2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生与平行系统:发展现状、对比及展望

杨林瑶 陈思远 王晓 张俊 王成红

杨林瑶, 陈思远, 王晓, 张俊, 王成红. 数字孪生与平行系统 : 发展现状、对比及展望. 自动化学报, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002
引用本文: 杨林瑶, 陈思远, 王晓, 张俊, 王成红. 数字孪生与平行系统 : 发展现状、对比及展望. 自动化学报, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002
Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: state of the art, comparisons and prospect. Acta Automatica Sinica, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002
Citation: Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: state of the art, comparisons and prospect. Acta Automatica Sinica, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002

数字孪生与平行系统:发展现状、对比及展望

doi: 10.16383/j.aas.2019.y000002
基金项目: 

国家自然科学基金 61533019

国家自然科学基金 61702519

国家自然科学基金 U1811463

中国科协青年人才托举工程 2017QNRC001

详细信息
    作者简介:

    杨林瑶 中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士研究生.2017年获得山东大学物联网工程学士学位.主要研究方向为平行车联网、大数据分析、智能交通.E-mail:yanglinyao2017@ia.ac.cn

    陈思远  武汉大学电气与自动化学院博士研究生.2018年获得武汉大学电气工程学院硕士学位.主要研究方向为智能电网,电力市场.E-mail:wddqcsy@whu.edu.cn

    张俊  武汉大学电气与自动化学院教授.2003年和2005年分别获得华中科技大学电子信息与通信工程系学士与硕士学位.2008年获得亚利桑那州立大学电气工程博士学位.主要研究方向为智能系统,人工智能,知识自动化,及其在智能电力和能源系统中的应用.E-mail:jun.zhang@qaii.ac.cn

    王成红  国家自然科学基金委员会信息科学部研究员.1982年获得河北科技大学学士学位.1988年获得中国矿业大学(北京)硕士学位.1997年获得中国科学院自动化研究所博士学位.主要研究方向为控制理论和系统可靠性理论.E-mail:chenghwang@163.com

    通讯作者:

    王晓  中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员.2016年获得中国科学院大学社会计算博士学位.主要研究方向为社会交通, 动态网群组织, 人工智能和社交网络分析.本文通信作者.E-mail:x.wang@ia.ac.cn

Digital Twins and Parallel Systems: State of the Art, Comparisons and Prospect

Funds: 

National Natural Science Foundation of China 61533019

National Natural Science Foundation of China 61702519

National Natural Science Foundation of China U1811463

the Young Elite Scientists Sponsorship Program of China Association of Science and Technology 2017QNRC001

More Information
    Author Bio:

    Ph.D. candidate at the State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree in internet of things from Shandong University in 2017. His research interest covers parallel Internet of vehicles, big data analysis, intelligent transportation

    Ph.D. candidate at the School of Electrical Engineering and Automation, Wuhan University. He received his master dagree from the School of Electrical Engineering, Wuhan University in 2018, His research interest covers smart grid, electricity market

    Professor at the School of Electrical Engineering and Automation, Wuhan University. He received his bachelor and master degrees in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 2003 and 2005, respectively, and his Ph.D. degree in electrical engineering from Arizona State University, USA, in 2008. His research interest covers intelligent systems, artificial intelligence, knowledge automation, and their applications in intelligent power and energy systems

    Professor at the Department of Information Sciences, National Natural Science Foundation of China. He received his bachelor degree from Hebei University of Science and Technology in 1982, his master degree from China University of Mining and Technology (Beijing) in 1988, and his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 1997. His current research interest covers control theory and system reliability theory

    Corresponding author: WANG Xiao Associate professor at the State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences. She received her Ph.D. degree in social computing from University of Chinese Academy of Sciences, in 2016. Her research interest covers social transportation, cyber movement organizations, artificial intelligence and social network analysis. Corresponding author of this paper
  • 摘要: 随着物联网、大数据、人工智能(Artificial intelligence,AI)等技术的发展,针对促进新一代信息技术与制造业深度融合、实现制造物理世界与信息世界交互与共融的需要,数字孪生和平行系统技术成为智能制造和复杂系统管理与控制领域研究的热点.本文对数字孪生和平行系统技术的基本概念、技术内涵、相关应用等进行了研究与总结,对比了两者之间的异同,并分析了两者的发展趋势,预期能够给复杂系统管理与控制领域的研究人员提供一定的参考和借鉴.
    Recommended by Associate Editor LIU De-Rong
    1)  本文责任编委 刘德荣
  • 图  1  数字孪生概念模型

    Fig.  1  The conceptual model of digital twin

    图  2  增强现实实现数字孪生可视化框架[94]

    Fig.  2  The framework of visualising the digital twin data by using AR[94]

    图  3  数字孪生城市

    Fig.  3  Smart city with digital twins

    图  4  平行系统的研究框架

    Fig.  4  The research framework of parallel systems

    图  5  基于ACP的平行系统架构体系

    Fig.  5  The framework of the ACP-based parallel systems

    图  6  平行感知框架

    Fig.  6  The framework of parallel perception

    图  7  平行系统架构

    Fig.  7  The architecture of parallel systems

    表  1  数字孪生模型对比

    Table  1  Comparisons of digital twin models

    模型名称 提出者 分类 用途 模型实现方法
    镜像空间模型 Grieves[2] 通用模型 描述数字孪生系统组成 概念
    产品生命周期管理集成模型 Behrang等[32] 专用模型 制造系统快速重配置 概念
    3D打印数字孪生模型 Mukherjee等[18] 专用模型 3D打印产品检验 CAD
    微制造单元数字孪生模型 Lohtander等[34] 专用模型 描述微制造单元行为 FlexSim
    基于云的数字孪生参考模型 Kritzinger等[35] 通用模型 描述基于云计算的数字孪生架构 Qfsm
    装配流程数字孪生模型 Caputo等[37] 专用模型 装配流程数字孪生设计 MATLAB
    数字孪生应用模型 Zheng等[27] 通用模型 数字孪生设计方法 概念
    信息物理制造模型 Cai等[36] 专用模型 制造系统数字孪生构建 SolidWorks
    可重构数字孪生模型 Zhang等[38] 专用模型 装配流程数字孪生设计
    流水车间数字孪生模型 Liu等[39] 专用模型 流水生产系统设计 概念
    数控机床数字孪生模型 Luo等[40] 专用模型 数控机床数字孪生建模 DTMT, MWorks
    加工刀具状态预测数字孪生模型 Qiao等[41] 专用模型 构建道具状态监测数字孪生 深度学习
    数字孪生五维模型 陶飞等[28] 通用模型 通用数字孪生模型架构 概念
    数字孪生技术模型 刘大同等[29] 通用模型 描述数字孪生模型技术体系 概念
    下载: 导出CSV
  • [1] Lee E A. Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). Orlando, USA: IEEE, 2008. 363-369
    [2] Grieves M W. Product lifecycle management:the new paradigm for enterprises. International Journal of Product Development, 2005, 2(1-2):71-84
    [3] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. Air Force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012. 1818-1832
    [4] Kim Y H, Kim C M, Han Y H, Jeong Y S, Park D S. An efficient strategy of nonuniform sensor deployment in cyber physical systems. The Journal of Supercomputing, 2013, 66(1):70-80 doi: 10.1007/s11227-013-0977-9
    [5] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. air force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012. 1-14
    [6] Tuegel E J, Ingraffea A R, Eason T G, Spottswood S M. Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011, 2011: Article No. 154798
    [7] Korth B, Schwede C, Zajac M. Simulation-ready digital twin for realtime management of logistics systems. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4194-4201
    [8] Schluse M, Rossmann J. From simulation to experimentable digital twins: simulation-based development and operation of complex technical systems. In: Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE). Edinburgh, England: IEEE, 2016. 1-6
    [9] Kharlamov E, Martin-Recuerda F, Perry B, Cameron D, Fjellheim R, Waaler A. Towards semantically enhanced digital twins. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4189-4193
    [10] Merkle L, Segura A S, Grummel J T, Lienkamp M. Architecture of a digital twin for enabling digital services for battery systems. In: Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). Taipei, China: IEEE, 2019. 155-160
    [11] Soni R, Bhatia M, Singh T. Digital twin:intersection of mind and machine. International Journal of Computational Intelligence and IoT, 2019, 2(3):667-670
    [12] Haag S, Anderl R. Digital twin-proof of concept. Manufacturing Letters, 2018, 15:64-66 doi: 10.1016/j.mfglet.2018.02.006
    [13] Schroeder G N, Steinmetz C, Pereira C E, Espindola D B. Digital twin data modeling with AutomationML and a communication methodology for data exchange. IFAC-PapersOnLine, 2016, 49(30):12-17 doi: 10.1016/j.ifacol.2016.11.115
    [14] Schleich B, Anwer N, Mathieu L, Wartzack S. Shaping the digital twin for design and production engineering. CIRP Annals, 2017, 66(1):141-144 doi: 10.1016/j.cirp.2017.04.040
    [15] DebRoy T, Zhang W, Turner J, Babu S S. Building digital twins of 3D printing machines. Scripta Materialia, 2017, 35:119-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f751c0bd504329df0ae5fc7d2a5d11b9
    [16] Gao Y P, Lv H Y, Hou Y Z, Liu J H, Xu W T. Real-time modeling and simulation method of digital twin production line. In: Proceedings of the 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2019. 1639-1642
    [17] Martinez G S, Sierla S, Karhela T, Vyatkin V. Automatic generation of a simulation-based digital twin of an industrial process plant. In: Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society. Washington, USA: IEEE, 2018. 3084-3089
    [18] Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components. Applied Materials Today, 2019, 4:59-65
    [19] David J, Lobov A, Lanz M. Attaining learning objectives by ontological reasoning using digital twins. Procedia Manufacturing, 2019, 31:349-355 doi: 10.1016/j.promfg.2019.03.055
    [20] Kousi N, Gkournelos C, Aivaliotis S, Giannoulis C, Michalos G, Makris S. Digital twin for adaptation of robots' behavior in flexible robotic assembly lines. Procedia Manufacturing, 2019, 28:121-126 doi: 10.1016/j.promfg.2018.12.020
    [21] Borth M, Verriet J, Muller G. Digital twin strategies for SoS 4 challenges and 4 architecture setups for digital twins of SoS. In: Proceedings of the 14th Annual Conference System of Systems Engineering (SoSE). Anchorage, USA: IEEE, 2019. 164-169
    [22] Vachálek J, Bartalsky L, Rovny O, Sismisova D, Morhac M, Loksik M. The digital twin of an industrial production line within the industry 4.0 concept. In: Proceedings of the 21st International Conference on Process Control (PC). Strbske Pleso, Slovakia: IEEE, 2017. 258-262
    [23] Mohammadi N, Taylor J E. Smart city digital twins. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, USA: IEEE, 2017. 1-5
    [24] 刘青, 刘滨, 王冠, 张宸, 梁知行, 张鹏.数字孪生的模型、问题与进展研究.河北科技大学学报, 2019, 40(1):68-78 http://d.old.wanfangdata.com.cn/Periodical/hbkjdx201901010

    Liu Qing, Liu Bin, Wang Guan, Zhang Chen, Liang Zhi-Xing, Zhang Peng. Research on digital twin:model, problem and progress. Journal of Hebei University of Science and Technology, 2019, 40(1):68-78 http://d.old.wanfangdata.com.cn/Periodical/hbkjdx201901010
    [25] Uhlemann T H J, Lehmann C, Steinhilper R. The digital twin:realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 2017, 61:335-340 doi: 10.1016/j.procir.2016.11.152
    [26] Talkhestani B A, Jazdi N, Schloegl W, Weyrich M. Consistency check to synchronize the digital twin of manufacturing automation based on anchor points. Procedia CIRP, 2018, 72:159-164 doi: 10.1016/j.procir.2018.03.166
    [27] Zheng Y, Yang S, Cheng H C. An application framework of digital twin and its case study. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1141-1153 doi: 10.1007/s12652-018-0911-3
    [28] Tao F, Zhang H, Liu A, Nee A Y C. Digital twin in industry:state-of-the-art. IEEE Transactions on Industrial Informatics, 2019, 15(4):2405-2415 doi: 10.1109/TII.2018.2873186
    [29] 刘大同, 郭凯, 王本宽, 彭宇.数字孪生技术综述与展望.仪器仪表学报, 2018, 39(11):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201811001

    Liu Da-Tong, Guo Kai, Wang Ben-Kuan, Peng Yu. Summary and perspective survey on digital twin technology. Chinese Journal of Scientific Instrument, 2018, 39(11):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201811001
    [30] Goncalves E M N, Freitas A, Botelho S. An AutomationML based ontology for sensor fusion in industrial plants. Sensors, 2019, 19(6):1-18 doi: 10.1109/JSEN.2018.2885911
    [31] Madni A M, Madni C C, Lucero S D. Leveraging digital twin technology in model-based systems engineering. Systems, 2019, 7(1): Article No.7
    [32] Li Y, Ma Z. A formal approach for graphically building fuzzy XML model. International Journal of Intelligent Systems, , 2019, 34(11):3058-3076 doi: 10.1002/int.22188
    [33] Miller A M, Alvarez R, Hartman N. Towards an extended model-based definition for the digital twin. Computer-Aided Design and Applications, 2018, 15(6):880-891 doi: 10.1080/16864360.2018.1462569
    [34] Lohtander M, Ahonen N, Lanz M, Ratava J, Kaakkunen J. Micro manufacturing unit and the corresponding 3D-model for the digital twin. Procedia Manufacturing, 2018, 25:55-61 doi: 10.1016/j.promfg.2018.06.057
    [35] Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital twin in manufacturing:a categorical literature review and classification. IFAC-PapersOnLine, 2018, 51(11):1016-1022 doi: 10.1016/j.ifacol.2018.08.474
    [36] Cai Y, Starly B, Cohen P, Lee Y-S. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing, 2017, 10:1031-1042 doi: 10.1016/j.promfg.2017.07.094
    [37] Caputo F, Greco A, Fera M, Macchiaroli R. Digital twins to enhance the integration of ergonomics in the workplace design. International Journal of Industrial Ergonomics, 2019, 71:20-31 doi: 10.1016/j.ergon.2019.02.001
    [38] Zhang C Y, Xu W J, Liu J Y, Liu Z H, Zhou Z D, Pham D T. A reconfigurable modeling approach for digital twin-based manufacturing system. Procedia CIRP, 2019, 83:118-125 doi: 10.1016/j.procir.2019.03.141
    [39] Liu Q, Zhang H, Leng J W, Chen X. Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research, 2019, 57(12):3903-3919 doi: 10.1080/00207543.2018.1471243
    [40] Luo W C, Hu T L, Zhang C R, Wei Y L. Digital twin for CNC machine tool:modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1129-1140 doi: 10.1007/s12652-018-0946-5
    [41] Qiao Q Z, Wang J J, Ye L K, Gao R X. Digital twin for machining tool condition prediction. Procedia CIRP, 2019, 81:1388-1393 doi: 10.1016/j.procir.2019.04.049
    [42] 温景容, 武穆清, 宿景芳.信息物理融合系统.自动化学报, 2012, 38(4):507-517 http://www.aas.net.cn/CN/abstract/abstract17704.shtml

    Wen Jing-Rong, Wu Mu-Qing, Su Jing-Fang. Cyber-physical system. Acta Automatica Sinica, 2012, 38(4):507-517 http://www.aas.net.cn/CN/abstract/abstract17704.shtml
    [43] Xiang F, Zhi Z, Jiang G Z. Digital twins technolgy and its data fusion in iron and steel product life cycle. In: Proceedings of the 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China: IEEE, 2018. 1-5
    [44] 李洪阳, 魏慕恒, 黄洁, 邱伯华, 赵晔, 骆文城, 等.信息物理系统技术综述.自动化学报, 2019, 45(1):37-50 http://www.aas.net.cn/CN/abstract/abstract19415.shtml

    Li Hong-Yang, Wei Mu-Heng, Huang Jie, Qiu Bo-Hua, Zhao Ye, Luo Wen-Cheng, et al. Survey on cyber-physical systems. Acta Automatica Sinica, 2019, 45(1):37-50 http://www.aas.net.cn/CN/abstract/abstract19415.shtml
    [45] Guo A, Yu D, Hu Y, Wang S, An T, Zhang T F. Design and implementation of data collection system based on CPS model. In: Proceedings of the 2015 International Conference on Computer Science and Mechanical Automation (CSMA). Hangzhou, China: IEEE, 2015. 139-143
    [46] Kuo S Y, Chou Y H, Chen C Y. Quantum-inspired algorithm for cyber-physical visual surveillance deployment systems. Computer Networks, 2017, 117:5-18 doi: 10.1016/j.comnet.2016.11.013
    [47] 黎作鹏, 张天驰, 张菁.信息物理融合系统(CPS)研究综述.计算机科学, 2011, 38(9):25-31 doi: 10.3969/j.issn.1002-137X.2011.09.005

    Li Zuo-Peng, Zhang Tian-Chi, Zhang Jing. Survey on the research of cyber-physical systems (CPS). Computer Science, 2011, 38(9):25-31 doi: 10.3969/j.issn.1002-137X.2011.09.005
    [48] Siddiqa A, Hashem I A T, Yaqoob I, Marjani M, Shamshirband S, Gani A, et al. A survey of big data management:taxonomy and state-of-the-art. Journal of Network and Computer Applications, 2016, 71:151-166 doi: 10.1016/j.jnca.2016.04.008
    [49] Elattar M, Cao T, Wendt V, Jaspemeite J, Trachtler A. Reliable multipath communication approach for internet-based cyber-physical systems. In: Proceedings of the 26th International Symposium on Industrial Electronics (ISIE). Edinburgh, England: IEEE, 2017. 1226-1233
    [50] Xia F, Wang L Q, Zhang D Q, He D J, Kong X J. An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 2015, 58(2):125-138 doi: 10.1007/s11235-014-9895-2
    [51] Xia F, Ma L H, Dong J X, Sun Y X. Network QoS management in cyber-physical systems. In: Proceedings of the 2008 International Conference on Embedded Software and Systems Symposia. Chengdu, China: IEEE, 2008. 302-307
    [52] Lien S Y, Cheng S M, Shih S Y, Chen K C. Radio resource management for QoS guarantees in cyber-physical systems. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(9):1752-1761 doi: 10.1109/TPDS.2012.151
    [53] 刘彬, 张云勇.基于数字孪生模型的工业互联网应用.电信科学, 2019, 35(5): Article No. 2019088

    Liu Bin, Zhang Yun-Yong. Application of digital twin model based industrial internet. Telecommunications Science, 2019, 35(5): Article No. 2019088
    [54] Zhuang Y, Yu L, Shen H Y, Kolodzey W, Iri N, Caulfield G, et al. Data collection with accuracy-aware congestion control in sensor networks. IEEE Transactions on Mobile Computing, 2019, 18(5):1068-1082 doi: 10.1109/TMC.2018.2853159
    [55] Zambal S, Eitzinger C, Clarke M, Klintworth J, Mechin P-Y. A digital twin for composite parts manufacturing: effects of defects analysis based on manufacturing data. In: Proceedings of the 16th International Conference on Industrial Informatics (INDIN). Porto, Portugal: IEEE, 2018. 803-808
    [56] Riemer D. Feeding the digital twin: basics, models and lessons learned from building an IoT analytics toolbox (invited talk). In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. Article No. 4212
    [57] Shahriar M R, Sunny S M N A, Liu X Q, Leu M C, Hu L W, Nguyen N T. MTComm based virtualization and integration of physical machine operations with digital-twins in cyber-physical manufacturing cloud. In: Proceedings of the 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/the 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). Shanghai, China: IEEE, 2018. 46-51
    [58] Yumnam A S, Sreeram Y C, Naeem S A. Overview: weblog mining, privacy issues and application of Web Log mining. In: Proceedings of the 2014 International Conference on Computing for Sustainable Global Development (INDIACom). New Delhi, India: IEEE, 2014. 638-641
    [59] El Saddik A. Digital twins:the convergence of multimedia technologies. IEEE MultiMedia, 2018, 25(2):87-92 doi: 10.1109/MMUL.2018.023121167
    [60] Smith D, Singh S. Approaches to multisensor data fusion in target tracking:a survey. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(12):1696-1710 doi: 10.1109/TKDE.2006.183
    [61] He Y, Guo J C, Zheng X L. From surveillance to digital twin:challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Processing Magazine, 2018, 35(5):120-129 doi: 10.1109/MSP.2018.2842228
    [62] Yi B, Li X B, Yang Y. Heterogeneous model integration of complex mechanical parts based on semantic feature fusion. Engineering with Computers, 2017, 33(4):797-805 doi: 10.1007/s00366-016-0498-2
    [63] Atat R, Liu L J, Wu J S, Li G Y, Ye C X, Yang Y. Big data meet cyber-physical systems:a panoramic survey. IEEE Access, 2018, 6:73603-73636 doi: 10.1109/ACCESS.2018.2878681
    [64] Zordan V B, van der Horst N C. Mapping optical motion capture data to skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. San Diego, USA: Eurographics Association, 2003. 245-250
    [65] He R, Chen G M, Dong C, Sun S F, Shen X Y. Data-driven digital twin technology for optimized control in process systems. ISA Transactions, 2019, DOI: 10.1016/j.isatra.2019.05.011
    [66] Hyeong-Su K, Jin-Woo K, Yun S, Kim W T. A novel wildfire digital-twin framework using interactive wildfire spread simulator. In: Proceedings of the 11th International Conference on Ubiquitous and Future Networks (ICUFN). Zagreb, Croatia: IEEE, 2019. 636-638
    [67] Zehnder P, Riemer D. Representing industrial data streams in digital twins using semantic labeling. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4223-4226
    [68] Hu L W, Nguyen N-T, Tao W J, Leu M C, Liu X F, Shahriar M R, et al. Modeling of cloud-based digital twins for smart manufacturing with MT connect. Procedia Manufacturing, 2018, 26:1193-1203 doi: 10.1016/j.promfg.2018.07.155
    [69] Minos-Stensrud M, Haakstad O H, Sakseid O, Westby B, Alcocer A. Towards automated 3D reconstruction in SME factories and digital twin model generation. In: Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS). Daegwallyeong, South Korea: IEEE, 2018. 1777-1781
    [70] Gandzha S, Aminov D, Kiessh I, Kosimov B. Application of digital twins technology for analysis of brushless electric machines with axial magnetic flux. In: Proceedings of the 2018 Global Smart Industry Conference (GloSIC). Chelyabinsk, Russia: IEEE, 2018. 1-6
    [71] Stojanovic N, Milenovic D. Data-driven digital twin approach for process optimization: an industry use case. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4202-4211
    [72] Sun H Q, Li C, Fang X Y, Gu H. Optimized throughput improvement of assembly flow line with digital twin online analytics. In: Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macau, China: IEEE, 2017. 1833-1837
    [73] Seshadri B S, Krishnamurthy T. Structural health management of damaged aircraft structures using digital twin concept. In: Proceedings of the 25th AIAA/AHS Adaptive Structures Conference. Grapevine, USA: AIAA, 2017. 1-13
    [74] Zhang H, Wang R G, Wang C. Monitoring and warning for digital twin-driven mountain geological disaster. In: Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA). Tianjin, China: IEEE, 2019. 502-507
    [75] Chen X Y, Guo T Y. Research on the predicting model of convenience store model based on digital twins. In: Proceedings of the 2018 International Conference on Smart Grid and Electrical Automation (ICSGEA). Changsha, China: IEEE, 2018. 224-226
    [76] Martinez-Velazquez R, Gamez R, El Saddik A. Cardio twin: a digital twin of the human heart running on the edge. In: Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Istanbul, Turkey: IEEE, 2019. 1-6
    [77] Cronrath C, Aderiani A R, Lennartson B. Enhancing digital twins through reinforcement learning. In: Proceedings of the 15th International Conference on Automation Science and Engineering (CASE). Vancouver, Canada: IEEE, 2019. 293-298
    [78] Xu Y, Sun Y M, Liu X L, Zheng Y H. A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access, 2019, 7:19990-19999 doi: 10.1109/ACCESS.2018.2890566
    [79] Banyai A, Illes B, Glistau E, Mahcado N I C, Tamas P, Manzoor F, et al. Smart cyber-physical manufacturing:extended and real-time optimization of logistics resources in matrix production. Applied Sciences, 2019, 9(7):1-33
    [80] Biesinger F, Meike D, Krass B, Weyrich M. A case study for a digital twin of body-in-white production systems general concept for automated updating of planning projects in the digital factory. In: Proceedings of the 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Turin, Italy: IEEE, 2018. 19-26
    [81] Liu J F, Zhou H G, Liu X J, Tian G Z, Wu M F, Cao L P, et al. Dynamic evaluation method of machining process planning based on digital twin. IEEE Access, 2019, 7:19312-19323 doi: 10.1109/ACCESS.2019.2893309
    [82] Zhao R L, Yan D X, Liu Q, Leng J W, Wan J F, Chen X, et al. Digital twin-driven cyber-physical system for autonomously controlling of micro punching system. IEEE Access, 2019, 7:9459-9469 doi: 10.1109/ACCESS.2019.2891060
    [83] Xu Y, Sun Y M, Wan J F, Liu X L, Song Z T. Industrial big data for fault diagnosis:taxonomy, review, and applications. IEEE Access, 2017, 5:17368-17380 doi: 10.1109/ACCESS.2017.2731945
    [84] Wan J F, Tang S L, Li D, Wang S Y, Liu C L, Abbas H, et al. A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 2017, 13(4):2039-2047 doi: 10.1109/TII.2017.2670505
    [85] Rosen R, von Wichert G, Lo G, Bettenhausen K D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 2015, 48(3):567-572 doi: 10.1016/j.ifacol.2015.06.141
    [86] Kuenzel M, Kraus T, Straub S. Collaborative engineering-main features and challenges of cross-company collaboration in engineering of products and services. In: Proceedings of the 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). Valbonne Sophia-Antipolis, France: IEEE, 2019. 1-7
    [87] 陶飞, 刘蔚然, 张萌, 胡天亮, 戚庆林, 张贺, 等.数字孪生五维模型及十大领域应用.计算机集成制造系统, 2019, 25(1):1-18 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201901001

    Tao Fei, Liu Wei-Ran, Zhang Meng, Hu Tian-Liang, Qi QingLin, Zhang He, et al. Five-dimension digital twin model and its ten applications. Computer Integrated Manufacturing Systems, 2019, 25(1):1-18 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201901001
    [88] 陶飞, 程颖, 程江峰, 张萌, 徐文君, 戚庆林.数字孪生车间信息物理融合理论与技术.计算机集成制造系统, 2017, 23(8):1603-1611 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201708001

    Tao Fei, Cheng Ying, Cheng Jiang-Feng, Zhang Meng, Xu WenJun, Qi Qing-Lin. Theories and technologies for cyber-physical fusion in digital twin shop-floor. Computer Integrated Manufacturing Systems, 2017, 23(8):1603-1611 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201708001
    [89] Schluse M, Priggemeyer M, Atorf L, Rossmann J. Experimentable digital twins-treamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics, 2018, 14(4):1722-1731 doi: 10.1109/TII.2018.2804917
    [90] Song E Y, Burns M, Pandey M, Roth T. IEEE 1451 smart sensor digital twin federation for IoT/CPS research. In: Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS). Sophia Antipolis, France: IEEE, 2019. 1-6
    [91] Sleuters J, Li Y H, Verriet J, Velikova M, Doornbos R. A digital twin method for automated behavior analysis of large-scale distributed IoT systems. In: Proceedings of the 14th Annual Conference System of Systems Engineering (SoSE). Anchorage, USA: IEEE, 2019. 7-12
    [92] Bazilevs Y, Deng X, Korobenko A, di Scalea F L, Todd M D, Taylor S G. Isogeometric fatigue damage prediction in largescale composite structures driven by dynamic sensor data. Journal of Applied Mechanics, 2015, 82(9): Article No. 091008
    [93] Ke S Q, Xiang F, Zhang Z, Zuo Y. A enhanced interaction framework based on VR, AR and MR in digital twin. Procedia CIRP, 2019, 83:753-758 doi: 10.1016/j.procir.2019.04.103
    [94] Zhu Z X, Liu C, Xu X. Visualisation of the digital twin data in manufacturing by using augmented reality. Procedia CIRP, 2019, 81:898-903 doi: 10.1016/j.procir.2019.03.223
    [95] Revetria R, Tonelli F, Damiani L, Demartini M, Bisio F, Peruzzo N. A real-time mechanical structures monitoring system based on digital twin, Iot and augmented reality. In: Proceedings of the 2019 Spring Simulation Conference (SpringSim). Tucson, USA: IEEE, 2019. 1-10
    [96] Blaga A, Tamas L. Augmented reality for digital manufacturing. In: Proceedings of the 26th Mediterranean Conference on Control and Automation (MED). Zadar, Croatia: IEEE, 2018. 173-178
    [97] Karadeniz A M, Arif I, Kanak A, Ergun S. Digital twin of eGastronomic things: a case study for ice cream machines. In: Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo, Japan: IEEE, 2019. 173-178
    [98] Pargmann H, Euhausen D, Faber R. Intelligent big data processing for wind farm monitoring and analysis based on cloudtechnologies and digital twins: a quantitative approach. In: Proceedings of the 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Chengdu, China: IEEE, 2018. 233-237
    [99] Rabah S, Assila A, Khouri E, Maier F, Ababsa F, Bourny V, Maier P, et al. Towards improving the future of manufacturing through digital twin and augmented reality technologies. Procedia Manufacturing, 2018, 17:460-467 doi: 10.1016/j.promfg.2018.10.070
    [100] Schroeder G, Steinmetz C, Pereira C E, Muller I, Garcia N, Espindola D, Rodrigues R. Visualising the digital twin using web services and augmented reality. In: Proceedings of the 14th International Conference on Industrial Informatics (INDIN). Poitiers, France: IEEE, 2016. 522-527
    [101] 李欣, 刘秀, 万欣欣.数字孪生应用及安全发展综述.系统仿真学报, 2019, 31(3):385-392 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903003

    Li Xin, Liu Xiu, Wan Xin-Xin. Overview of digital twins application and safe development. Journal of System Simulation, 2019, 31(3):385-392 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903003
    [102] Doostmohammadian M, Khanc U A. Vulnerability of CPS inference to DoS attacks. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2014. 2015-2018
    [103] Humayed A, Lin J Q, Li F J, Luo B. Cyber-physical systems security-a survey. IEEE Internet of Things Journal, 2017, 4(6):1802-1831 doi: 10.1109/JIOT.2017.2703172
    [104] Feng M, Xu H. Deep reinforecement learning based optimal defense for cyber-physical system in presence of unknown cyberattack. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, USA: IEEE, 2017. 1-8
    [105] Xiao K M, Zhu C, Xie J J, Zhou Y, Zhu X Q, Zhang W M. Dynamic defense strategy against stealth malware propagation in cyber-physical systems. In: Proceedings of the 2018 IEEE Conference on Computer Communications. Honolulu, USA: IEEE, 2018. 1790-1798
    [106] Wang F Y, Yuan Y, Zhang J, Qin R, Smith M H. Blockchainized internet of minds:a new opportunity for cyber-physical-social systems. IEEE Transactions on Computational Social Systems, 2018, 5(4):897-906 doi: 10.1109/TCSS.2018.2881344
    [107] Qin R, Yuan Y, Wang S, Wang F Y. Economic issues in bitcoin mining and blockchain research. In: Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). Changshu, China: IEEE, 2018. 268-273
    [108] Mandolla C, Petruzzelli A M, Percoco G, Urbinati A. Building a digital twin for additive manufacturing through the exploitation of blockchain:a case analysis of the aircraft industry. Computers in Industry, 2019, 109:134-152 doi: 10.1016/j.compind.2019.04.011
    [109] Damjanovic-Behrendt V. A digital twin-based privacy enhancement mechanism for the automotive industry. In: Proceedings of the 2018 International Conference on Intelligent Systems (IS). Funchal-Madeira, Portugal: IEEE, 2018. 272-279
    [110] 陶飞, 戚庆林.面向服务的智能制造.机械工程学报, 2018, 54(16):11-23 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201816002

    Tao Fei, Qi Qing-Lin. Service-oriented smart manufacturing. Journal of Mechanical Engineering, 2018, 54(16):11-23 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201816002
    [111] Wang J, Ye L, Gao R, Li C, Zhang L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 2019, 57(12):3920-3934 doi: 10.1080/00207543.2018.1552032
    [112] Kannan K, Arunachalam N. A digital twin for grinding wheel: an information sharing platform for sustainable grinding process. Journal of Manufacturing Science and Engineering, 2019, 141(2): Article No. 021015
    [113] Li C, Mahadevan S, Ling Y, Choze S, Wang L. Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA Journal, 2017, 55(3):930-941 doi: 10.2514/1.J055201
    [114] Min Q, Lu Y, Liu Z, Su C, Wang B. Machine learning based digital twin framework for production optimization in petrochemical industry. International Journal of Information Management, 2019(49):502-519
    [115] Wang X V, Wang L H. Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. International Journal of Production Research, 2019, 57(12):3892-3902 doi: 10.1080/00207543.2018.1497819
    [116] Dong R, She C, Hardjawana W, Li Y, Vucetic B. Deep learning for hybrid 5G services in mobile edge computing systems:learn from a digital twin. IEEE Transactions on Wireless Communications, 2019, 18(10):4692-4707 doi: 10.1109/TWC.2019.2927312
    [117] Kunath M, Winkler H. Integrating the digital twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP, 2018, 72:225-231 doi: 10.1016/j.procir.2018.03.192
    [118] Biesinger F, Meike D, Krass B, Weyrich M. A digital twin for production planning based on cyber-physical systems:a case study for a cyber-physical system-based creation of a digital twin. Procedia CIRP, 2019, 79:355-360 doi: 10.1016/j.procir.2019.02.087
    [119] Zhang H W, Ma L, Sun J, Lin H S, Thurer M. Digital twin in services and industrial product service systems::review and analysis. Procedia CIRP, 2019, 83:57-60 doi: 10.1016/j.procir.2019.02.131
    [120] Shubenkova K, Valiev A, Shepelev V, Tsiulin S, Reinau K H. Possibility of digital twins technology for improving efficiency of the branded service system. In: Proceedings of the 2018 Global Smart Industry Conference (GloSIC). Chelyabinsk, Russia: IEEE, 2018. 1-7
    [121] 杨洋.数字孪生技术在供应链管理中的应用与挑战.中国流通经济, 2019, 33(6):58-65 http://d.old.wanfangdata.com.cn/Periodical/zgltjj201906006

    Yang Yang. Application and development of digital twin in supply chain management. China Business and Market, 2019, 33(6):58-65 http://d.old.wanfangdata.com.cn/Periodical/zgltjj201906006
    [122] Defraeye T, Tagliavini G, Wu W T, Prawiranto K, Schudel S, Kerisima M A, et al. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling, 2019, 149:778-794 doi: 10.1016/j.resconrec.2019.06.002
    [123] Dalstam A, Engberg M, Nafors D, Johansson B, Sundblom A. A stepwise implementation of the virtual factory in manufacturing industry. In: Proceedings of the 2018 Winter Simulation Conference (WSC). Gothenburg, Sweden: IEEE, 2018, 3229-3240
    [124] 刘志峰, 陈伟, 杨聪彬, 程强, 赵永胜.基于数字孪生的零件智能制造车间调度云平台.计算机集成制造系统, 2019, 25(6):1444-1453 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906013

    Liu Zhi-Feng, Chen Wei, Yang Cong-Bin, Cheng Qiang, Zhao Yong-Sheng. Intelligent manufacturing workshop dispatching cloud platform based on digital twins. Computer Integrated Manufacturing Systems, 2019, 25(6):1444-1453 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906013
    [125] Zhang C Y, Ji W X. Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing jobshop. Procedia CIRP, 2019, 83:624-629 doi: 10.1016/j.procir.2019.04.095
    [126] Nikolakis N, Alexopoulos K, Xanthakis E, Chryssolouris G. The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing, 2019, 32(1):1-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/0951192X.2018.1529430
    [127] Ding K, Chan F T S, Zhang X D, Zhou G H, Zhang F Q. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research, 2019, 57(20):6315-6334 doi: 10.1080/00207543.2019.1566661
    [128] Coronado P D U, Lynn R, Louhichi W, Parto M, Wescoat E, Kurfess T. Part data integration in the shop floor digital twin:mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems, 2018, 48:25-33 doi: 10.1016/j.jmsy.2018.02.002
    [129] Tao F, Cheng Y, Zhang L, Nee A Y C. Advanced manufacturing systems:socialization characteristics and trends. Journal of Intelligent Manufacturing, 2017, 28(5):1079-1094 doi: 10.1007/s10845-015-1042-8
    [130] Tao F, Zhang M. Digital twin shop-floor:a new shop-floor paradigm towards smart manufacturing. IEEE Access, 2017, 5:20418-20427 doi: 10.1109/ACCESS.2017.2756069
    [131] 赵虎, 赵宁, 张赛朋.结合价值流程图与数字孪生技术的工厂设计.计算机集成制造系统, 2019, 25(6):1481-1490 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906017

    Zhao Hu, Zhao Ning, Zhang Sai-Peng. Factory design approach based on value stream mapping and digital twin. Computer Integrated Manufacturing Systems, 2019, 25(6):1481-1490 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906017
    [132] Fang Y L, Peng C, Lou P, Zhou Z D, Hu J M, Yan J W. Digital-twin based job shop scheduling towards smart manufacturing. IEEE Transactions on Industrial Informatics, DOI: 10.1109/TII.2019.2938572
    [133] Zhuang C B, Liu J H, Xiong H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):1149-1163 doi: 10.1007/s00170-018-1617-6
    [134] Zhang C, Zhou G H, He J, Li Z, Cheng W. A data- and knowledge-driven framework for digital twin manufacturing cell. Procedia CIRP, 2019, 83:345-350 doi: 10.1016/j.procir.2019.04.084
    [135] Cavalcante I M, Frazzon E M, Forcellini F A, Ivanov D. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 2019, 49:86-97 doi: 10.1016/j.ijinfomgt.2019.03.004
    [136] Soderberg R, Wormefjord K, Carlson J S, Lindkvist L. Toward a digital twin for real-time geometry assurance in individualized production. CIRP Annals, 2017, 66(1):137-140 doi: 10.1016/j.cirp.2017.04.038
    [137] 张伟.数字孪生在智能装备制造中的应用研究.现代信息科技, 2019, 3(8):197-198 doi: 10.3969/j.issn.2096-4706.2019.08.078

    Zhang Wei. Application research of digital twin in intelligent equipment manufacturing. Modern Information Technology, 2019, 3(8):197-198 doi: 10.3969/j.issn.2096-4706.2019.08.078
    [138] Qi Q L, Tao F. Digital twin and big data towards smart manufacturing and industry 4.0:360 degree comparison. IEEE Access, 2018, 6:3585-3593
    [139] Leng J W, Zhang H, Yan D X, Liu Q, Chen X, Zhang D. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1155-1166 doi: 10.1007/s12652-018-0881-5
    [140] Guo J P, Zhao N, Sun L, Zhang S P. Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1189-1200 doi: 10.1007/s12652-018-0953-6
    [141] Aivaliotis P, Georgoulias K, Arkouli Z, Makris S. Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP, 2019, 81:417-422 doi: 10.1016/j.procir.2019.03.072
    [142] Brandtstaedter H, Ludwig C, Hubner L, Tsouchnika E, Jungiewicz A, Wever U. Digital twins for large electric drive trains. In: Proceedings of the 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe). Antwerp, Belgium: IEEE, 2018. 1-5
    [143] 赵亮, 高龙, 陶剑.数字孪生技术在航空产品寿命预测中的应用.国防科技工业, 2019(5):42-44 http://www.cnki.com.cn/Article/CJFDTotal-ZGBG201905021.htm

    Zhao Liang, Gao Long, Tao Jian. Application of digital twinning technology in life prediction of aviation products. Defense Science and Technology Industry, 2019(5):42-44 http://www.cnki.com.cn/Article/CJFDTotal-ZGBG201905021.htm
    [144] 陆清, 吴双, 赵喆, 周凡利.数字孪生技术在飞机设计验证中的应用.民用飞机设计与研究, 2019(3):1-8 http://www.cnki.com.cn/Article/CJFDTotal-MYFJ201903006.htm

    Lu Qing, Wu Shuang, Zhao Zhe, Zhou Fan-Li. Application of digital twinning technology in aircraft design verification. Civil Aircraft Design and Research, 2019(3):1-8 http://www.cnki.com.cn/Article/CJFDTotal-MYFJ201903006.htm
    [145] Peng Y, Zhang X L, Song Y C, Liu D T. A low cost flexible digital twin platform for spacecraft lithium-ion battery pack degradation assessment. In: Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Auckland, New Zealand: IEEE, 2019. 1-6
    [146] Asha K, Kariyappa B S, Vishal K. Digital twin ranorex test automation of SIPROTEC 5 protection devices. In: Proceedings of the 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). Coimbatore, India: IEEE, 2019. 955-958
    [147] 戴晟, 赵罡, 于勇, 王伟.数字化产品定义发展趋势:从样机到孪生.计算机辅助设计与图形学学报, 2018, 30(8):1554-1562 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201808018

    Dai Sheng, Zhao Gang, Yu Yong, Wang Wei. Trend of digital product definition:from mock-up to twin. Journal of ComputerAided Design and Computer Graphics, 2018, 30(8):1554-1562 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201808018
    [148] 刘潇翔, 汤亮, 曾海波, 刘羽白, 张新邦.航天控制系统基于数字孪生的智慧设计仿真.系统仿真学报, 2019, 31(3):377-384 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903002

    Liu Xiao-Xiang, Tang Liang, Zeng Hai-Bo, Liu Yu-Bai, Zhang Xin-Bang. Smart design and simulation of aerospace control system based on digital twin. Journal of System Simulation, 2019, 31(3):377-384 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903002
    [149] Xiang F, Zhang Z, Zuo Y, Tao F. Digital twin driven green material optimal-selection towards sustainable manufacturing. Procedia CIRP, 2019, 81:1290-1294 doi: 10.1016/j.procir.2019.04.015
    [150] Malozemov A A, Bondar V N, Egorov V V, Malozemov G A. Digital twins technology for internal combustion engines development. In: Proceedings of the 2018 Global Smart Industry Conference (GloSIC). Chelyabinsk, Russia: IEEE, 2018. 1-6
    [151] 张冰, 李欣, 万欣欣.从数字孪生到数字工程建模仿真迈入新时代.系统仿真学报, 2019, 31(3):369-376 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903001

    Zhang Bing, Li Xin, Wan Xin-Xin. From digital twin to digital engineering modeling and simulation entering a new era. Journal of System Simulation, 2019, 31(3):369-376 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903001
    [152] 城市大脑: 探索"数字孪生城市"[Online], available: https://yq.aliyun.com/articles/603873-spm=a2c4e.11153987.0.0.26ce5a35X7zQjB, September 5, 2019
    [153] 王飞跃, 李长贵, 国元元, 王静, 王晓, 邱天雨, 等.平行高特:基于ACP的平行痛风诊疗系统框架.模式识别与人工智能, 2017, 30(12):1057-1068 http://www.cnki.com.cn/Article/CJFDTotal-MSSB201712001.htm

    Wang Fei-Yue, Li Chang-Gui, Guo Yuan-Yuan, Wang Jing, Wang Xiao, Qiu Tian-Yu, et al. Parallel gout:an ACP-based system framework for gout diagnosis and treatment. Pattern Recognition and Artificial Intelligence, 2017, 30(12):1057-1068 http://www.cnki.com.cn/Article/CJFDTotal-MSSB201712001.htm
    [154] Liu Y, Zhang L, Yang Y, Zhou L F, Ren L, Wang F, et al. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 2019, 7:49088-49101 doi: 10.1109/ACCESS.2019.2909828
    [155] Si X, Jing L. Mass detection in digital mammograms using twin support vector machine-based CAD system. In: Proceedings of the 2009 WASE International Conference on Information Engineering. Taiyuan, China: IEEE, 2009. 240-243
    [156] Karakra A, Fontanili F, Lamine E, Lamothe J. HospiT'Win: a predictive simulation-based digital twin for patients pathways in hospital. In: Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Chicago, USA: IEEE, 2019. 1-4
    [157] Naplekov I, Zheleznikov I, Pashchenko D, Kobysheva P, Moskvitina A, Mustafin R, et al. Methods of computational modeling of coronary heart vessels for its digital twin. MATEC Web of Conferences, 2018, 172: Article No. 01009
    [158] Laaki H, Miche Y, Tammi K. Prototyping a digital twin for real time remote control over mobile networks:application of remote surgery. IEEE Access, 2019, 7:20325-20336 doi: 10.1109/ACCESS.2019.2897018
    [159] Koulamas C, Kalogeras A. Cyber-physical systems and digital twins in the industrial internet of things[Cyber-Physical Systems]. Computer, 2018, 51(11):95-98 doi: 10.1109/MC.2018.2876181
    [160] Canedo A. Industrial IoT lifecycle via digital twins. In: Proceedings of the 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). Pittsburgh, USA: IEEE, 2016.
    [161] Shivajee V, Singh R K, Rastogi S. Manufacturing conversion cost reduction using quality control tools and digitization of real-time data. Journal of Cleaner Production, 2019, 237: Article No.117678
    [162] Abramkin S E, Dushin S E. Prospects for the development of control systems for gas producing complexes. In: Proceedings of the 2nd International Conference on Control in Technical Systems (CTS). St. Petersburg, Russia: IEEE, 2017. 150-153
    [163] 熊明, 古丽, 吴志锋, 邓勇, 李双琴, 邹妍, 等.在役油气管道数字孪生体的构建及应用.油气储运, 2019, 38(5):503-509 http://d.old.wanfangdata.com.cn/Periodical/yqcy201905003

    Xiong Ming, Gu Li, Wu Zhi-Feng, Deng Yong, Li Shuang-Qin, Zou Yan, et al. Construction and application of digital twin in the in-service oil and gas pipeline. Oil and Gas Storage and Transportation, 2019, 38(5):503-509 http://d.old.wanfangdata.com.cn/Periodical/yqcy201905003
    [164] Zhou M K, Yan J F, Feng D H. Digital twin framework and its application to power grid online analysis. CSEE Journal of Power and Energy Systems, 2019, 5(3):391-398
    [165] Pileggi P, Verriet J, Broekhuijsen J, van Leeuwen C, Wijbrandi W, Konsman M. A digital twin for cyber-physical energy systems. In: Proceedings of the 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). Montreal, Canada: IEEE, 2019. 1-6
    [166] Brosinsky C, Westermann D, Krebs R. Recent and prospective developments in power system control centers: adapting the digital twin technology for application in power system control centers. In: Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON). Limassol, Cyprus: IEEE, 2018. 1-6
    [167] 侯家琛, 董西松, 熊刚, 张俊, 谭珂.平行核电:迈向智慧核电的智能技术.智能科学与技术学报, 2019, 1(2):192-201 http://d.old.wanfangdata.com.cn/Periodical/xtgcllysj201205014

    Hou Jia-Chen, Dong Xi-Song, Xiong Gang, Zhang Jun, Tan Ke. Parallel nuclear power:intelligent technology for smart nuclear power. Chinese Journal of Intelligent Science and Technology, 2019, 1(2):192-201 http://d.old.wanfangdata.com.cn/Periodical/xtgcllysj201205014
    [168] Jo S K, Park D H, Park H, Kim S H. Smart livestock farms using digital twin: feasibility study. In: Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC). Jeju, South Korea: IEEE, 2018. 1461-1463
    [169] Delbrügger T, Lenz L T, Losch D, Rossmann J. A navigation framework for digital twins of factories based on building information modeling. In: Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Limassol, Cyprus: IEEE, 2017. 1-4
    [170] Autiosalo J. Platform for industrial internet and digital twin focused education, research, and innovation: Ilmatar the overhead crane. In: Proceedings of the 4th World Forum on Internet of Things (WF-IoT). Singapore, Singapore: IEEE, 2018. 241-244
    [171] 庄存波, 刘检华, 熊辉, 丁晓宇, 刘少丽, 瓮刚.产品数字孪生体的内涵、体系结构及其发展趋势.计算机集成制造系统, 2017, 23(4):753-768 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201704010

    Zhuang Cun-Bo, Liu Jian-Hua, Xiong Hui, Ding Xiao-Yu, Liu Shao-Li, Weng Gang. Connotation, architecture and trends of product digital twin. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201704010
    [172] Wang F Y. Shadow Systems: A New Concept for Nested and Embedded Co-simulation for Intelligent Systems. Tucson, Arizona State, USA: University of Arizona, 1994.
    [173] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489 doi: 10.3321/j.issn:1001-0920.2004.05.002

    Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5):485-489 doi: 10.3321/j.issn:1001-0920.2004.05.002
    [174] Wang F Y, Zhang J J, Zheng X H, Wang X, Yuan Y, Dai X X, et al. Where does AlphaGo go:from church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2):113-120 doi: 10.1109/JAS.2016.7471613
    [175] 袁勇, 王飞跃.平行区块链:概念、方法与内涵解析.自动化学报, 2017, 43(10):1703-1712 http://www.aas.net.cn/CN/abstract/abstract19148.shtml

    Yuan Yong, Wang Fei-Yue. Parallel blockchain:concept, methods and issues. Acta Automatica Sinica, 2017, 43(10):1703-1712 http://www.aas.net.cn/CN/abstract/abstract19148.shtml
    [176] 王晓, 要婷婷, 韩双双, 曹东璞, 王飞跃.平行车联网:基于ACP的智能车辆网联管理与控制.自动化学报, 2018, 44(8):1391-1404 http://www.aas.net.cn/CN/abstract/abstract19324.shtml

    Wang Xiao, Yao Ting-Ting, Han Shuang-Shuang, Cao DongPu, Wang Fei-Yue. Parallel internet of vehicles:the ACP-based networked management and control for intelligent vehicles. Acta Automatica Sinica, 2018, 44(8):1391-1404 http://www.aas.net.cn/CN/abstract/abstract19324.shtml
    [177] Wang F Y. The emergence of intelligent enterprises:from CPS to CPSS. IEEE Intelligent Systems, 2010, 25(4):85-88 doi: 10.1109/MIS.2010.104
    [178] 周敏, 董海荣, 徐惠春, 李浥东, 王飞跃.平行应急疏散系统:基本概念、体系框架及其应用.自动化学报, 2019, 45(6):1074-1086 http://www.aas.net.cn/CN/abstract/abstract19506.shtml

    Zhou Min, Dong Hai-Rong, Xu Hui-Chun, Li Yi-Dong, Wang Fei-Yue. Parallel emergency evacuation systems:basic concept, framework and applications. Acta Automatica Sinica, 2019, 45(6):1074-1086 http://www.aas.net.cn/CN/abstract/abstract19506.shtml
    [179] 王坤峰, 鲁越, 王雨桐, 熊子威, 王飞跃.平行图像:图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7):577-587 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201707001

    Wang Kun-Feng, Lu Yue, Wang Yu-Tong, Xiong Zi-Wei, Wang Fei-Yue. Parallel imaging:a new theoretical framework for image generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7):577-587 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201707001
    [180] 孟祥冰, 王蓉, 张梅, 王飞跃.平行感知:ACP理论在视觉SLAM技术中的应用.指挥与控制学报, 2018, 3(4):350-358 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201804014

    Meng Xiang-Bing, Wang Rong, Zhang Mei, Wang Fei-Yue. Parallel perception:an ACP-based approach to visual SLAM. Journal of Command and Control, 2018, 3(4):350-358 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201804014
    [181] 李力, 林懿伦, 曹东璞, 郑南宁, 王飞跃.平行学习-机器学习的一个新型理论框架.自动化学报, 2017, 43(1):1-8 doi: 10.3969/j.issn.1003-8930.2017.01.001

    Li Li, Lin Yi-Lun, Cao Dong-Pu, Zheng Nan-Ning, Wang FeiYue. Parallel learning-a new framework for machine learning. Acta Automatica Sinica, 2017, 43(1):1-8 doi: 10.3969/j.issn.1003-8930.2017.01.001
    [182] 王飞跃.情报5.0:平行时代的平行情报体系.情报学报, 2015, 34(6):563-574 doi: 10.3772/j.issn.1000-0135.2015.006.001

    Wang Fei-yue. Intelligence 5.0:parallel intelligence in parallel age. Journal of the China Society for Scientific and Technical Information, 2015, 34(6):563-574 doi: 10.3772/j.issn.1000-0135.2015.006.001
    [183] 吕宜生, 欧彦, 汤淑明, 朱凤华, 赵红霞.基于人工交通系统的路网交通运行状况评估的计算实验.吉林大学学报(工学版), 2009, 39(S2):87-90 http://www.cnki.com.cn/Article/CJFDTotal-JLGY2009S2019.htm

    Lv Yi-Sheng, Ou Yan, Tang Shu-Ming, Zhu Feng-Hua, Zhao Hong-Xia. Computational experiments of evaluating road network traffic conditions based on artificial transportation systems. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(S2):87-90 http://www.cnki.com.cn/Article/CJFDTotal-JLGY2009S2019.htm
    [184] Wang F Y, Wang X, Li L X, Li L. Steps toward parallel intelligence. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):345-348 doi: 10.1109/JAS.2016.7510067
    [185] 刘烁, 王帅, 孟庆振, 叶佩军, 王涛, 黄文林, 等.基于ACP行为动力学的犯罪主体行为平行建模分析.自动化学报, 2018, 44(2):251-261 http://www.aas.net.cn/CN/abstract/abstract19220.shtml

    Liu Shuo, Wang Shuai, Meng Qing-Zhen, Ye Pei-Jun, Wang Tao, Huang Wen-Lin, et al. Parallel modeling of criminal subjects behavior based on ACP behavioral dynamics. Acta Automatica Sinica, 2018, 44(2):251-261 http://www.aas.net.cn/CN/abstract/abstract19220.shtml
    [186] Wang F Y. Parallel control and management for intelligent transportation systems:concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638 doi: 10.1109/TITS.2010.2060218
    [187] Wang F Y. Scanning the issue. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2310-2317 doi: 10.1109/TITS.2015.2478319
    [188] 杨林瑶, 韩双双, 王晓, 李玉珂, 王飞跃.网络系统实验平台:发展现状及展望.自动化学报, 2019, 45(9):1637-1654 http://www.aas.net.cn/CN/abstract/abstract19558.shtml

    Yang Lin-Yao, Han Shuang-Shuang, Wang Xiao, Li Yu-Ke, Wang Fei-Yue. Computational experiment platforms for networks:the state of the art and prospect. Acta Automatica Sinica, 2019, 45(9):1637-1654 http://www.aas.net.cn/CN/abstract/abstract19558.shtml
    [189] 王飞跃, 张梅, 孟祥冰, 王雁, 马娇楠, 刘武, 等.平行眼:基于ACP的智能眼科诊疗.模式识别与人工智能, 2018, 31(6):495-504 http://d.old.wanfangdata.com.cn/Periodical/gxyq201205007

    Wang Fei-Yue, Zhang Mei, Meng Xiang-Bing, Wang Yan, Ma Jiao-Nan, Liu Wu, et al. Parallel eyes:an ACP-based smart ophthalmic diagnosis and treatment. Pattern Recognition and Artificial Intelligence, 2018, 31(6):495-504 http://d.old.wanfangdata.com.cn/Periodical/gxyq201205007
    [190] 王飞跃, 张梅, 孟祥冰, 王蓉, 王晓, 张志成, 等.平行手术:基于ACP的智能手术计算方法.模式识别与人工智能, 2017, 30(11):961-970 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201711001

    Wang Fei-Yue, Zhang Mei, Meng Xiang-Bing, Wang Rong, Wang Xiao, Zhang Zhi-Cheng, et al. Parallel surgery:an ACPbased approach for intelligent operations. Pattern Recognition and Artificial Intelligence, 2017, 30(11):961-970 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201711001
    [191] Chen Y Y, Lv Y S, Wang F Y. Traffic flow imputation using parallel data and generative adversarial networks. IEEE Transactions on Intelligent Transportation Systems, 2019, DOI:10. 1109/TITIS.2019.2910295
    [192] 吕宜生, 陈圆圆, 金峻臣, 李镇江, 叶佩军, 朱凤华.平行交通:虚实互动的智能交通管理与控制.智能科学与技术学报, 2019, 1(1):21-33

    Lv Yi-Sheng, Chen Yuan-Yuan, Jin Jun-Chen, Li Zhen-Jiang, Ye Pei-Jun, Zhu Feng-Hua. Parallel transportation:virtual-real interaction for intelligent traffic management and control. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):21-33
    [193] Chen Y Y, Lv Y S, Wang X, Wang F Y. Traffic flow prediction with parallel data. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 614-619
    [194] 王坤峰, 左旺孟, 谭营, 秦涛, 李力, 王飞跃.生成式对抗网络:从生成数据到创造智能.自动化学报, 2018, 44(5):769-774 http://www.aas.net.cn/CN/abstract/abstract19269.shtml

    Wang Kun-Feng, Zuo Wang-Meng, Tan Ying, Qin Tao, Li Li, Wang Fei-Yue. Generative adversarial networks:from generating data to creating intelligence. Acta Automatica Sinica, 2018, 44(5):769-774 http://www.aas.net.cn/CN/abstract/abstract19269.shtml
    [195] 林懿伦, 戴星原, 李力, 王晓, 王飞跃.人工智能研究的新前线:生成式对抗网络.自动化学报, 2018, 44(5):775-792 http://www.aas.net.cn/CN/abstract/abstract19270.shtml

    Lin Yi-Lun, Dai Xing-Yuan, Li Li, Wang Xiao, Wang Fei-Yue. The new frontier of AI research:generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):775-792 http://www.aas.net.cn/CN/abstract/abstract19270.shtml
    [196] 郑文博, 王坤峰, 王飞跃.基于贝叶斯生成对抗网络的背景消减算法.自动化学报, 2018, 44(5):878-890 http://www.aas.net.cn/CN/abstract/abstract19279.shtml

    Zheng Wen-Bo, Wang Kun-Feng, Wang Fei-Yue. Background subtraction algorithm with Bayesian generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):878-890 http://www.aas.net.cn/CN/abstract/abstract19279.shtml
    [197] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml
    [198] 王飞跃, 邱晓刚, 曾大军, 曹志冬, 樊宗臣.基于平行系统的非常规突发事件计算实验平台研究.复杂系统与复杂性科学, 2010, 7(4):1-10 doi: 10.3969/j.issn.1672-3813.2010.04.001

    Wang Fei-Yue, Qiu Xiao-Gang, Zeng Da-Jun, Cao Zhi-Dong, Fan Zong-Chen. A computational experimental platform for emergency response based on parallel systems. Complex Systems and Complexity Science, 2010, 7(4):1-10 doi: 10.3969/j.issn.1672-3813.2010.04.001
    [199] Wang X, Zheng X H, Zhang X Z, Zeng K, Wang F Y. Analysis of cyber interactive behaviors using artificial community and computational experiments. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(6):995-1006 doi: 10.1109/TSMC.2016.2615130
    [200] Wang F Y, Yang L Q, Cheng X, Han S S, Yang J. Network softwarization and parallel networks:beyond software-defined networks. IEEE Network, 2016, 30(4):60-65 doi: 10.1109/MNET.2016.7513865
    [201] 王飞跃, 杨柳青, 胡晓娅, 程翔, 韩双双, 杨坚.平行网络与网络软件化:一种新颖的网络架构.中国科学:信息科学, 2017, 47(7):811-831 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201707001.htm

    Wang Fei-Yue, Yang Liu-Qing, Hu Xiao-Ya, Cheng Xiang, Han Shuang-Shuang, Yang Jian. Parallel networks and network softwarization:a novel network architecture. Scientia Sinica Informationis, 2017, 47(7):811-831 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201707001.htm
    [202] 王飞跃, 杨坚, 韩双双, 杨柳青, 程翔.基于平行系统理论的平行网络架构.指挥与控制学报, 2016, 2(1):71-77 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201601012

    Wang Fei-Yue, Yang Jian, Han Shuang-Shuang, Yang LiuQing, Cheng Xiang. The framework of parallel network based on the parallel system theory. Journal of Command and Control, 2016, 2(1):71-77 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201601012
    [203] Almalaq A, Hao J, Zhang J, Wang F Y. Parallel building:a complex system approach for smart building energy management. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6):1452-1461
    [204] 王飞跃.人工社会、计算实验、平行系统-关于复杂社会经济系统计算研究的讨论.复杂系统与复杂性科学, 2004, 1(4):25-35 doi: 10.3969/j.issn.1672-3813.2004.04.002

    Wang Fei-Yue. Artificial societies, computational experiments, and parallel systems:a discussion on computational theory of complex social-economic systems. Complex Systems and Complexity Science, 2004, 1(4):25-35 doi: 10.3969/j.issn.1672-3813.2004.04.002
    [205] 王迎春, 韩双双, 胡成云, 宋瑞琦, 要婷婷, 曹东璞, 等.基于ACP方法的平行手机信令数据分析系统.自动化学报, 2019, 45(5):866-876 http://www.aas.net.cn/CN/abstract/abstract19487.shtml

    Wang Ying-Chun, Han Shuang-Shuang, Hu Cheng-Yun, Song Rui-Qi, Yao Ting-Ting, Cao Dong-Pu, et al. Mobile phone signaling data analysis system based on ACP approach. Acta Automatica Sinica, 2019, 45(5):866-876 http://www.aas.net.cn/CN/abstract/abstract19487.shtml
    [206] 沈震, 罗璨, 商秀芹, 白天翔, 董西松, 宋晓光, 等.空间平行机器与平行制造.空间控制技术与应用, 2019, 45(4):80-90 doi: 10.3969/j.issn.1674-1579.2019.04.010

    Shen Zhen, Luo Can, Shang Xiu-Qin, Bai Tian-Xiang, Dong XiSong, Song Xiao-Guang, et al. Space parallel machine and parallel manufacturing. Aerospace Control and Application, 2019, 45(4):80-90 doi: 10.3969/j.issn.1674-1579.2019.04.010
    [207] 白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2):161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml

    Bai Tian-Xiang, Wang Shuai, Shen Zhen, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel robotics and parallel unmanned systems:framework, structure, process, platform and applications. Acta Automatica Sinica, 2017, 43(2):161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml
    [208] 张慧, 王坤峰, 王飞跃.深度学习在目标视觉检测中的应用进展与展望.自动化学报, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml
    [209] 刘昕, 王晓, 张卫山, 汪建基, 王飞跃.平行数据:从大数据到数据智能.模式识别与人工智能, 2017, 30(8):673-681 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201708001

    Liu Xin, Wang Xiao, Zhang Wei-Shan, Wang Jian-Ji, Wang Fei-Yue. Parallel data:from big data to data intelligence. Pattern Recognition and Artificial Intelligence, 2017, 30(8):673-681 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201708001
    [210] 王坤峰, 苟超, 王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml

    Wang Kun-Feng, Gou Chao, Wang Fei-Yue. Parallel vision:an ACP-based approach to intelligent vision computing. Acta Automatica Sinica, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml
    [211] Xing Y, Lv C, Chen L, Wang H J, Wang H, Cao D P, et al. Advances in vision-based lane detection:algorithms, integration, assessment, and perspectives on ACP-based parallel vision. IEEE/CAA Journal of Automatica Sinica, 2018, 5(3):645-661 doi: 10.1109/JAS.2018.7511063
    [212] Li X, Wang K F, Tian Y L, Yan L, Deng F, Wang F Y. The ParallelEye dataset:a large collection of virtual images for traffic vision research. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6):2072-2084 doi: 10.1109/TITS.2018.2857566
    [213] Li X, Wang Y T, Yan L, Wang K F, Deng F, Wang F Y. ParallelEye-CS:a new dataset of synthetic images for testing the visual intelligence of intelligent vehicles. IEEE Transactions on Vehicular Technology, 2019, 68(10):9619-9631 doi: 10.1109/TVT.2019.2936227
    [214] 殷林飞, 陈吕鹏, 余涛, 张孝顺.基于CPSS平行系统懒惰强化学习算法的实时发电调控.自动化学报, 2019, 45(4):706-719 http://www.aas.net.cn/CN/abstract/abstract19472.shtml

    Yin Lin-Fei, Chen Lv-Peng, Yu Tao, Zhang Xiao-Shun. Lazy reinforcement learning through parallel systems and social system for real-time economic generation dispatch and control. Acta Automatica Sinica, 2019, 45(4):706-719 http://www.aas.net.cn/CN/abstract/abstract19472.shtml
    [215] 万里鹏, 兰旭光, 张翰博, 郑南宁.深度强化学习理论及其应用综述.模式识别与人工智能, 2019, 32(1):67-81 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201901010

    Wan Li-Peng, Lan Xu-Guang, Zhang Han-Bo, Zheng Nan-Ning. A review of deep reinforcement learning theory and application. Pattern Recognition and Artificial Intelligence, 2019, 32(1):67-81 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201901010
    [216] Li L, Lin Y L, Zheng N N, Wang F Y. Parallel learning:a perspective and a framework. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3):389-395 doi: 10.1109/JAS.2017.7510493
    [217] Liu T, Tian B, Ai Y F, Li L, Cao D P, Wang F Y. Parallel reinforcement learning:a framework and case study. IEEE/CAA Journal of Automatica Sinica, 2018, 5(4):827-835 doi: 10.1109/JAS.2018.7511144
    [218] Liu T, Tian B, Ai Y F, Zou Y, Wang F Y. Parallel reinforcement learning-based energy efficiency improvement for a cyberphysical system. IEEE/CAA Journal of Automatica Sinica, DOI: 10.1109/JAS.2019.1911633
    [219] 欧阳丽炜, 王帅, 袁勇, 倪晓春, 王飞跃.智能合约:架构及进展.自动化学报, 2019, 45(3):445-457 http://www.aas.net.cn/CN/abstract/abstract19450.shtml

    Ouyang Li-Wei, Wang Shuai, Yuan Yong, Ni Xiao-Chun, Wang Fei-Yue. Smart contracts:architecture and research progress. Acta Automatica Sinica, 2019, 45(3):445-457 http://www.aas.net.cn/CN/abstract/abstract19450.shtml
    [220] Wang S, Huang C, Li J, Yuan Y, Wang F Y. Decentralized Construction of Knowledge Graphs for Deep Recommender Systems Based on Blockchain-Powered Smart Contracts. IEEE Access, 2019(7):136951-136961 https://ieeexplore.ieee.org/document/8844724?arnumber=8844724
    [221] 曾帅, 袁勇, 倪晓春, 王飞跃.面向比特币的区块链扩容:关键技术, 制约因素与衍生问题.自动化学报, 2019, 45(6):1015-1030 http://www.aas.net.cn/CN/abstract/abstract19501.shtml

    Zeng Shuai, Yuan Yong, Ni Xiao-Chun, Wang Fei-Yue. Scaling blockchain towards bitcoin:key technologies, Constraints and Related Issues. Acta Automatica Sinica, 2019, 45(6):1015-1030 http://www.aas.net.cn/CN/abstract/abstract19501.shtml
    [222] 袁勇, 王飞跃.区块链技术发展现状与展望.自动化学报, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml

    Yuan Yong, Wang Fei-Yue. Blockchain:the state of the art and future trends. Acta Automatica Sinica, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml
    [223] 袁勇, 倪晓春, 曾帅, 王飞跃.区块链共识算法的发展现状与展望.自动化学报, 2018, 44(11):2011-2022 http://www.aas.net.cn/CN/abstract/abstract19383.shtml

    Yuan Yong, Ni Xiao-Chun, Zeng Shuai, Wang Fei-Yue. Blockchain consensus algorithms:the state of the art and future trends. Acta Automatica Sinica, 2018, 44(11):2011-2022 http://www.aas.net.cn/CN/abstract/abstract19383.shtml
    [224] Wang S, Ding W W, Li J J, Yuan Y, Ouyang L W, Wang F Y. Decentralized autonomous organizations:concept, model, and applications. IEEE Transactions on Computational Social Systems, 2019, 6(5):870-878 doi: 10.1109/TCSS.2019.2938190
    [225] Wang F Y, Yuan Y, Rong C M, Zhang J J. Parallel blockchain:an architecture for CPSS-based smart societies. IEEE Transactions on Computational Social Systems, 2018, 5(2):303-310 doi: 10.1109/TCSS.2018.2832379
    [226] 王飞跃, 袁勇, 王帅, 李娟娟, 秦蕊.军事区块链:从不对称的战争到对称的和平.指挥与控制学报, 2018, 4(3):175-182 doi: 10.3969/j.issn.2096-0204.2018.03.0175

    Wang Fei-Yue, Yuan Yong, Wang Shuai, Li Juan-Juan, Qin Rui. Military blockchain:from asymmetric warfare to symmetric peace. Journal of Command and Control, 2018, 4(3):175-182 doi: 10.3969/j.issn.2096-0204.2018.03.0175
    [227] Liu D R, Xu Y C, Wei Q L, Liu X L. Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1):36-46 doi: 10.1109/JAS.2017.7510739
    [228] Song Y H, He X Y, Liu Z J, He W, Sun C Y, Wang F Y. Parallel control of distributed parameter systems. IEEE Transactions on Cybernetics, 2018, 48(12):3291-3301 doi: 10.1109/TCYB.2018.2849569
    [229] 王飞跃, 魏庆来.智能控制:从学习控制到平行控制.控制理论与应用, 2018, 35(7):939-948 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003033

    Wang Fei-Yue, Wei Qing-Lai. Intelligent control:from learning control to parallel control. Control Theory and Applications, 2018, 35(7):939-948 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003033
    [230] Wang F Y, Zhang J, Wei Q L, Zheng X H, Li L. PDP:parallel dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1):1-5 doi: 10.1109/JAS.2017.7510310
    [231] 刘志杰, 欧阳云呈, 宋宇骅, 贺威, 王飞跃.分布参数系统的平行控制:从基于模型的控制到数据驱动的智能控制.指挥与控制学报, 2017, 3(3):177-185 doi: 10.3969/j.issn.2096-0204.2017.03.0177

    Liu Zhi-Jie, Ouyang Yun-Cheng, Song Yu-Hua, He Wei, Wang Fei-Yue. Parallel control of distributed parameter systems:from model based control to data driven intelligent control. Journal of Command and Control, 2017, 3(3):177-185 doi: 10.3969/j.issn.2096-0204.2017.03.0177
    [232] 赵祥模, 承靖钧, 徐志刚, 王文威, 王润民, 王冠群, 等.基于整车在环仿真的自动驾驶汽车室内快速测试平台.中国公路学报, 2019, 32(6):124-136 http://d.old.wanfangdata.com.cn/Periodical/zgglxb201906013

    Zhao Xiang-Mo, Cheng Jing-Jun, Xu Zhi-Gang, Wang WenWei, Wang Run-Min, Wang Guan-Qun, et al. An indoor rapidtesting platform for autonomous vehicle based on vehicle-in-theloop simulation. China Journal of Highway Transportation, 2019, 32(6):124-136 http://d.old.wanfangdata.com.cn/Periodical/zgglxb201906013
    [233] Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, Xu L H, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): Article No. eaaw4106
    [234] 尹培丽, 王建华, 陈阳泉, 王飞跃.平行测量:复杂测量系统的一个新型理论框架及案例研究.自动化学报, 2018, 44(3):425-433 http://www.aas.net.cn/CN/abstract/abstract19235.shtml

    Yin Pei-Li, Wang Jian-Hua, Chen Yang-Quan, Wang Fei-Yue. Parallel measurements:a new theory and framework for complex measurement system and a case study. Acta Automatica Sinica, 2018, 44(3):425-433 http://www.aas.net.cn/CN/abstract/abstract19235.shtml
    [235] Li L, Huang W L, Liu Y H, Zheng N N, Wang F Y. Intelligence testing for autonomous vehicles:a new approach. IEEE Transactions on Intelligent Vehicles, 2016, 1(2):158-166 doi: 10.1109/TIV.2016.2608003
    [236] Vijayakumar K, Kumar K P M, Jesline D. Implementation of software agents and advanced AoA for disease data analysis. Journal of Medical Systems, 2019, 43(8):274-279 doi: 10.1007/s10916-019-1411-5
    [237] 袁勇, 王飞跃.不完全信息议价博弈的序贯均衡分析与计算实验.自动化学报, 2016, 42(5):724-734 http://www.aas.net.cn/CN/abstract/abstract18862.shtml

    Yuan Yong, Wang Fei-Yue. Sequential equilibrium analysis and computational experiments of a bargaining game with incomplete information. Acta Automatica Sinica, 2016, 42(5):724-734 http://www.aas.net.cn/CN/abstract/abstract18862.shtml
    [238] 李力, 王飞跃.地面交通控制的百年回顾和未来展望.自动化学报, 2018, 44(4):577-583 http://www.aas.net.cn/CN/abstract/abstract19251.shtml

    Li Li, Wang Fei-Yue. Ground traffic control in the past century and its future perspective. Acta Automatica Sinica, 2018, 44(4):577-583 http://www.aas.net.cn/CN/abstract/abstract19251.shtml
    [239] Wang F Y, Zhang J J. Transportation 5.0 in CPSS: towards ACP-based society-centered intelligent transportation. In: Proceedings of the 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE, 2017. 762-767
    [240] Zhu F H, Lv Y S, Chen Y Y, Wang X, Xiong G, Wang F Y. Parallel transportation systems:toward IoT-enabled smart urban traffic control and management. IEEE Transactions on Intelligent Transportation Systems, 2019, DOI:10.1109/TITS.2019. 2934991
    [241] Lv Y S, Chen Y Y, Li L, Wang F Y. Generative adversarial networks for parallel transportation systems. IEEE Intelligent Transportation Systems Magazine, 2018, 10(3):4-10 doi: 10.1109/MITS.2018.2842249
    [242] 宁滨, 王飞跃, 董海荣, 李润梅, 文丁, 李莉.基于ACP方法的城市轨道交通平行系统体系研究.交通运输系统工程与信息, 2010, 10(6):22-28 doi: 10.3969/j.issn.1009-6744.2010.06.003

    Ning Bin, Wang Fei-Yue, Dong Hai-Rong, Li Run-Mei, Wen Ding, Li Li. Parallel systems for urban rail transportation based on ACP approach. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(6):22-28 doi: 10.3969/j.issn.1009-6744.2010.06.003
    [243] Shen D Y, Wang X, Wang J, Guan X Y, Yang P H, Xu L. Parallel intermodal road-rail transportation system based on ACP approach. In: Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff, Canada: IEEE, 2017. 444-449
    [244] 王飞跃, 苟超, 王建功, 沈甜雨, 郑文博, 于慧.平行皮肤:基于视觉的皮肤病分析框架.模式识别与人工智能, 2019, 32 (7):577-588 http://d.old.wanfangdata.com.cn/Periodical/zhfsyxyfhzz98200001021

    Wang Fei-Yue, Gou Chao, Wang Jian-Gong, Shen Tian-Yu, Zheng Wen-Bo, Yu Hui. Parallel skin:a vision based dermatological analysis framework. Pattern Recognition and Artificial Intelligence, 2019, 32(7):577-588 http://d.old.wanfangdata.com.cn/Periodical/zhfsyxyfhzz98200001021
    [245] Wang S, Wang J, Wang X, Qiu T Y, Yuan Y, Ouyang L W, et al. Blockchain-powered parallel healthcare systems based on the ACP approach. IEEE Transactions on Computational Social Systems, 2018, 5(4):942-950 doi: 10.1109/TCSS.2018.2865526
    [246] Duan W, Cao Z D, Wang Y Z, Zhu B, Zeng D, Wang F Y, et al. An ACP approach to public health emergency management:using a campus outbreak of H1N1 influenza as a case study. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2013, 43(5):1028-1041 doi: 10.1109/TSMC.2013.2256855
    [247] 沈宇, 王晓, 韩双双, 陈龙, 王飞跃.代理技术Agent在智能车辆与驾驶中的应用现状.指挥与控制学报, 2019, 5(2):87-98 doi: 10.3969/j.issn.2096-0204.2019.02.0087

    Shen Yu, Wang Xiao, Han Shuang-Shuang, Chen Long, Wang Fei-Yue. Agent-based technology in intelligent vehicles and driving:state-of-the-art and prospect. Journal of Command and Control, 2019, 5(2):87-98 doi: 10.3969/j.issn.2096-0204.2019.02.0087
    [248] Xing Y, Lv C, Wang H J, Cao D P, Velenis E, Wang F Y. Driver activity recognition for intelligent vehicles:a deep learning approach. IEEE Transactions on Vehicular Technology, 2019, 68(6):5379-5390 doi: 10.1109/TVT.2019.2908425
    [249] 陈龙, 宇文旋, 曹东璞, 李力, 王飞跃.平行无人系统.无人系统技术, 2018, 1(1):23-37 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201702001

    Chen Long, Yu Wen-Xuan, Cao Dong-Pu, Li Li, Wang Fei-Yue. Parallel unmanned system. Unmanned Systems Technology, 2018, 1(1):23-37 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201702001
    [250] Han S S, Wang X, Zhang J J, Cao D P, Wang F Y. Parallel vehicular networks:a CPSS-based approach via multimodal big data in IoV. IEEE Internet of Things Journal, 2019, 6(1):1079-1089 https://ieeexplore.ieee.org/abstract/document/8445558
    [251] Wang F Y, Zheng N N, Cao D P, Martinez C M, Li L, Liu T. Parallel driving in CPSS:a unified approach for transport automation and vehicle intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4):577-587 doi: 10.1109/JAS.2017.7510598
    [252] Han S S, Cao D P, Li L, Li L X, Li S E, Zheng N N, et al. From software-defined vehicles to self-driving vehicles:a report on CPSS-based parallel driving. IEEE Intelligent Transportation Systems Magazine, 2019, 11(1):6-14
    [253] Chen L, Hu X M, Tian W, Wang H, Cao D P, Wang F Y. Parallel planning:a new motion planning framework for autonomous driving. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1):236-246 doi: 10.1109/JAS.2018.7511186
    [254] Wang F Y, Yuan Y, Li J J, Cao D P, Li L X, Ioannou P A, et al. From intelligent vehicles to smart societies:a parallel driving approach. IEEE Transactions on Computational Social Systems, 2018, 5(3):594-604 doi: 10.1109/TCSS.2018.2862058
    [255] 王飞跃, 刘玉超, 秦继荣, 戴浩. C2M和5G:新时代的智能指挥与控制.指挥与控制学报, 2019, 5(2):79-81 doi: 10.3969/j.issn.2096-0204.2019.02.0079

    Wang Fei-Yue, Liu Yu-Chao, Qin Ji-Rong, Dai Hao. C2M and 5G:intelligent command and control in the connected and smart age. Journal of Command and Control, 2019, 5(2):79-81 doi: 10.3969/j.issn.2096-0204.2019.02.0079
    [256] Wang F Y. Control 5.0:from Newton to Merton in Popper's cyber-social-physical spaces. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3):233-234 doi: 10.1109/JAS.2016.7508796
    [257] 阳东升, 姜军, 王飞跃.从平台到体系:指挥对抗活动机理的演变及其PREA环对策.指挥与控制学报, 2018, 4(4):263-271 http://d.old.wanfangdata.com.cn/Periodical/kjjbydc200703013

    Yang Dong-Sheng, Jiang Jun, Wang Fei-Yue. From platforms to systems of systems:on mechanism evolution of command confrontation and its PREA loop. Journal of Command and Control, 2018, 4(4):263-271 http://d.old.wanfangdata.com.cn/Periodical/kjjbydc200703013
    [258] 白天翔, 徐德, 王飞跃.局域网络化自主作战的概念与展望.指挥与控制学报, 2017, 3(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701001

    Bai Tian-Xiang, Xu De, Wang Fei-Yue. Concept and outlook of local network-centric autonomous warfare. Journal of Command and Control, 2017, 3(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701001
    [259] 王飞跃.面向赛博空间的战争组织与行动:关于平行军事体系的讨论.军事运筹与系统工程, 2012, 26(3):5-10 doi: 10.3969/j.issn.1672-8211.2012.03.002

    Wang Fei-Yue. War organization and action for cyberspace:discussion of parallel military systems. Military Operations Research and Systems Engineering, 2012, 26(3):5-10 doi: 10.3969/j.issn.1672-8211.2012.03.002
    [260] 葛承垄, 朱元昌, 邸彦强, 胡志伟, 孟宪国.装备平行仿真理论框架研究.指挥与控制学报, 2017, 3(1):48-56 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701008

    Ge Cheng-Long, Zhu Yuan-Chang, Di Yan-Qiang, Hu Zhi-Wei, Meng Xian-Guo. Theoretical framework for equipment parallel simulation. Journal of Command and Control, 2017, 3(1):48-56 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701008
    [261] 阳东升, 王坤峰, 陈德旺, 包战, 苏振东, 王睿, 等.平行航母:从数字航母到智能航母.指挥与控制学报, 2018, 4(2):101-110 doi: 10.3969/j.issn.2096-0204.2018.02.0101

    Yang Dong-Sheng, Wang Kun-Feng, Chen De-Wang, Bao Zhan, Su Zhen-Dong, Wang Rui, et al. Parallel carrier fleets:from digital architectures to smart formations. Journal of Command and Control, 2018, 4(2):101-110 doi: 10.3969/j.issn.2096-0204.2018.02.0101
    [262] 邢阳, 刘忠民, 刘腾, 秦继荣, 包战, 王飞跃.平行坦克的数字四胞胎结构及其核心技术.指挥与控制学报, 2018, 4(2):111-120 doi: 10.3969/j.issn.2096-0204.2018.02.0111

    Xing Yang, Liu Zhong-Min, Liu Teng, Qin Ji-Rong, Bao Zhan, Wang Fei-Yue. Parallel tanks:defining a digital quadruplet for smart tank systems. Journal of Command and Control, 2018, 4(2):111-120 doi: 10.3969/j.issn.2096-0204.2018.02.0111
    [263] 沈震, 刘雅婷, 董西松, 白天翔, 胡斌, 熊刚, 等.平行机群:概念、框架与应用.指挥与控制学报, 2018, 4(3):201-212 doi: 10.3969/j.issn.2096-0204.2018.03.0201

    Shen Zhen, Liu Ya-Ting, Dong Xi-Song, Bai Tian-Xiang, Hu Bin, Xiong Gang, et al. Parallel multi-UAV system:concepts, framework and applications. Journal of Command and Control, 2018, 4(3):201-212 doi: 10.3969/j.issn.2096-0204.2018.03.0201
    [264] 白天翔, 王帅, 赵学亮, 秦继荣.平行武器:迈向智能战争的武器.指挥与控制学报, 2017, 3(2):89-98 doi: 10.3969/j.issn.2096-0204.2017.02.0089

    Bai Tian-Xiang, Wang Shuai, Zhao Xue-Liang, Qin Ji-Rong. Parallel weapons:weapons towards intelligent warfare. Journal of Command and Control, 2017, 3(2):89-98 doi: 10.3969/j.issn.2096-0204.2017.02.0089
    [265] 程长建, 崔峰, 李乐飞, 熊刚, 邹余敏, 廖昌勇.复杂生产系统的平行管理方法与案例.复杂系统与复杂性科学, 2010, 7(1):24-32 doi: 10.3969/j.issn.1672-3813.2010.01.003

    Cheng Chang-Jian, Cui Feng, Li Le-Fei, Xiong Gang, Zou YuMin, Liao Chang-Yong. Parallel management systems for complex productions systems:methods and cases. Complex Systems and Complexity Science, 2010, 7(1):24-32 doi: 10.3969/j.issn.1672-3813.2010.01.003
    [266] 郑松, 吴晓林, 王飞跃, 林东东, 郑蓉, 柯伟林, 等.平行系统方法在自动化集装箱码头中的应用研究.自动化学报, 2019, 45(3):490-504 http://www.aas.net.cn/CN/abstract/abstract19454.shtml

    Zheng Song, Wu Xiao-Lin, Wang Fei-Yue, Lin Dong-Dong, Zheng Rong, Ke Wei-Lin, et al. Applying the parallel systems approach to automatic container terminal. Acta Automatica Sinica, 2019, 45(3):490-504 http://www.aas.net.cn/CN/abstract/abstract19454.shtml
    [267] 沈大勇, 王晓, 刘胜.平行装卸:迈向智慧物流的智能技术.智能科学与技术学报, 2019, 1(1):34-39 http://d.old.wanfangdata.com.cn/Periodical/bjqgyxyxb200001007

    Shen Da-Yong, Wang Xiao, Liu Sheng. Parallel loading and unloading:smart technology toward intelligent logistics. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):34-39 http://d.old.wanfangdata.com.cn/Periodical/bjqgyxyxb200001007
    [268] 熊刚, 王飞跃, 侯家琛, 董西松, 张家麟, 付满昌.提高核电站安全可靠性的平行系统方法.系统工程理论与实践, 2012, 32(5):1018-1026 doi: 10.3969/j.issn.1000-6788.2012.05.014

    Xiong Gang, Wang Fei-Yue, Hou Jia-Chen, Dong Xi-Song, Zhang Jia-Lin, Fu Man-Chang. To improve safety and reliability of nuclear power plant with parallel system method. Systems Engineering-Theory and Practice, 2012, 32(5):1018-1026 doi: 10.3969/j.issn.1000-6788.2012.05.014
    [269] 王飞跃, 孙奇, 江国进, 谭珂, 张俊, 侯家琛, 等.核能5.0:智能时代的核电工业新形态与体系架构.自动化学报, 2018, 44(5):922-934 http://www.aas.net.cn/CN/abstract/abstract19283.shtml

    Wang Fei-Yue, Sun Qi, Jiang Guo-Jin, Tan Ke, Zhang Jun, Hou Jia-Chen, et al. Nuclear energy 5.0:new formation and system architecture of nuclear power industry in the new IT era. Acta Automatica Sinica, 2018, 44(5):922-934 http://www.aas.net.cn/CN/abstract/abstract19283.shtml
    [270] Zhang J J, Gao D W, Zhang Y C, Wang X, Zhao X Y, Duan D L, et al. Social energy:mining energy from the society. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3):466-482 doi: 10.1109/JAS.2017.7510547
    [271] Han J, Wang F Y, Lv Y, Zhu F, Lin Y, Dai X, et al. Efficient deployment of patrols to catch arsonists. In: Proceedings of the 2018 Chinese Automation Congress (CAC), Xi'an, China: IEEE, 2018, 792-797
    [272] 刘烁, 王帅, 傅焕章, 王飞跃.软件定义的犯罪现场分析过程及其知识自动化方案.模式识别与人工智能, 2016, 29(10):876-883 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201610002

    Liu Shuo, Wang Shuai, Fu Huan-Zhang, Wang Fei-Yue. Software-defined crime scene analysis process and its knowledge automation scheme. Pattern Recognition and Artificial Intelligence, 2016, 29(10):876-883 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201610002
    [273] 陈彬, 邱晓刚, 王亦平.智能化的平行实验方法.系统仿真学报, 2017, 29(9):2064-2072 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201709025

    Chen Bin, Qiu Xiao-Gang, Wang Yi-Ping. Intelligent ACP based experimental approach. Journal of System Simulation, 2017, 29(9):2064-2072 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201709025
    [274] 王秀娟, 李冬, 林宝刚, 华净, 康孟珍, 张冬青, 等.油菜分枝拓扑结构随机模拟.中国科学:生命科学, 2019, 49(1):67-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201901007

    Wang Xiu-Juan, Li Dong, Lin Bao-Gang, Hua Jing, Kang Meng-Zhen, Zhang Dong-Qing, et al. Stochastic simulation of branch morphological structure in oilseed rape. Scientia Sinica (Vitae), 2019, 49(1):67-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201901007
    [275] Kang M Z, Wang F Y. From parallel plants to smart plants:intelligent control and management for plant growth. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2):161-166 doi: 10.1109/JAS.2017.7510487
    [276] Kang M Z, Fan X R, Hua J, Wang H Y, Wang X J, Wang F Y. Managing traditional solar greenhouse with CPSS:a just-for-fit philosophy. IEEE Transactions on Cybernetics, 2018, 48(12):3371-3380 doi: 10.1109/TCYB.2018.2858264
    [277] 康孟珍, 王秀娟, 华净, 王浩宇, 王飞跃.平行农业:迈向智慧农业的智能技术.智能科学与技术学报, 2019, 1(2):107-117 http://d.old.wanfangdata.com.cn/Periodical/jxsl201606019

    Kang Meng-Zhen, Wang Xiu-Juan, Hua Jing, Wang Hao-Yu, Wang Fei-Yue. Parallel agriculture:intelligent technology toward smart agriculture. Chinese Journal of Intelligent Science and Technology, 2019, 1(2):107-117 http://d.old.wanfangdata.com.cn/Periodical/jxsl201606019
    [278] Josifovska K, Yigitbas E, Engels G. Reference framework for digital twins within cyber-physical systems. In: Proceedings of the 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems. Montreal, Canada: IEEE, 2019. 25-31
    [279] Yun S, Park J H, Kim W T. Data-centric middleware based digital twin platform for dependable cyber-physical systems. In: Proceedings of the 9th International Conference on Ubiquitous and Future Networks (ICUFN). Milan, Italy: IEEE, 2017. 922-926
    [280] Steinmetz C, Rettberg A, Ribeiro F G C, Schroeder G, Pereira C E. Internet of things ontology for digital twin in cyber physical systems. In: Proceedings of the 8th Brazilian Symposium on Computing Systems Engineering (SBESC). Salvador, Brazil: IEEE, 2018. 154-159
    [281] 李馥娟, 王群, 钱焕延.信息物理融合系统研究.电子技术应用, 2018, 44(9):24-28 http://d.old.wanfangdata.com.cn/Thesis/Y2581439

    Li Fu-Juan, Wang Qun, Qian Huan-Yan. A review of cyberphysical systems. Application of Electronic Technique, 2018, 44(9):24-28 http://d.old.wanfangdata.com.cn/Thesis/Y2581439
    [282] 张程, 陈付龙, 刘超, 齐学梅.基于XML的信息物理融合系统组件建模与仿真.计算机应用, 2019, 39(6):1842-1848 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201906047

    Zhang Cheng, Chen Fu-Long, Liu Chao, Qi Xue-Mei. XMLbased component modeling and stimulation of cyber physical system. Journal of Computer Applications, 2019, 39(6):1842-1848 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201906047
    [283] 陈明, 刘江山, 李杰林, 刘晋飞.基于信息物理系统新特性的智能工厂部署策略研究.中国工程机械学报, 2017, 15(5):383-388 http://d.old.wanfangdata.com.cn/Periodical/zggcjxxb201705002

    Chen Ming, Liu Jiang-Shan, Li Jie-Lin, Liu Jin-Fei. Research of smart factory deployment strategy based on new characteristics of cyber-physical system. Chinese Journal of Construction Machinery, 2017, 15(5):383-388 http://d.old.wanfangdata.com.cn/Periodical/zggcjxxb201705002
    [284] 邓建玲, 王飞跃, 陈耀斌, 赵向阳.从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架.自动化学报, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml

    Deng Jian-Ling, Wang Fei-Yue, Chen Yao-Bin, Zhao XiangYang. From industries 4.0 to energy 5.0:concept and framework of intelligent energy systems. Acta Automatica Sinica, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml
    [285] 程乐峰, 余涛, 张孝顺, 殷林飞, 瞿凯平.信息-物理-社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战.中国电机工程学报, 2018, 48(1):25-40 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201801003.htm

    Cheng Le-Feng, Yu Tao, Zhang Xiao-Shun, Yin Lin-Fei, Qu Kai-Ping. Cyber-physical-social systems based smart energy robotic dispatcher and its knowledge automation:framework, techniques and challenges. Proceedings of the CSEE, 2018, 48(1):25-40 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201801003.htm
    [286] Wang F Y, Wang X, Li J J, Ye P J, Li Q. Social computing:from crowdsourcing to crowd intelligence by cyber movement organizations. IEEE Transactions on Computational Social Systems, 2019, 6(4):619-626 doi: 10.1109/TCSS.2019.2930420
    [287] Zhang J J, Wang F Y, Wang X, Xiong G, Zhu F H, Lv Y S, et al. Cyber-physical-social systems:the state of the art and perspectives. IEEE Transactions on Computational Social Systems, 2018, 5(3):829-840 doi: 10.1109/TCSS.2018.2861224
    [288] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001

    Wang Fei-Yue. Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001
    [289] 段伟.平行仿真的内涵、发展与应用.指挥与控制学报, 2019, 5(2):82-86 doi: 10.3969/j.issn.2096-0204.2019.02.0082

    Duan Wei. Parallel simulation:motivation, concept and application. Journal of Command and Control, 2019, 5(2):82-86 doi: 10.3969/j.issn.2096-0204.2019.02.0082
    [290] Wang F Y, Yang L Q, Yang J, Zhang Y L, Han S S, Zhao K. Urban intelligent parking system based on the parallel theory. In: Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC). Kauai, USA: IEEE, 2016. 1-5
    [291] Mo H, Wang F Y, Zhu F H. Time-varying universe based linguistic dynamic analysis of timing design for parallel traffic light. In: Proceedings of the 2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS). Chengdu, China: IEEE, 2015. 130-133
    [292] Zhao Y F, Kong Q J, Gao H, Zhu F H, Wang F Y. Parallel management for traffic signal control. In: Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao, China: IEEE, 2014. 2888-2893
    [293] Halenar I, Juhas M, Juhasova B, Borkin D. Virtualization of production using digital twin technology. In: Proceedings of the 20th International Carpathian Control Conference (ICCC). Krakow-Wieliczka, Poland: IEEE, 2019. 1-5
    [294] 周有城, 武春龙, 孙建广, 刘芳, 李辉.面向智能产品的数字孪生体功能模型构建方法.计算机集成制造系统, 2019, 25(6):1392-1404 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906009

    Zhou You-Cheng, Wu Chun-Long, Sun Jian-Guang, Liu Fang, Li Hui. Function model construction method based on digital twin for intelligent products. Computer Integrated Manufacturing Systems, 2019, 25(6):1392-1404 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906009
    [295] Brosinsky C, Song X Y, Westermann D. Digital twin-concept of a continuously adaptive power system mirror. In: Proceedings of the 2019 International ETG-Congress. Esslingen, Germany: IEEE, 2019. 1-6
    [296] 景轩, 姚锡凡.走向社会信息物理生产系统.自动化学报, 2019, 45(4):637-656 http://www.aas.net.cn/CN/abstract/abstract19467.shtml

    Jing Xuan, Yao Xi-Fan. Towards social cyber-physical production systems. Acta Automatica Sinica, 2019, 45(4):637-656 http://www.aas.net.cn/CN/abstract/abstract19467.shtml
    [297] 王飞跃, 张俊.智联网:概念、问题和平台.自动化学报, 2017, 43(12):2061-2070 http://www.aas.net.cn/CN/abstract/abstract19181.shtml

    Wang Fei-Yue, Zhang Jun. Internet of minds:the concept, issues and platforms. Acta Automatica Sinica, 2017, 43(12):2061-2070 http://www.aas.net.cn/CN/abstract/abstract19181.shtml
    [298] 王飞跃, 张军, 张俊, 王晓.工业智联网:基本概念、关键技术与核心应用.自动化学报, 2018, 44(9):1606-1617 http://www.aas.net.cn/CN/abstract/abstract19342.shtml

    Wang Fei-Yue, Zhang Jun, Zhang Jun, Wang Xiao. Industrial internet of minds:concept, technology and application. Acta Automatica Sinica, 2018, 44(9):1606-1617 http://www.aas.net.cn/CN/abstract/abstract19342.shtml
    [299] Wang F Y, Zhang J J, Qin R, Yuan Y. Social energy:emerging token economy for energy production and consumption. IEEE Transactions on Computational Social Systems, 2019, 6(3):388-393 doi: 10.1109/TCSS.2019.2918874
    [300] Wang F Y, Tang Y, Liu X W, Yuan Y. Social education:opportunities and challenges in cyber-physical-social space. IEEE Transactions on Computational Social Systems, 2019, 6(2):191-196 doi: 10.1109/TCSS.2019.2905941
    [301] 张俊, 王飞跃.知识可编程智能芯片系统:概念、架构与展望.模式识别与人工智能, 2018, 31(10):869-876 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201810001

    Zhang Jun, Wang Fei-Yue. Knowledge programmable intelligent chip systems (KPI-CS):concept, architecture and vision. Pattern Recognition and Artificial Intelligence, 2018, 31(10):869-876 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201810001
    [302] Stark R, Fresemann C, Lindow K. Development and operation of Digital Twins for technical systems and services. CIRP Annals, 2019, 68(1):129-132 doi: 10.1016/j.cirp.2019.04.024
    [303] 朱娜娜, 张伟男, 韩双梅, 马海群.基于社会传感器的网络安全态势感知与应急管理模型研究.智能计算机与应用, 2017, 7(6):135-138 doi: 10.3969/j.issn.2095-2163.2017.06.039

    Zhu Na-Na, Zhang Wei-Nan, Han Shuang-Mei, Ma Hai-Qun. Research on network security situational awareness and emergency management model based on social sensor. Intelligent Computer and Applications, 2017, 7(6):135-138 doi: 10.3969/j.issn.2095-2163.2017.06.039
    [304] 王飞跃.社会信号处理与分析的基本框架:从社会传感网络到计算辩证解析方法.中国科学:信息科学, 2013, 43(12):1598-1611 http://www.cnki.com.cn/Article/CJFDTotal-PZKX201312008.htm

    Wang Fei-Yue. The basic framework of social signal processing and analysis:from social sensor networks to computing dialectical analytical method. Scientia Sinica Informationis, 2013, 43(12):1598-1611 http://www.cnki.com.cn/Article/CJFDTotal-PZKX201312008.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7059
  • HTML全文浏览量:  2492
  • PDF下载量:  1552
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 录用日期:  2019-10-17
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回