    图  2  基于可变交易的区块链修改流程

    Fig.  2  Redacting blockchain data based on mutable transactions

    图  3  基于平行双区块链的数据修改流程

    Fig.  3  Redacting blockchain data based onparallel blockchains

    图  4  基于平行双哈希链的数据修改流程

    Fig.  4  Redacting blockchain data based on parallel hash chains

    图  5  区块链交易的状态可达性示例

    Fig.  5  An illustrative example of state derivability for blockchain transactions

    图  6  比特币数据插入技术框架

    Fig.  6  The framework of inserting data on Bitcoin blockchain

    图  7  上下文相关的交易级编辑与重构示例

    Fig.  7  An illustrative example of transaction-level editing and reconstruction

    表  1  比特币脚本规范与数据插入位置

    Table  1  Scripts and locations of data insertion on bitcoin

    序号脚本名称脚本规范插入位置
    a)OP_RETURN【输出脚本】OP_RETURN$\langle $Data$\rangle $$\langle $Data$\rangle $
    b)P2PKH【输出脚本】OP_DUP OP_HASH160$\langle $PubKeyHash$\rangle $OP_EQUALVERIFY OP_CHECKSIG
    【输入脚本】$\langle $Sig$\rangle $$\langle $PubKey$\rangle $
    $\langle $PubKeyHash$\rangle $
    c)P2PK【输出脚本】$\langle $PubKey$\rangle $OP_CHECKSIG
    【输入脚本】$\langle $Sig$\rangle $
    $\langle $PubKey$\rangle $
    d)MultiSig【输出脚本】M$\langle $PubKey 1$\rangle\cdots\langle $PubKey N$\rangle $N OP_CHECKMULTISIG
    【输入脚本】OP_0$\langle $Sig 1$\rangle\cdots\langle $Sig M$\rangle $
    $\langle $PubKey$\rangle $
    e)P2SH【输出脚本】OP_HASH160$\langle $RedeemScriptHash$\rangle $OP_EQUAL
    【输入脚本】$\langle $Data$\rangle $$\langle $RedeemScript$\rangle $
    $\langle $Data$\rangle $$\langle $RedeemScript$\rangle $
    P2SH Data Drop【输入脚本】$\langle $Data$\rangle $$\langle $Data$\rangle $$\langle $Data$\rangle $$\langle $Data$\rangle $$\langle $RedeemScript$\rangle $
    【赎回脚本】OP_2DROP OP_2DROP$\langle $RandomNumber$\rangle $
    P2SH- Data Drop/Sig【输入脚本】$\langle $Sig$\rangle $$\langle $Data$\rangle $$\langle $Data$\rangle $$\langle $Data$\rangle $$\langle $RedeemScript$\rangle $
    【赎回脚本】OP_DROP OP_2DROP$\langle $PubKey$\rangle $OP_CHECKSIG
    P2SH- Data Hash【输入脚本】$\langle $Data 1$\rangle\langle $Data 2$\rangle\langle $Data 3$\rangle\langle $RedeemScript$\rangle $
    【赎回脚本】OP_HASH160$\langle $Data3Hash$\rangle $OP_EQUALVERIFY OP_HASH160
    $\langle $Data2Hash$\rangle $OP_EQUALVERIFY OP_HASH160 $\langle $Data1Hash$\rangle $OP_EQUAL
    P2SH- Data Hash/Sig【输入脚本】$\langle $Sig$\rangle \langle$Data 1$\rangle \langle$Data 2$\rangle\langle $Data 3$\rangle \langle$RedeemScript$\rangle $
    【赎回脚本】OP_HASH160$\langle $Data3Hash$\rangle $OP_EQUALVERIFY OP_HASH160
    $\langle $Data2Hash$\rangle $OP_EQUALVERIFY OP_HASH160 $\langle $Data1Hash$\rangle $OP_EQUALVERIFY$\langle $PubKey$\rangle $OP_CHECKSIG
    下载: 导出CSV
  • [1] Nakamoto S. Bitcoin: a peer-to-peer electronic cash system [Online], available: https://bitcoin.org/bitcoin.pdf, January 1, 2009
    [2] 袁勇, 王飞跃. 区块链技术发展现状与展望. 自动化学报, 2016, 42(4): 481−494

    Yuan Yong, Wang Fei-Yue. Blockchain: the state of the art and future trends. Acta Automatica Sinica, 2016, 42(4): 481−494
    [3] 袁勇, 王飞跃. 区块链理论与方法. 北京: 清华大学出版社, 2019

    Yuan Yong, Wang Fei-Yue. Blockchain Theory and Method. Beijing: Tsinghua University Press, 2019
    [4] 袁勇, 周涛, 周傲英, 段永朝, 王飞跃. 区块链技术: 从数据智能到知识自动化. 自动化学报, 2017, 43(9): 1485−1490

    Yuan Yong, Zhou Tao, Zhou Ao-Ying, Duan Yong-Chao, Wang Fei-Yue. Blockchain technology: from data intelligence to knowledge automation. Acta Automatica Sinica, 2017, 43(9): 1485−1490
    [5] Yuan Y, Wang F Y. Blockchain and cryptocurrencies: model, techniques, and applications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(9): 1421−1428 doi: 10.1109/TSMC.2018.2854904
    [6] Yuan Y, Wang F Y, Rong C M, Stavrou A, Zhang J, Tang Q, et al. Guest editorial special issue on blockchain and economic knowledge automation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(6): 2−8
    [7] 韩璇, 袁勇, 王飞跃. 区块链安全问题: 研究现状与展望. 自动化学报, 2019, 45(1): 206−225

    Han Xuan, Yuan Yong, Wang Fei-Yue. Security problems on blockchain: the state of the art and future trends. Acta Automatica Sinica, 2019, 45(1): 206−225
    [8] 袁勇, 倪晓春, 曾帅, 王飞跃. 区块链共识算法的发展现状与展望. 自动化学报, 2018, 44(11): 2011−2022

    Yuan Yong, Ni Xiao-Chun, Zeng Shuai, Wang Fei-Yue. Blockchain consensus algorithms: the state of the art and future trends. Acta Automatica Sinica, 2018, 44(11): 2011−2022
    [9] Truong N B, Sun K, Lee G M, Guo Y K. GDPR-compliant personal data management: a blockchain-based solution [Online], available: https://arxiv.org/pdf/1904.03038.pdf, January 1, 2019
    [10] 欧阳丽炜, 王帅, 袁勇, 倪晓春, 王飞跃. 智能合约: 架构及进展. 自动化学报, 2019, 45(3): 445−457

    Ouyang Li-Wei, Wang Shuai, Yuan Yong, Ni Xiao-Chun, Wang Fei-Yue. Smart contracts: architecture and research progresses. Acta Automatica Sinica, 2019, 45(3): 445−457
    [11] Wang S, Ouyang L W, Yuan Y, Ni X C, Han X, Wang F Y. Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(11): 2266−2277 doi: 10.1109/TSMC.2019.2895123
    [12] 曾帅, 袁勇, 倪晓春, 王飞跃. 面向比特币的区块链扩容: 关键技术, 制约因素与衍生问题. 自动化学报, 2019, 45(6): 1015−1030

    Zeng Shuai, Yuan Yong, Ni Xiao-Chun, Wang Fei-Yue. Scaling blockchain towards Bitcoin: key technologies, constraints and related issues. Acta Automatica Sinica, 2019, 45(6): 1015−1030
    [13] Garay J, Kiayias A, Leonardos N. The Bitcoin backbone protocol: analysis and applications. In: Proceedings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Sofia, Bulgaria: Springer, 2015. 281-310
    [14] Ateniese G, Magri B, Venturi D, Andrade E. Redactable blockchain - or - rewriting history in Bitcoin and friends. In: Proceedings of the 2017 IEEE European Symposium on Security and Privacy. Paris, France: IEEE, 2017. 111−126
    [15] Krawczyk H M, Rabin T D. Chameleon hashing and signatures. U.S. Patent 6108783, August 2000
    [16] Krawczyk H, Rabin T. Chameleon signatures. In: Proceedings of Network and Distributed System Security Symposium. San Diego, CA, USA: Internet Society, 2000. 143−154
    [17] 李佩丽, 徐海霞, 马添军, 穆永恒. 可更改区块链技术研究. 密码学报, 2018, 5(5): 501−509

    Li Pei-Li, Xu Hai-Xia, Ma Tian-Jun, Mu Yong-Heng. Research on fault-correcting blockchain technology. Journal of Cryptologic Research, 2018, 5(5): 501−509
    [18] Rajasekhar K, Yalavarthy S H, Mullapudi S, Gowtham M. Redactable blockchain and it’s implementation in bitcoin. International Journal of Engineering & Technology, 2018, 7(1.1): 401−405
    [19] Ashritha K, Sindhu M, Lakshmy K V. Redactable blockchain using enhanced chameleon hash function. In: Proceedings of the 5th International Conference on Advanced Computing & Communication Systems (ICACCS). Coimbatore, India: IEEE, 2019
    [20] Shamir A. How to share a secret. Communications of the ACM, 1979, 24(11): 612−613
    [21] Camenisch J, Derler D, Krenn S, Pöhls H C, Samelin K, Slamanig D. Chameleon-hashes with ephemeral trapdoors. In: Proceedings of the 20th IACR International Conference on Practice and Theory in Public-Key Cryptography (PKC). Amsterdam, the Netherlands: Springer, 2017. 152−182
    [22] Derler D, Samelin K, Slamanig D, Striecks C. Fine-grained and controlled rewriting in blockchains: chameleon-hashing gone attribute-based. In: Proceedings of the 26th Network and Distributed Systems Security (NDSS). San Diego, USA, 2019
    [23] Puddu I, Dmitrienko A, Capkun S. uchain: how to forget without hard forks. Cryptology ePrint archive: report 2017/106 [Online], Available: http://eprint.iacr.org/2017/106, January 1, 2019
    [24] Politou E, Casino F, Alepis E, Patsakis C. Blockchain mutability: challenges and proposed solutions. IEEE Transactions on Emerging Topics in Computing, 2019 doi: 10.1109/TETC.2019.2949510
    [25] Marsalek A, Zefferer T. A correctable public blockchain. In: Proceedings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE). Rotorua, New Zealand: IEEE, 2019
    [26] Deuber D, Magri B, Thyagarajan S A K. Redactable blockchain in the permissionless setting. In: Proceedings of the 2019 IEEE Symposium on Security and Privacy. San Francisco, USA: IEEE, 2019
    [27] 袁勇, 王飞跃. 平行区块链: 概念、方法与内涵解析. 自动化学报, 2017, 43(10): 1703−1712

    Yuan Yong, Wang Fei-Yue. Parallel clockchain: concept, methods and issues. Acta Automatica Sinica, 2017, 43(10): 1703−1712
    [28] Wang F Y, Yuan Y, Rong C M, Zhang J J. Parallel blockchain: an architecture for CPSS-based smart societies. IEEE Transactions on Computational Social Systems, 2018, 5(2): 303−310 doi: 10.1109/TCSS.2018.2832379
    [29] Qin R, Yuan Y, Wang F Y. Research on the selection strategies of blockchain mining pools. IEEE Transactions on Computational Social Systems, 2018, 5(3): 748−757 doi: 10.1109/TCSS.2018.2861423
    [30] Qin R, Yuan Y, Wang F Y. A novel hybrid share reporting strategy for blockchain miners in PPLNS pools. Decision Support Systems, 2019, (118): 91−101
    [31] Qin R, Yuan Y, Wang S, Wang F Y. Economic issues in Bitcoin mining and blockchain research. In: Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China: IEEE, 2018. 268−273
    [32] Palm E, Schelén O, Bodin U. Selective blockchain transaction pruning and state derivability. In: Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT). Zug, Switzerland: IEEE, 2018
    [33] Chepurnoy A, Larangeira M, Ojiganov A. Rollerchain, a blockchain with safely pruneable full blocks [Online], Available: https://arxiv.org/pdf/1603.07926, January 1, 2019
    [34] Florian M, Beaucamp S, Henningsen S, Scheuermann B. Erasing data from blockchain nodes [Online], Available: https://arxiv.org/pdf/1904.08901.pdf, January 1, 2019
    [35] Bruce J D. The mini-blockchain scheme [Online], Available: http://cryptonite.info/files/mbc-scheme-rev3.pdf, January 1, 2019
    [36] Feng X Q, Ma J F, Miao Y B, Meng Q, Liu X M, et al. Pruneable sharding-based blockchain protocol. Peer-to-Peer Networking and Applications, 2018, 12(4): 934−950
    [37] Ethereum White Paper. A next-generation smart contract and decentralized application platform [Online], available: https://github.com/ethereum/wiki/wiki/White-Paper, November 12, 2015
    [38] Matzutt R, Hiller J, Henze M, Ziegeldorf J H, Müllmann D, Hohlfeld O, et al. A quantitative analysis of the impact of arbitrary blockchain content on Bitcoin. In: Proceedings of the 22nd International Conference on Financial Cryptography and Data Security (FC). Springer, 2018
    [39] Sward A, Vecna I, Stonedahl F. Data insertion in Bitcoin's blockchain. Ledger, 2018: 3 doi: 10.5195/ledger.2018.101
    [40] Bartoletti M, Pompianu L. An analysis of Bitcoin OP_RETURN metadata. In: Proceedings of the 4th Workshop on Bitcoin and Blockchain Research. Malta, 2017
    [41] Wang S, Ding W W, Li J J, Yuan Y, Ouyang L W, Wang F Y. Decentralized autonomous organizations: concept, model, and applications. IEEE Transactions on Computational Social Systems, 2019, 6(5): 870−878 doi: 10.1109/TCSS.2019.2938190
    [42] Li J J, Yuan Y, Wang F Y. A novel GSP auction mechanism for ranking Bitcoin transactions in blockchain mining. Decision Support Systems, 2019, 124: 113094 doi: 10.1016/j.dss.2019.113094
    [43] Matzutt R, Henze M, Ziegeldorf J H, Hiller J, Wehrle K. Thwarting unwanted blockchain content insertion. In: Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E). Orlando, USA: IEEE, 2018. 364−370
    [44] Xu J, Li X Y, Yin L Y, Guo B Y, Feng H, Zhang Z F. Redactable proof-of-stake blockchain with fast confirmation, IACR Cryptology ePrint Archive, 2019, 2019: 1110
    [45] Huang K, Zhang X S, Mu Y, Wang X F, Yang G M, Du X J, et al. Building Redactable consortium blockchain for industrial Internet-of-Things. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3670−3679 doi: 10.1109/TII.2019.2901011
    [46] Huang K, Zhang X S, Mu Y, Rezaeibagha F, Du X J, Guizani N. Achieving intelligent trust-layer for internet-of-things via self-redactable blockchain. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2677−2686 doi: 10.1109/TII.2019.2943331
    [47] 王飞跃, 王晓, 袁勇, 王涛, 林懿伦. 社会计算与计算社会: 智慧社会的基础与必然. 科学通报, 2015, 60(5−6): 460−469 doi: 10.1360/N972014-01173

    Wang Fei-Yue, Wang Xiao, Yuan Yong, Wang Tao, Lin Yi-Lun. Social computing and computational societies: the foundation and consequence of smart societies. Chinese Science Bulletin, 2015, 60(5−6): 460−469 doi: 10.1360/N972014-01173
    [48] Wang X, Li L X, Yuan Y, Ye P J, Wang F Y. ACP-based social computing and parallel intelligence: societies 5.0 and beyond. CAAI Transactions on Intelligence Technology, 2016, 4(1): 377−393
    [49] Wang F Y, Yuan Y, Zhang J, Qin R, Smith M H. Blockchainized Internet of Minds: A new opportunity for cyber-physical-social systems. IEEE Transactions on Computational Social Systems, 2018, 5(4): 897−906 doi: 10.1109/TCSS.2018.2881344
    [50] 丁文文, 王帅, 李娟娟, 袁勇, 欧阳丽炜, 王飞跃. 去中心化自治组织:发展现状、分析框架与未来趋势. 智能科学与技术学报, 2019, 1(2): 202−213 doi: 10.11959/j.issn.2096−6652.201917

    Ding W W, Wang S, Li J J, Yuan Y, Ouyang L W, Wang F Y. Decentralized autonomous organizations:the state of the art,analysis framework and future trends. Chinese Journal of Intelligent Science and Technologies, 2019, 1(2): 202−213 doi: 10.11959/j.issn.2096−6652.201917
    [51] 张俊, 袁勇, 王晓, 王飞跃. 量子区块链: 融合量子信息技术的区块链能否抵御量子霸权? 智能科学与技术学报, 2019, 1(4): 409−414

    Zhang Jun, Yuan Yong, Wang Xiao, Wang Fei-Yue. Quantum blockchain: Can blockchain integrated with quantum information technology resist quantum supremacy? Chinese Journal of Intelligent Science and Technologies, 2019, 1(4): 409−414
    [52] 欧阳丽炜, 袁勇, 张俊, 王飞跃. 基于区块链的传染病监测与预警技术. 智能科学与技术学报, 2020, 2(2): 129−137 doi: 10.11959/j.issn.2096-6652.202014

    Ouyang Li-Wei, Yuan Yong, Zhang Jun, Wang Fei-Yue. A novel blockchain-based surveillance and early-warning technology for infectious diseases. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 129−137 doi: 10.11959/j.issn.2096-6652.202014
    [53] Wang S, Wang J, Wang X, Qiu T Y, Yuan Y, Ouyang L W, et al. Blockchain powered parallel healthcare systems based on the ACP approach. IEEE Transactions on Computational Social Systems, 2018, 5(4): 942−950
  • 期刊类型引用(33)

    1. 段陆平. 区块链证据规则体系化的三重逻辑及其制度展开. 四川师范大学学报(社会科学版). 2024(01): 74-83+203-204 . 百度学术
    2. 刘敖迪,杜学绘,王娜,吴翔宇,单棣斌,乔蕊. 区块链系统安全防护技术研究进展. 计算机学报. 2024(03): 608-646 . 百度学术
    3. 易黎,卢新宇,汤鲲,王恒,龚子怡. 区块链共识算法研究综述. 电子设计工程. 2024(06): 161-170 . 百度学术
    4. 俞望年,赵赫,谭海波,程昊天,赵越,马志宇. 一种监管友好的可编辑区块链方案. 计算机应用研究. 2024(04): 981-988 . 百度学术
    5. 谭婧颀,薛凌妍,黄海平,陈龙,李逸轩. 基于可编辑医疗联盟链的数据安全管理方案. 计算机科学. 2024(S1): 979-986 . 百度学术
    6. 李虎,陈云芳,张伟. 一种基于投票机制的黑名单公有链解决方案. 软件导刊. 2024(05): 114-122 . 百度学术
    7. 王杰昌,刘玉岭,张平,刘牧华,李杰. 简短关联可编辑环签名及其区块链修正应用. 北京航空航天大学学报. 2024(06): 1911-1920 . 百度学术
    8. 宋宝燕,丁俊翔,王俊陆,张浩林. 基于变色龙哈希和可验证秘密共享的联盟链修改方法. 计算机应用. 2024(07): 2087-2092 . 百度学术
    9. 赖明曦,杜瑞颖,陈晶,何琨. 一种去中心化且可追责的可编辑区块链方案. 武汉大学学报(理学版). 2024(04): 413-420 . 百度学术
    10. 王冬 ,李笑若 ,祝丙南 . 基于双默克尔树区块结构的交易粒度联盟链修改方案. 计算机科学. 2024(09): 408-415 . 百度学术
    11. 张驰骋,李雷孝,杜金泽,史建平. 可编辑区块链研究综述. 计算机工程与应用. 2024(18): 32-49 . 百度学术
    12. 王利朋,关志,李青山,陈钟,胡明生. 区块链数据安全服务综述. 软件学报. 2023(01): 1-32 . 百度学术
    13. 庞俊,刘晨,郝琨,于明鹤,信俊昌,姜承扬. 基于时序索引的可编辑区块链模型研究. 计算机科学与探索. 2023(05): 1180-1188 . 百度学术
    14. 汤道路. 监管友好型区块链的规则塑造. 广西政法管理干部学院学报. 2023(02): 16-26 . 百度学术
    15. 林莉,储振兴,刘子萌,郭馥宾,解晓宇,张建标. 基于区块链的策略隐藏大数据访问控制方法. 自动化学报. 2023(05): 1031-1049 . 本站查看
    16. 顾康,张绍华,李超. 基于监督者组的区块链账本修正方案. 计算机应用研究. 2023(08): 2266-2273 . 百度学术
    17. 罗彬,温金明,吴永东,陈洁. 可编辑区块链的研究现状与挑战. 信息安全学报. 2023(04): 62-84 . 百度学术
    18. 陈越,郝增航,魏江宏,胡学先,杨冬梅. 支持陷门撤销和编辑次数限制的可编辑区块链. 通信学报. 2023(07): 100-113 . 百度学术
    19. 徐响,田宁,赵科杰,雷虹,刘志伟. 区块链技术赋能药品供应链:应用与挑战. 计算机应用研究. 2023(09): 2573-2581+2595 . 百度学术
    20. 汤道路. 慈善捐赠区块链:创新、困境、挑战与制度回应. 数字法治. 2023(05): 78-94 . 百度学术
    21. 胡宁玉,郝耀军,常建龙,冯丽萍. 基于变色龙hash的区块链可扩展存储方案. 计算机应用研究. 2023(12): 3539-3544+3550 . 百度学术
    22. 何沛军,郭志远. 有机融合与双向升级:区块链技术下的个人信息保护研究. 广西社会科学. 2023(09): 138-148 . 百度学术
    23. 姜斌祥,许鸿奎,何丹. 基于区块链的毒品检验大数据效率改进. 吉林大学学报(工学版). 2022(07): 1666-1678 . 百度学术
    24. 赵晓琦,张正昊,李勇. 可编辑且可追责的区块链方案. 信息安全学报. 2022(05): 19-28 . 百度学术
    25. 薛庆水,薛震,王晨阳,时雪磊,周雨卫,张天昊. 基于加法同态的可修改区块链方案. 计算机应用研究. 2022(11): 3232-3237 . 百度学术
    26. 徐晨欣,张力. 区块链赋能数字税治理:难题化解与制度创新. 税收经济研究. 2022(05): 39-50 . 百度学术
    27. 郝琳娜. 诚信缺失, 何以共享?——区块链赋能创新共享平台信用生态体系构建. 贵州社会科学. 2021(04): 119-127 . 百度学术
    28. 陈鹏. 告别区块链神话:区块链价值及其限度的理性分析. 哲学分析. 2021(04): 127-140+198-199 . 百度学术
    29. 高伟,陈利群,唐春明,张国艳,李飞. 一次变色龙哈希函数及其在可修正区块链中的应用. 计算机研究与发展. 2021(10): 2310-2318 . 百度学术
    30. 王晨旭,程加成,桑新欣,李国栋,管晓宏. 区块链数据隐私保护:研究现状与展望. 计算机研究与发展. 2021(10): 2099-2119 . 百度学术
    31. 张磊,郑志勇,袁勇. 基于区块链的电子医疗病历可控共享模型. 自动化学报. 2021(09): 2143-2153 . 本站查看
    32. 蔡丽君,陈松长,徐晨明,黄荷凤,金丽. “5G+区块链”赋能植入前遗传学检测技术用于罕见病的精准防控. 中华生殖与避孕杂志. 2021(06): 486-495 . 百度学术
    33. 曲靖. 药品冷链物流企业绩效评价. 物流工程与管理. 2020(12): 44-46 . 百度学术

    其他类型引用(38)

  • 区块链.mp4
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4879
  • HTML全文浏览量:  1171
  • PDF下载量:  1099
  • 被引次数: 71
出版历程
  • 收稿日期:  2020-01-28
  • 录用日期:  2020-04-01
  • 网络出版日期:  2020-06-01
  • 刊出日期:  2020-06-01

目录

/

返回文章
返回