2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字孪生与平行系统:发展现状、对比及展望

杨林瑶 陈思远 王晓 张俊 王成红

宋贺达, 周平, 王宏, 柴天佑. 高炉炼铁过程多元铁水质量非线性子空间建模及应用. 自动化学报, 2016, 42(11): 1664-1679. doi: 10.16383/j.aas.2016.c150819
引用本文: 杨林瑶, 陈思远, 王晓, 张俊, 王成红. 数字孪生与平行系统 : 发展现状、对比及展望. 自动化学报, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002
SONG He-Da, ZHOU Ping, WANG Hong, CHAI Tian-You. Nonlinear Subspace Modeling of Multivariate Molten Iron Quality in Blast Furnace Ironmaking and Its Application. ACTA AUTOMATICA SINICA, 2016, 42(11): 1664-1679. doi: 10.16383/j.aas.2016.c150819
Citation: Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: state of the art, comparisons and prospect. Acta Automatica Sinica, 2019, 45(11): 2001−2031 doi: 10.16383/j.aas.2019.y000002

数字孪生与平行系统:发展现状、对比及展望

doi: 10.16383/j.aas.2019.y000002
基金项目: 

国家自然科学基金 61533019

国家自然科学基金 61702519

国家自然科学基金 U1811463

中国科协青年人才托举工程 2017QNRC001

详细信息
    作者简介:

    杨林瑶 中国科学院自动化研究所复杂系统管理与控制国家重点实验室博士研究生.2017年获得山东大学物联网工程学士学位.主要研究方向为平行车联网、大数据分析、智能交通.E-mail:yanglinyao2017@ia.ac.cn

    陈思远  武汉大学电气与自动化学院博士研究生.2018年获得武汉大学电气工程学院硕士学位.主要研究方向为智能电网,电力市场.E-mail:wddqcsy@whu.edu.cn

    张俊  武汉大学电气与自动化学院教授.2003年和2005年分别获得华中科技大学电子信息与通信工程系学士与硕士学位.2008年获得亚利桑那州立大学电气工程博士学位.主要研究方向为智能系统,人工智能,知识自动化,及其在智能电力和能源系统中的应用.E-mail:jun.zhang@qaii.ac.cn

    王成红  国家自然科学基金委员会信息科学部研究员.1982年获得河北科技大学学士学位.1988年获得中国矿业大学(北京)硕士学位.1997年获得中国科学院自动化研究所博士学位.主要研究方向为控制理论和系统可靠性理论.E-mail:chenghwang@163.com

    通讯作者:

    王晓  中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员.2016年获得中国科学院大学社会计算博士学位.主要研究方向为社会交通, 动态网群组织, 人工智能和社交网络分析.本文通信作者.E-mail:x.wang@ia.ac.cn

Digital Twins and Parallel Systems: State of the Art, Comparisons and Prospect

Funds: 

National Natural Science Foundation of China 61533019

National Natural Science Foundation of China 61702519

National Natural Science Foundation of China U1811463

the Young Elite Scientists Sponsorship Program of China Association of Science and Technology 2017QNRC001

More Information
    Author Bio:

    Ph.D. candidate at the State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree in internet of things from Shandong University in 2017. His research interest covers parallel Internet of vehicles, big data analysis, intelligent transportation

    Ph.D. candidate at the School of Electrical Engineering and Automation, Wuhan University. He received his master dagree from the School of Electrical Engineering, Wuhan University in 2018, His research interest covers smart grid, electricity market

    Professor at the School of Electrical Engineering and Automation, Wuhan University. He received his bachelor and master degrees in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 2003 and 2005, respectively, and his Ph.D. degree in electrical engineering from Arizona State University, USA, in 2008. His research interest covers intelligent systems, artificial intelligence, knowledge automation, and their applications in intelligent power and energy systems

    Professor at the Department of Information Sciences, National Natural Science Foundation of China. He received his bachelor degree from Hebei University of Science and Technology in 1982, his master degree from China University of Mining and Technology (Beijing) in 1988, and his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 1997. His current research interest covers control theory and system reliability theory

    Corresponding author: WANG Xiao Associate professor at the State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences. She received her Ph.D. degree in social computing from University of Chinese Academy of Sciences, in 2016. Her research interest covers social transportation, cyber movement organizations, artificial intelligence and social network analysis. Corresponding author of this paper
  • 摘要: 随着物联网、大数据、人工智能(Artificial intelligence,AI)等技术的发展,针对促进新一代信息技术与制造业深度融合、实现制造物理世界与信息世界交互与共融的需要,数字孪生和平行系统技术成为智能制造和复杂系统管理与控制领域研究的热点.本文对数字孪生和平行系统技术的基本概念、技术内涵、相关应用等进行了研究与总结,对比了两者之间的异同,并分析了两者的发展趋势,预期能够给复杂系统管理与控制领域的研究人员提供一定的参考和借鉴.
    Recommended by Associate Editor LIU De-Rong
  • 视频目标跟踪是计算机视觉领域的关键问题和研究热点, 是任何一个以视频为输入的实际应用系统的关键技术, 是后续目标识别、行为分析、视频压缩编码和视频理解等高级视频处理任务的基础[1].视频目标跟踪的目的是在连续的图像序列中标记出特定目标, 估计目标的位置、尺度或区域, 确定目标的速度以及轨迹等运动信息.实际应用中完整的视频目标跟踪系统通常包括目标的检测、提取、识别和跟踪4个环节.一般为了研究方便, 将其进行一定简化, 例如检测、提取和识别通过人工方式完成, 从而突出跟踪环节算法的研究[2].

    在民用领域, 视频目标跟踪在智能视频监控[3]、智能交通系统、人机交互、视觉导航、无人驾驶汽车[4]、医学图像分析、虚拟现实、运动分析、行为识别和视频检索等方面有较多应用.在军事领域, 视频目标跟踪已经广泛应用于战场侦察与监视、景象匹配制导和无人机对地目标跟踪等领域[5].

    近30多年来得益于计算机技术的发展, 视频目标跟踪研究已经取得较大进展[6].但是目前复杂环境下持续鲁棒的视频目标跟踪仍然比较困难, 没有哪个跟踪算法能够成功地应用于所有的视频跟踪任务, 大多数算法在跟踪一段时间之后, 通常就会因为某些原因丢失目标[7].鲁棒视频目标跟踪的难点在于随着时间和空间的推移, 目标自身变化和外界场景变化的复杂性和难以预知性[8], 例如从3D空间投影到2D平面时的信息损失、光照变化、尺度变化、遮挡、形变、运动模糊、快速运动、旋转、复杂场景、低分辨率图像、目标移出视角、摄像机视角改变和噪声等.从控制论观点看, 视频目标跟踪是一个从输入到输出的单向开环系统, 由于没有反馈输入, 很难确认跟踪的正确与否, 随着时间的推移, 模型更新中误差累积会产生漂移, 最终因系统发散导致跟踪失败[9].此外某些算法的时间复杂度较高难以实现实时跟踪[7].因此鲁棒实时的视频目标跟踪仍然是一项亟待解决的关键问题, 具有重要的理论意义和实用价值.

    在信号与信息处理领域, 一直高度重视信号描述的"简单性"[10].从信息论角度看, 如果信号是稀疏的, 或具有某种结构, 或可用某个确定的模型表示, 这样的信号称之为"简单"信号[11]. "简单性"是简单信号的固有特性, 通常表现为稀疏性、低秩性和低熵性等.稀疏表示作为信号"简单性"的描述, 是近几年研究热点.生物学家研究发现[12-13]哺乳类动物在长期进化过程中, 视神经形成了快速、准确、低能耗地表示自然图像的能力, 关键在于哺乳动物在感知视觉信息时, 大脑视皮层V1区中只有少量神经元被激活, 即视觉信息可以用少量神经元进行稀疏表示.

    稀疏表示广泛应用于人脸识别[14]、图像超分辨率重建、图像去噪和恢复[15]、图像分割、特征提取和融合[16]、图像显著性检测[17]、背景建模和图像分类[18]等计算机视觉领域[19].稀疏表示有助于获取描述符的显著模式, 能够在有限的样本容量下, 使所得模型参数呈现某种稀疏性, 提高模型的可靠性和可解释性, 有利于采用模型对实际问题进行解释和指导, 并且重建性能好.受到基于稀疏表示的人脸识别[14]的影响, 以及视频连续性产生的图像帧与帧之间的冗余性, 2009年国际计算机视觉大会上, Mei等首次将稀疏表示应用到视频目标跟踪中[20], 构建由目标模板和单位矩阵组成的冗余字典, 核心思想是将候选目标图像表示为目标图像的稀疏线性组合, 从稀疏角度得到目标最紧致的表示.后续出现了大量基于稀疏表示的视频目标跟踪算法[21], 并取得了较好的跟踪性能[22].其中基于灰度特征字典的稀疏表示跟踪算法对遮挡和噪声等具有一定的鲁棒性, 对于判别式跟踪算法而言在稀疏表示下目标和背景更加线性可分.但算法时间复杂度一般较高, 难以实现实时跟踪和算法快速优化.由于算法时间复杂度与字典维数相关, 难以使用高维的鲁棒特征, 导致算法鲁棒性低于某些算法.

    文献[21]按照稀疏表示的用途和阶段不同将稀疏表示跟踪算法分为基于稀疏表示的表观建模和基于稀疏表示的目标搜索两类, 其中表观建模中将稀疏表示看成是对目标建模表示的过程, 目标搜索中将稀疏表示的过程看成是目标搜索的过程.本文在粒子滤波框架下将基于稀疏表示的视频目标跟踪算法分为4个组成部分:字典构建、稀疏模型的构建及求解、观测模型的构建和模型更新.其中字典构建是基础, 因为后续的一切处理都是在字典中原子张成的子空间内进行.稀疏模型的构建及求解是核心, 稀疏模型构建是在重构误差和稀疏性先验之间寻求某种微妙的平衡, 快速有效的模型求解算法是关键, 因为这直接涉及跟踪算法的处理速度.观测模型构建是根本, 最终决定了目标匹配的相似性度量函数.模型更新是重点, 由于跟踪过程目标是不断变化的, 在跟踪结果的基础上适时地对模型进行在线更新是鲁棒跟踪所必需的.下面分别对上述4个组成部分进行分析.

    基于稀疏表示的视频目标跟踪算法本质上是冗余字典下的稀疏逼近问题[23], 在冗余字典下能更有效地找出隐含在输入数据内部的结构与模式.目前信号在冗余字典下的稀疏表示研究集中在以下两个方面: 1)构建适合某一类信号的冗余字典; 2)设计快速有效的稀疏分解算法.如图 1所示, 字典构建包括特征选择和字典组成两个步骤.

    图 1  字典构建方法
    Fig. 1  The codebook construction method

    受到基于稀疏表示的人脸识别的影响, 以及灰度特征的简单性和有效性, 大多数算法利用目标的全局模板或局部图像块的灰度特征[24].但是灰度特征涉及像素点的对齐问题, 一般是通过以下两种方法实现像素点的对齐[25]: 1)在目标周围进行稠密采样, 使得字典中能够尽可能地包括图像的转换形式; 2)候选样本的每列通过几何转换与字典中的目标模板对齐.后续跟踪算法引入了其他特征例如:红外特征[26]、颜色直方图、HOG (Histograms of oriented gradients)[27]、像素点梯度方向的正余弦[28]、SIFT (Scale-invariant feature transform)[29]和几何模糊[30]等.文献[31]直接将颜色直方图、灰度、HOG和LBP (Local binary pattern)堆叠实现简单融合.文献[32]将像素点的坐标、灰度、梯度幅值和方向使用协方差矩阵进行融合, 在不同图像上的区域协方差描述符获得了一定的尺度和旋转不变性.协方差矩阵将不同类型的特征进行有效融合, 利用了特征之间的空间特性、统计特性和特征之间的相关性且维数较小.虽然协方差矩阵位于黎曼流形上, 但将其进行对数转换后可以在欧氏空间上进行度量.多特征融合[33]的目的在于利用特征之间的互补性弥补单一特征的不足.由于特征维数直接决定了后续稀疏求解算法的复杂度, 因此在特征选择过程中必须考虑特征维数对算法求解速度的影响.

    字典组成的方法分为人工设计方法和机器学习方法.由于人工设计方法的简单性和有效性, 大多数字典构建方法直接使用预先指定的字典.基于机器学习的字典构建方法大多需要大量的训练数据.

    图 1所示, 人工设计的方法按照字典的构成可以分为:基于目标特征的字典构建方法、基于目标特征和背景特征的字典构建方法和基于候选目标特征的字典构建方法.

    基于目标特征的字典构建方法大多利用目标模板或者主成分分析(Principle component analysis, PCA)来构建字典, 为了处理遮挡和噪声等异常, 字典中一般还包括微模板[20, 34-37] (与字典中原子维数同样大小的单位矩阵, 以下统称微模板).由于稀疏表示反映了候选目标和字典中原子的线性相关性, 为了保证稀疏表示的非负性引入了负微模板.后续算法为了减少字典中原子的个数提高算法效率, 将负微模板和非负性约束去掉, 利用目标特征和正微模板构建字典[38].文献[39-42]使用局部图像块代替全局模板使得字典本身对于部分遮挡具有一定的鲁棒性.

    为了提高模型处理复杂背景的能力, 文献[43]同时利用目标特征和背景特征构建字典, 使得字典本身具有判别性, 进而使得稀疏表示中包含有判别信息, 从而使算法具有较强的区分目标和背景的能力.

    利用候选目标特征构建字典的方法[44-45]是将跟踪问题看作识别问题, 求解目标在候选目标组成字典下的稀疏表示, 根据稀疏表示即可从候选目标中确定目标的位置, 理论上只需要求解几次稀疏表示, 相比传统方法大大减少了稀疏表示的求解次数.

    目前稀疏表示跟踪算法中基于学习的字典构建方法还比较少.字典学习[10]通过优化相应的目标函数, 获得能够对信号进行稀疏表示的字典, 或从分析的角度看, 通过优化目标函数使变换系数最稀疏.字典学习根据数据或信号本身来学习冗余字典, 这类字典中的原子与训练集中的数据本身相适应.与基于解析方法的字典相比, 通过学习获得的字典原子数量更多, 形态更丰富, 能更好地与信号或图像本身的数据结构匹配, 具有更稀疏的表示, 比解析方法构造的字典有更出色的性能.

    综合字典学习都采用系数更新和字典更新交替优化的方式.字典学习算法的区别主要在于字典更新方式, 而系数更新没有本质区别.固定字典更新稀疏表示是标准的稀疏编码问题, 理论上任何一种稀疏编码方法都可以用于系数更新[46-47].固定稀疏表示更新字典则是字典学习算法最为关注的环节.综合字典学习试图找到一组能够反映信号本征空间的基, 解析字典学习则是从对偶分析的角度考虑稀疏表示问题, 试图找到信号正交空间的基.上述两种模型的训练样本为特定的信号库, 盲字典学习的训练样本是待重构信号的测量值.上述三种模型均以${{\ell }_{p}}$范数描述信号的稀疏性, 而基于信息复杂度的字典学习则是利用信息的复杂度描述信号的"简单性".信号越稀疏, 其复杂度越低, 因此它仍然属于广义的稀疏表示模型.

    稀疏模型的构建是在重构误差一定的前提下, 在稀疏性约束中加入一些目标的先验信息, 得到目标更加紧凑的表示[48], 从而提取出数据潜在的内部结构.由于大多数基于稀疏表示的视频目标跟踪算法是在粒子滤波框架下进行, 因此按照观测模型将其分为生成式模型、判别式模型和混合式模型.

    目前基于稀疏表示的视频跟踪算法大多为生成式算法, 如图 2所示, 生成式模型中根据目标匹配相似性度量函数的不同, 分为基于重构误差的生成式算法、基于稀疏表示系数的生成式算法和基于稀疏编码直方图的生成式算法.

    图 2  基于稀疏表示的生成式模型
    Fig. 2  The sparse representation-based generative mode

    基于重构误差的生成式算法一般是首先求解候选目标在稀疏模型下的表示系数, 而后求解候选目标基于目标特征的重构误差, 最后选择重构误差最小的候选目标作为跟踪位置.如图 2所示, 按照稀疏模型的不同分为L$_1$跟踪算法、加权稀疏编码跟踪算法、基于结构稀疏表示的跟踪算法、基于非局部自相似正则化的稀疏表示跟踪算法、多任务稀疏表示跟踪算法和多任务多视角稀疏表示跟踪算法.

    基于目标特征重构误差的生成式算法的典型代表是L$_1$跟踪算法[20, 24], 其算法框架如图 3所示.

    图 3  L$_1$跟踪算法框架
    Fig. 3  The L$_1$ tracker framework

    L$_1$跟踪算法的稀疏表示模型为

    $ %\begin{split} \begin{aligned} \pmb{c}=\, &\arg \underset{\pmb{c}}{\mathop{\min }}\, ||\pmb{x}-D{\pmb c}||_{2}^{2}+\lambda ||\pmb{c}|{{|}_{1}} \\ &\text{ s}\text{. t}\text{. }\pmb{c}\ge 0 \end{aligned} %\end{split} $

    (1)

    其中, $\pmb{x}\in {{\bf R}^{d}}$为候选目标. $D=[T, I, -I]\in {{\bf R}^{d\times (m+2d)}}$为字典, $T\in {{\bf R}^{d\times m}}$为$m$个目标模板, $I\in {{\bf R}^{d\times d}}$为单位矩阵构成的微模板, 目标模板用于描述目标外观变化, 微模板用来显式地建模异常噪声点. $\pmb{c}={{[{{\pmb{z}}^{\text{T}}}, \text{ }{{\pmb{e}}^{\text{T}}}]}^{\text{T}}}\in {{\bf R}^{(m+2d)}}$为候选目标$\pmb{x}$在当前字典下的稀疏表示, 其中, $\pmb{z}\in {{\bf R}^{m}}$为对应目标模板的系数, $\pmb{e}\in {{\bf R}^{2d}}$为对应微模板的系数, $\lambda $为稀疏性约束参数.式(1)的求解算法为内点法[49], 算法时间复杂度为O$({{d}^{2}}+dm)$.实验结果表明L$_1$跟踪算法对于光照变化、部分遮挡和噪声具有一定的鲁棒性[24].缺点是模型更新中根据相似度将跟踪结果用于字典原子替换, 一旦引入背景信息会导致后续跟踪失败, 且为了提高算法速度采用低分辨率的图像灰度特征.

    为了提高L$_1$跟踪算法的速度, Bao等将加速最近梯度(Accelerated proximal gradient, APG)算法引入到稀疏模型的求解中, 并对微模板系数附加${{\ell }_{2}}$范数约束[35]:

    $ \begin{equation} \begin{aligned} \pmb{c}=\, &\arg\underset{\pmb{c}}{\mathop{ \min }}\, \dfrac{1}{2}||{\pmb x}-D {\pmb c}||_{2}^{2}+{{\lambda }_{1}}||\pmb{c}|{{|}_{1}}+\dfrac{{{\lambda }_{2}}}{2}||\pmb{e}||_{2}^{2} \\ &\text{ s}\text{. t}\text{. }\pmb{z}\ge 0 \end{aligned} \end{equation} $

    (2)

    其中, $D=[T, I]\in {{\bf R}^{d\times (m+d)}}$为字典, $\pmb{c}={{[{{\pmb{z}}^{\text{T}}}, {{\pmb{e}}^{\text{T}}}]}^{\text{T}}}\in {{\bf R}^{(m+d)}}$为候选目标$\pmb{x}$在当前字典下的稀疏表示, 其中, $\pmb{z}\in {{\bf R}^{m}}$为对应目标模板的系数, $\pmb{e}\in {{\bf R}^{d}}$为对应微模板的系数, ${{\lambda }_{1}}$为稀疏性约束, ${{\lambda }_{2}}$控制微模板中的能量, 并使用基于重构误差的遮挡检测对${{\lambda }_{2}}$进行动态调整, 当检测到遮挡时${{\lambda }_{2}}=0$, 当没有检测到遮挡时${{\lambda }_{2}}>0$.当特征维数较低时, 算法速度提高较为明显, 随着特征维数的升高算法速度剧烈下降.

    传统的稀疏表示模型中重构误差通常使用${{\ell }_{1}}$范数或者${{\ell }_{2}}$范数, 分别对应拉普拉斯误差分布和高斯误差分布.然而在实际中重构误差并不一定是理想的拉普拉斯分布或高斯分布, 为了解决这个问题L$_1$跟踪算法使用微模板以较高的计算代价来解决遮挡或者噪声等异常情况. Yan等[50]从重构误差的概率分布出发, 通过加权稀疏编码误差最小化来提高跟踪算法的鲁棒性, 旨在解决超出拉普拉斯和高斯噪声的异常, 理论上使算法模型适用于更为一般的噪声和异常.因此字典中并不需要微模板, 减少了字典中原子个数一定程度上降低了算法复杂度.

    基于PCA的重构误差生成式算法使用PCA代替目标模板, 主要原因有: 1) L$_1$跟踪算法字典中只是利用目标模板来处理目标的变化, 而目标模板张成的子空间的表达能力是有限的, 难以处理目标较大的视角和姿态变化. 2)字典一旦使用背景图像或者严重遮挡的跟踪结果更新后, L$_1$跟踪算法很容易失败, 而基于PCA的字典能够最大限度地保留目标的类内方差, 从而获得目标模板丰富的冗余结构信息, 利用历史数据使用增量子空间学习得到目标表示的时间相关性, 由其张成的最优子空间不仅对当前目标, 而且对历史目标都有较小的重构误差, 因此本征模板集合相比目标模板能够提供更丰富的表达. 3)使用PCA代替目标模板后, 字典中的微模板能够克服PCA对噪声太敏感只能对一些类似高斯分布的数据有效的不足.

    Wang等[51]利用PCA替换L$_1$跟踪算法中的目标模板, 同时利用了子空间对目标变化的建模能力和稀疏表示对遮挡等异常的鲁棒性.候选目标$\pmb{x}\in {{\bf R}^{d}}$可以使用PCA子空间线性表示${\pmb x}=U{\pmb z}+{\pmb e}$, 其中字典$U\in {{\bf R}^{d\times m}}$由正交基向量组成, $\pmb{z}$为稀疏表示, $\pmb{e}$为重构误差.其稀疏表示通过下式求解:

    $ [\pmb{z}, \pmb{e}]=\arg~\mathop {{\rm{min}}}\limits_{\mathit{\boldsymbol{z}},\mathit{\boldsymbol{e}}} \, \dfrac{1}{2}||{\pmb x}-U{\pmb z}-\pmb{e}||_{2}^{2}+\lambda ||\pmb{e}|{{|}_{1}} $

    (3)

    其中, 由于PCA基向量是正交的, 因而对应正交基向量的系数$\pmb{z}$是稠密, 而对应微模板的系数$\pmb{e}$是稀疏的, 上述模型可以通过迭代优化求解.

    Pan等[52]在文献[51]的基础上从理论上证明当字典为正交字典时, 使用${{\ell }_{0}}$范数约束表示目标比${{\ell }_{1}}$和${{\ell }_{2}}$范数约束更优.将算法模型修正为

    $ \begin{aligned} {[\pmb{z}, \pmb{e}]}=\arg~\underset{\pmb{z}, \pmb{e}}{\mathop{ \min }}\, &\dfrac{1}{2}||{\pmb x}-U{\pmb z}-\pmb{e}||_{2}^{2}+\\ &{{\lambda }_{1}}||\pmb{z}|{{|}_{0}}+{{\lambda }_{2}}||\pmb{e}|{{|}_{1}} \end{aligned} $

    (4)

    其中, $||\pmb{e}|{{|}_{1}}$用于拒绝异常样本, $||\pmb{z}|{{|}_{0}}$用来实现特征选择, 目的是在保留子空间内有用成分的同时移除冗余特征.上述模型能够使用加速最近梯度算法[53]有效求解.

    Bai等[37]利用遮挡的连续空间分布考虑图像的结构信息提出了基于结构稀疏表示的跟踪算法, 利用结构单元子空间的线性组合表示目标.字典$D=[U, I]\in {{\bf R}^{d\times (m+d)}}$由本征模板$U=[{{\pmb{u}}_{1}}, {{\pmb{u}}_{2}}, \cdots, {{\pmb{u}}_{m}}]\in {{\bf R}^{d\times m}}$和部分微模板集合$I$组成.由于部分遮挡通常具有连续的空间分布, 将字典$D$分成$(R+1)$个长度为$m$的组, $d=Rm$. $D[v]\in {{\bf R}^{d\times m}}$为$D$的第$v$组, 显然组内的原子之间是相互正交, 且字典的第1个组$D[1]=U$是由目标模板经过奇异值分解得到的主成分组成. $\pmb{c}[v]\in {{\bf R}^{m}}$为$\pmb{c}$的第$v$组.字典$D$和稀疏表示$\pmb{c}$的分组分别为

    $ \begin{split} D=\,&[\underbrace{{{\pmb{u}}_{1}}, {{\pmb{u}}_{2}}, \cdots , {{\pmb{u}}_{m}}}_{D[1]}|\underbrace{{{\pmb{i}}_{m+1}}, {{\pmb{i}}_{m+2}}, \cdots , {{\pmb{i}}_{2m}}}_{D[2]}|\cdots \\ & |\underbrace{{{\pmb{i}}_{Rm+1}}, {{\pmb{i}}_{Rm+2}}, \cdots , {{\pmb{i}}_{(R+1)m}}}_{D[R+1]}] \end{split} $

    (5)

    $ \begin{aligned} c =\,&[\underbrace{\pmb{c}_1, \pmb{c}_2, \cdots, \pmb{c}_m}_{\pmb{c}^\text{T}[1]}| \underbrace{\pmb{c}_{m+1}, \pmb{c}_{m+2}, \cdots, \pmb{c}_{2m}}_{\pmb{c}^\text{T}[2]} | \cdots \\&| \underbrace{\pmb{c}_{Rm+1}, \pmb{c}_{Rm+2}, \cdots, \pmb{c}_{(R+1)m}}_{\pmb{c}^\text{T}[R+1]}] \end{aligned} $

    (6)

    Lu等[54]考虑候选目标的稀疏表示之间的相关性, 在稀疏表示中引入了非局部自相似正则项(Non-local self-similarity regularized sparse coding, NLSSSC), 利用最近邻来编码目标中的结构信息, 提高了算法的判别力. $X=[{{\pmb{x}}_{1}}, {{\pmb{x}}_{2}}, \cdots, {{\pmb{x}}_{n}}]\in {{\bf R}^{d\times n}}$为$n$个候选目标, $D=[T, I]\in {{\bf R}^{d\times (m+d)}}$为字典, 候选目标${{\pmb{x}}_{i}}$的稀疏表示为${{\pmb{c}}_{i}}={{[{\pmb z}_{i}^{\text{T}}, {\pmb e}_{i}^{\text{T}}]}^{\text{T}}}$.对非局部自相似正则项附加${{\ell }_{1}}$范数约束得到NLSSSC的目标函数为

    $ \begin{aligned} {{\pmb{c}}_{i}}=\arg~\underset{{{\pmb{c}}_{i}}}{\mathop{ \min }}\, &\dfrac{1}{2}||{{\pmb{x}}_{i}}-D{{\pmb{c}}_{i}}||_{2}^{2}+{{\lambda }_{1}}||{{\pmb{c}}_{i}}|{{|}_{1}}+ \\ & {{\lambda }_{2}}\left\|{{\pmb{c}}_{i}}-\sum\limits_{{i}'=1}^{{{n}_{0}}}{{{w}_{{i}'i}} {{\pmb{c}}_{{{i}'}}}}\right\|_{1} \end{aligned} $

    (7)

    其中, $i=1, 2, \cdots, n$, ${i}'=1, 2, \cdots, {{n}_{0}}$.在候选目标中选择${{\pmb{x}}_{i}}$的前${{n}_{0}}$个最近邻$\{{{\pmb{x}}_{{{i}'}}}\}$, ${{\pmb{c}}_{{{i}'}}}$的分配权重为${{{w}}_{{i}'i}}=\dfrac{1}{{{\hbar }_{i}}}\text{exp(}-\dfrac{1}{{\hat{\lambda }}}||N({{\pmb{x}}_{i}})-N({{\pmb{x}}_{{{i}'}}})||_{2}^{2}\text{)}$, $\hat{\lambda }$为强加相似性参数, ${{\hbar }_{i}}$为归一化常数, $N({{\pmb{x}}_{i}})$是${{\pmb{x}}_{i}}$附近的近邻向量.

    上述算法是基于子空间的结构信息, 而文献[55]则是利用像素级遮挡的连续空间分布, 提出了基于结构稀疏学习的遮挡检测跟踪算法.候选目标中所有像素构成一组节点为$V$、边为$E$的图, 边存在于任意相邻的两个像素点之间.权重${{w}_{ml}}$表示像素$m$和$l$之间的相关性, 与其灰度值的相关性成正比, 与其欧氏距离成反比.结构稀疏表示的目标函数为

    $ \begin{aligned} {[\pmb{z}, \pmb{e}]}=\, &\arg ~\underset{\pmb{z}, \pmb{e}}{\mathop{\min }}\, ||\pmb{z}|{{|}_{1}}+\lambda ||\pmb{e}|{{|}_{1}}+ \\ &\text{ }\gamma \sum\limits_{(m, l)\in E}{{{w}_{ml}}||{{e}_{m}}-{{e}_{l}}|{{|}_{1}}} \\ &\text{ s}\text{. t}\text{. }\pmb{x}=D{\pmb z}\text{+}\pmb{e} \end{aligned} $

    (8)

    其中, $\gamma $越大融合作用越大, ${{w}_{ml}}$作为融合权重惩罚使得高度相关的像素有较高的${{w}_{ml}}$.上述模型引入松弛变量后采用近似扩展拉格朗日乘数法(Inexact augmented lagrange multiplier, IALM)求解.

    利用候选目标稀疏表示之间的相关性的多任务稀疏表示跟踪算法[56] (Multi-task tracking, MTT)利用粒子空间位置的相关性产生的稀疏表示的相似性, 对粒子的稀疏表示附加联合稀疏性约束, 即在每帧中尽可能使用较少的几个相同原子来表示所有粒子, 联合稀疏性可以看作是全局的结构正则化, 能够同时作用于所有粒子. $n$个候选目标$X=[{{\pmb{x}}_{1}}, {{\pmb{x}}_{2}}, \cdots, {{\pmb{x}}_{n}}]\in {{\bf R}^{d\times n}}$可由字典$D$线性表示:

    $ X=[T, I]\left[ \begin{matrix} Z \\ E \\ \end{matrix} \right]=DC $

    (9)

    其中, $Z\in {{\bf R}^{m\times n}}$为候选目标的稀疏表示中对应目标模板的系数, $E\in {{\bf R}^{d\times n}}$为对应微模板的系数, $C={{[{{Z}^{\text{T}}}, {{E}^{\text{T}}}]}^{\text{T}}}\in {{\bf R}^{(m+d)\times n}}$为候选目标在当前字典下的稀疏表示.

    Zhang等在多任务跟踪算法的基础上, 考虑粒子之间的结构相关性和表示的空间平滑性, 将候选目标之间的空间位置关系引入到目标函数中, 从而将多任务跟踪扩展到结构多任务跟踪[57] (Structured multi-task tracking, S-MTT).假定稀疏表示$C$是通过成对的相互作用而相关.利用这些局部结构先验对粒子的表示附加空间平滑性, 即同一帧中空间位置比较近的粒子应该具有相似的稀疏表示.定义对称权重矩阵$W\in {\bf R}_{+}^{n\times n}$, ${{W}_{i{i}'}}=\exp (-||{{\pmb{l}}_{i}}-{{\pmb{l}}_{{{i}'}}}||_{2}^{2}/(2{{\varsigma }^{2}}))$描述粒子$i$和${i}'$的稀疏表示${{\pmb{c}}_{i}}$和${{\pmb{c}}_{{{i}'}}}$之间的相似性(${{\pmb{c}}_{i}}$和${{\pmb{c}}_{{{i}'}}}$分别为矩阵$C$的第$i$列和第${i}'$列), 其中, ${{\pmb{l}}_{i}}$和${{\pmb{l}}_{{{i}'}}}$为粒子的中心坐标, $i=1, 2, \cdots, n$, ${i}'=1, 2, \cdots, n$, $\varsigma $为所有粒子之间距离的平均值.记${{a}_{i}}=\sum\nolimits_{{i}'=1}^{n}{{{W}_{i{i}'}}}$, $A=\text{diag}\{{{a}_{1}}, {{a}_{2}}, \cdots, {{a}_{n}}\}$为图的度, $L=A-W$为图的拉普拉斯, $W$表示图中所有边的权重.规范的图平滑正则项为规范的稀疏表示中粒子间距离的加权和, 每个距离项的权重反映了粒子之间相关性的强弱.图正则项为$\dfrac{1}{2}\sum\nolimits_{i=1}^{n}{\sum\nolimits_{{i}'=1}^{n} {{{W}_{i{i}'}}||{{\pmb{c}}_{i}}/\sqrt{{{a}_{i}}}- {{\pmb{c}}_{{{i}'}}}/\sqrt{{{a}_{{{i}'}}}}||_{2}^{2}}}= \text{tr} (C{\hat{L}}{{C}^{\text{T}}})$, 其中, ${\hat{L}}={{A}^{-1/2}}L{{A}^{-1/2}}$为规范化的拉普拉斯矩阵.所以基于结构的粒子稀疏表示可以通过直接附加图正则项获得:

    $ \begin{aligned} C={\rm arg} \underset{C}{\mathop{\min}}\, &\dfrac{1}{2}\left\| X-DC \right\|_{2}^{2}\text{+} \dfrac{\lambda_1}{2}\text{tr}(C\hat{L}{C}^{\text{T}})+\\ &{{\lambda }_{2}}||C|{{|}_{p, q}} \end{aligned} $

    (10)

    其中, $q=1$, $p\in \{1, \text{ }2, \text{ }\infty \}$. ${{\lambda }_{1}}$和${{\lambda }_{2}}$分别用于平衡局部结构正则项和全局结构正则项.当${{\lambda }_{1}}=0$时为多任务跟踪算法, 当${{\lambda }_{1}}=0$且$p=1$时为L$_1$跟踪算法. S-MTT的目标函数(10)由凸二次项和非平滑正则项组成, 因此一般使用APG算法[58]求解.由于$d\gg m$, S-MTT和MTT算法的时间复杂度为O$(mnd{{\epsilon }^{-1/2}})$, 迭代次数为O$({{\epsilon }^{-1/2}})$.

    Hong等在多任务跟踪的基础上提出了多任务多视角联合稀疏表示跟踪算法[31].假定$n$个粒子每个由$O$个不同的特征表示, 对于第$o$ ($o=1, 2, \cdots, O$)个特征, ${{X}^{(o)}}\in {{\bf R}^{{{d}_{o}}\times n}}$为$n$个特征向量组成的特征矩阵.第$o$个特征字典${{D}^{(o)}}=[{{T}^{(o)}}, {{I}_{{{d}_{o}}}}]$由$m$个目标特征${{T}^{(o)}}\in {{\bf R}^{{{d}_{o}}\times m}}$和对应微模板${{I}_{{{d}_{o}}}}$组成.通过多任务学习来获得$n$个粒子的$O$个特征矩阵$\{{{X}^{(1)}}, {{X}^{(2)}}, \cdots, {{X}^{(O)}}\}$的稀疏表示$\{{{C}^{(1)}}, {{C}^{(2)}}, \cdots, {{C}^{(O)}}\}$. ${{C}^{(o)}}$使得粒子在不同特征下具有不同的表示, 每个特征下的稀疏表示的同一列为同一个样本, 因此同一个样本在每个特征下的稀疏表示具有一定的相似性, 所以能够利用每个特征的独立性并且获得不同的统计特性.因此所有特征的稀疏表示可以水平方向堆叠起来分别构成矩阵$P$和$Q$, 每一个由所有特征下的稀疏表示系数组成.对于$P$的行组使用组Lasso约束来获得所有候选目标在所有特征上的共有特征, 同样的组Lasso约束作用于$Q$的列组来同时确定异常样本.所以多任务多视角联合稀疏表示的目标函数为

    $ \begin{array}{l} \left[ {C,P,Q} \right] = {\mkern 1mu} \arg \;\mathop {\min }\limits_{C,P,Q} \frac{1}{2}\sum\limits_{o = 1}^O | |{D^{(o)}}{C^{(o)}} - {X^{(o)}}||_2^2 + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\lambda _1}||P|{|_{1,2}} + {\lambda _2}||{Q^{\rm{T}}}|{|_{1,2}} \end{array} $

    (11)

    其中, ${{C}^{(o)}}={{P}^{(o)}}+{{Q}^{(o)}}$, $P=[{{P}^{(1)}}, {{P}^{(2)}}, \cdots, {{P}^{(O)}}]$, $Q=[{{Q}^{(1)}}, {{Q}^{(2)}}, \cdots, {{Q}^{(O)}}]$.

    多任务跟踪算法利用粒子之间的自相似性一定程度上提高了跟踪性能, 但是当候选目标采样区域较大时粒子之间的差异较大, 通过多任务学习强制所有粒子共享同样的结构会降低跟踪算法性能[59].即MTT跟踪算法中利用粒子之间的相关性时没有考虑粒子之间的差异性.所以鲁棒多任务跟踪算法[59]在求解稀疏表示时将稀疏表示系数矩阵分解成两部分, 考虑粒子的相似性对其中的一部分强加联合稀疏正则项, 考虑粒子之间的差异性对另外一部分按照元素附加稀疏正则项.鲁棒多任务稀疏表示模型为

    $ \begin{align} \left[P, Q\right]=\, &\arg~\underset{P, Q} {\mathop{\text{min}}} \dfrac{1}{2}\left\| X-D (P+Q) \right\|_{2}^{2}\text{+}\nonumber\\ & {{\lambda }_{1}}||P|{{|}_{1, 2}}+ {{\lambda }_{2}}||Q|{{|}_{1, 1}} \end{align} $

    (12)

    其中, 候选目标的稀疏表示为$C=P+Q$, 其中, $||P|{{|}_{p, q}}=\sum\nolimits_{i}{||{{P}_{i}}||_{q}^{p}}$, ${{P}_{i}}$为矩阵$P$的第$i$行.对$P$附加联合稀疏正则项, 对应共享的结构.对$Q$按照元素附加稀疏正则项, 对应非共享的特征.联合稀疏性利用了粒子的相似性而按照元素附加的稀疏约束考虑了粒子之间的差异性.当选择合适的${{\lambda }_{1}}$使得$P=0$时, 算法为L$_1$跟踪算法, 当选择合适的${{\lambda }_{2}}$使得$Q=0$, 算法为MTT跟踪算法.对于$P$附加组稀疏正则项, 反映了粒子之间共享的共有结构, $Q$按照元素附加稀疏正则项反映了粒子之间的差异性, 使得算法比L$_1$跟踪算法和MTT算法更加鲁棒.上述模型可以基于加速梯度算法进行求解.

    为了提高多任务稀疏表示跟踪算法的求解速度, 文献[60]提出了基于${{\ell }_{0}}$范数的多任务梯度最小化跟踪算法.实验结果表明随着字典中原子数量的增加, ${{\ell }_{1}}$和${{\ell }_{0}}$约束的重构误差基本一致, 但是${{\ell }_{1}}$约束下的稀疏表示的求解时间增加很快, ${{\ell }_{0}}$约束下的稀疏表示的求解时间增加较慢.随着稀疏性正则项约束参数的变大, ${{\ell }_{1}}$约束下的重构误差增加较快, ${{\ell }_{0}}$约束下的重构误差先下降后保持不变, 耗时方面${{\ell }_{1}}$约束下的求解时间先下降后增加, ${{\ell }_{0}}$约束下的先增加而后基本保持不变, 但是${{\ell }_{0}}$约束下的耗时始终低于${{\ell }_{1}}$约束下的耗时.

    由于稀疏表示本质上是线性模型, 稀疏表示反映了候选目标和字典中原子之间的线性相关性, 所以可以根据稀疏表示系数的大小即候选目标和字典中原子的相关性的大小来确定目标位置. Jia等提出了基于结构局部稀疏表观模型的跟踪算法[39-40], 这里的结构实质上指将相同空间位置上的图像块的稀疏表示作为候选目标的特征, 利用稀疏表示构建观测模型.由于每个图像块的位置固定, 因此所有的局部图像块联合起来能够表示目标完整的结构信息.

    文献[30]利用跟踪中运动平滑性建立下一帧相同位置图像块与当前帧对应位置图像块的相关性.候选目标图像块特征与目标对应位置图像块特征之间的相关性使用部分置换矩阵${{\mathcal{P}}^{k}}$表示[30]:

    $ \begin{aligned} {{\mathcal{P}}^{k}}=\,&\{{{P}^{k}}|{{P}^{k}}\in {{\{0, 1\}}^{{{n}_{k}}\times n}}, \text{1}_{{{n}_{k}}}^{\text{T}}{{P}^{k}}=\text{1}_{n}^{\text{T}}, \\ & {{P}^{k}}{{\text{1}}_{n}}\le {{\text{1}}_{{{n}_{k}}}}, {{A}^{k}} {{P}^{k}}{{\text{1}}_{n}}={{\text{1}}_{n}}\} \end{aligned} $

    (13)

    其中, ${{n}_{k}}$为目标模板的数量, $n$为候选目标的数量, $k=1, 2, \cdots, K$为单个目标中提取的图像块个数.式(13)三个约束项分别对应每个目标图像块对应候选样本中的一个图像块、每个样本图像块最多对应目标图像中的一个图像块和运动平滑性. $\{{{P}^{k}}\}_{k=1}^{K}$为上式优化后的部分置换矩阵, 基于提取的特征$F$, 则有${{D}_{i}}=[{{F}^{1}}\pmb{p}_{i}^{1}, \cdots, {{F}^{K}}\pmb{p}_{i}^{K}]\in {{\bf R}^{d\times K}}, i=1, 2, \cdots, n$, 其中, $\pmb{p}_{i}^{k}$是矩阵${{P}^{k}}$的第$i$列, 将第$i$个目标模板和视频中对应图像块的特征堆叠起来构成低秩矩阵${{D}_{i}}$, 理想情况下秩为1, 考虑到噪声和遮挡优化部分置换矩阵问题可以转换为秩最小化问题:

    $ \begin{aligned} &\{ P^k , L_{i}, E_{i} \}=\\ &\arg ~ \underset{\{{{P}^{k}} \in {{\mathcal{P}}^{k}}\}_{k=1}^{K}, \{{{L}_{i}}, {{E}_{i}}\}_{i=1}^{n}}{\mathop{\min }}\, \sum\limits_{i}{{\text{rank}}||L_i||}+ \lambda ||E_i||_0\\ &\text{ }\text{ } \text{ }\text{ s}\text{. t}\text{. }{{D}_{i}}={{L}_{i}}+{{E}_{i}} \end{aligned} $

    (14)

    上述模型中将秩使用矩阵的核范数代替, 矩阵的零范数通过一范数代替后可以通过快速一阶交替方向乘数法(Alternative direction method of multiplier, ADMM)求解.

    Liu等将基于位置约束的稀疏表示和Mean-shift结合提出了基于稀疏编码直方图的生成式算法[61-62].将候选目标中所有的图像块在字典上的稀疏表示按照与目标中心的距离使用核函数加权求和, 归一化后作为候选目标在字典上的稀疏编码直方图.将稀疏编码直方图与所有图像块的重构误差进行乘性结合作为目标匹配的相似性度量函数, 利用了目标与字典之间的相似性和目标与字典基分布之间的相似性, 最后采用Mean-shift迭代得到目标的中心位置和尺度.相比粒子滤波框架下的稀疏表示跟踪算法, 将稀疏表示和均值漂移结合后经过几次迭代就可以获得目标的跟踪位置, 大大减少了稀疏表示的求解次数.

    稀疏表示的过程可以看作是二次特征提取的过程, 因此稀疏表示本身可以作为目标的特征, 并且稀疏表示的特征更加线性可分.判别式模型根据目标匹配相似性度量函数的不同可以分为基于分类器响应的判别式算法[29, 63]、基于稀疏表示差值的判别式算法[44]和多任务稀疏表示差值的判别式算法[64-65].

    Wang等将稀疏表示和线性分类器结合提出了基于稀疏表示的判别式跟踪算法[63], 使用Logistic回归来学习分类器, 将分类器响应作为目标匹配的相似性度量. $\pmb{y}$为从候选目标中提取的图像块的SIFT特征, 基于弹性网[66]的稀疏表示模型为

    $ \pmb{b}=\arg ~\mathop {\min }\limits_{\mathit{\boldsymbol{b}}} \dfrac{1}{2}||{\pmb y}-D{\pmb b}||_{2}^{2}+{{\lambda }_{1}}||\pmb{b}|{{|}_{1}}+\dfrac{{{\lambda }_{2}}}{2}||\pmb{b}||_{2}^{2} $

    (15)

    其中, ${{\lambda }_{2}}>0$保证了上述优化问题是严格凸的.弹性网模型适用于字典中原子个数远大于原子维数的情况[67]. Lasso模型利用的原子个数最多等于原子维数, 因此当字典中原子个数远大于原子维数时使用Lasso模型是不合理的, 而弹性网模型使得每个原子都可能被利用甚至所有的原子都能利用到. Lasso模型的正则项是凸的, 而弹性网模型的正则项是严格凸的, 能够诱导出组效应[68].

    Zhuang等[44]利用候选目标构建字典, 求解目标模板和背景模板在字典下的稀疏表示, 将样本基于目标的稀疏表示和基于背景的稀疏表示做差值构建观测模型. $n$个候选目标为$X=[{{\pmb{x}}_{1}}, {{\pmb{x}}_{2}}, \cdots, {{\pmb{x}}_{n}}]\in {{\bf R}^{d\times n}}$, 模板集合$T=[{{T}_{\text{pos}}}, {{T}_{\text{neg}}}]\in {{\bf R}^{d\times (m+{m}')}}$由目标模板${{T}_{\text{pos}}}\in {{\bf R}^{d\times m}}$和背景模板${{T}_{\text{neg}}}\in {{\bf R}^{d\times {m}'}}$组成. ${{\pmb{c}}_{i}}={{[{{\pmb{c}}_{i1}}, {{\pmb{c}}_{i2}}, \cdots, {{\pmb{c}}_{in}}]}^{\text{T}}}$为$T$中第$i$个模板基于$X$的稀疏表示, $i=1, 2, \cdots, (m+{m}')$.由模板的重构系数向量构成矩阵$C=[{{\pmb{c}}_{1}}, {{\pmb{c}}_{2}}, \cdots, {{\pmb{c}}_{m+{m}'}}]$, 表示模板和候选目标之间的相似性.为了保持相似候选目标之间稀疏表示的相似性, 引入Laplacian约束得到Laplacian多任务逆稀疏表示:

    $ \begin{aligned} C =\arg~\underset{C}{\min}& ||T-XC||_{2}^{2}+{{\lambda }_{1}}\sum\limits_{i=1}^{m+{m}'}{||{{\pmb{c}}_{i}}|{{|}_{1}}}+ \\ & {{\lambda }_{2}}\text{tr}(CLC^{\text{T}}) \text{ }\text{ }\text{ }\\ & \text{s}\text{. t. }~\pmb{c}_{i}\ge 0 \end{aligned} $

    (16)

    其中, $L=A-B$为Laplacian矩阵. $B$是二值矩阵表示两个候选目标特征之间的相关性, 如果${{\pmb{c}}_{i}}$位于${{\pmb{c}}_{{{i}'}}}$的${{n}_{0}}$个最近邻中${{B}_{i{i}'}}=1$, 否则${{B}_{i{i}'}}=0$. ${{\pmb{c}}_{i}}$的度定义为${{a}_{i}}=\sum\nolimits_{{i}'=1}^{m+{m}'} {{{B}_{i{i}'}}}$, $A=\text{diag}\{{{a}_{1}}, {{a}_{2}}, \cdots, {{a}_{m+{m}'}}\}$.

    Zhang等[65]基于时间上的连贯性而产生的目标稀疏表示之间的相似性, 将目标跟踪看作是连贯、稀疏和低秩问题.将候选目标$X=[{{\pmb{x}}_{1}}, {{\pmb{x}}_{2}}, \cdots, {{\pmb{x}}_{n}}]$表示成字典$D$的线性组合$X=DZ$, 其中, $Z=[{{\pmb{z}}_{1}}, {{\pmb{z}}_{2}}, \cdots, {{\pmb{z}}_{n}}]$为对应候选目标在字典上的稀疏表示.字典$D=[{{T}_{\text{pos}}}, {{T}_{\text{neg}}}]$由目标模板${{T}_{\text{pos}}}$和背景模板${{T}_{\text{neg}}}$组成.由于目标的表观模型在短时间内不会发生较大变化, 因此利用时间连贯性跟踪问题可以表示为

    $ \begin{align} \left[Z, E\right]=\,&\arg ~\underset{Z, E} {\mathop{\min }}\, {{\lambda }_{1}}||Z|{{|}_{*}}+ {{\lambda }_{2}}||Z|{{|}_{1, 1}}+ \nonumber\\ &{{\lambda }_{3}}||Z-{{Z}_{0}}|{{|}_{2, 1}}+{{\lambda }_{4}}|| E|{{|}_{1, 1}} \nonumber\\ & \text{ s}\text{. t}\text{. }X\text{=}DZ\text{+} E \end{align} $

    (17)

    其中, $||Z|{{|}_{*}}$表示矩阵的核范数, ${{Z}_{0}}$的每列均为之前跟踪结果的稀疏表示. $||Z|{{|}_{1, 1}}$对于遮挡和噪声具有较好的鲁棒性. $||Z-{{Z}_{0}}|{{|}_{2, 1}}$产生$(Z-{{Z}_{0}})$列水平上的稀疏性, 使得大多数候选目标的稀疏表示与之前跟踪结果的稀疏表示相似, 同时允许少量候选目标的稀疏表示与之前跟踪结果的稀疏表示不同. $||E|{{|}_{1, 1}}$确保模型对于稀疏重构误差的鲁棒性, $E$的值和列的支撑是包含有信息的, 当$E$的值较大但为稀疏的列支撑时表示候选目标中存在遮挡, 当$E$的值较大但为非稀疏的列支撑时, 表示候选目标中包含较多背景信息.

    在式(17)中当${{\lambda }_{1}}={{\lambda }_{3}}=0$时, 算法为稀疏跟踪算法(Sparse tracker, ST), 与L$_1$跟踪算法相似.当${{\lambda }_{2}}={{\lambda }_{3}}=0$时, 算法为低秩跟踪算法(Low rank tracker, LRT), 低秩性利用了候选目标之间的相关性.当${{\lambda }_{1}}{{\lambda }_{2}}\ne 0$且${{\lambda }_{3}}=0$时, 算法为低秩稀疏跟踪算法[64] (Low rank sparse tracker, LRST), LRST算法同时利用了候选目标表示的稀疏性和低秩性.当${{\lambda }_{1}}{{\lambda }_{2}}{{\lambda }_{3}}\ne 0$时, 算法为连贯低秩稀疏跟踪算法(Consistent low rank sparse tracker, CLRST), CLRST算法将LRST算法使用时间连贯性进行了推广.引入等式约束和松弛变量将问题转换后可以将式(17)通过近似扩展拉格朗日乘数法求解.

    多任务跟踪算法MTT和连贯低秩稀疏跟踪算法CLRST都利用了候选目标之间的结构信息, 但是这种结构的假设是不同的. MTT中通过使用$||Z|{{|}_{2, 1}}$约束使得候选目标由几个相同的原子表示, 使得$Z$的所有列彼此相似, 间接地使表示矩阵$Z$的秩为1. CLRST算法将跟踪置于低秩学习框架中约束目标的表示位于低维子空间内, 而不要求候选目标使用同样的原子表示, CLRST算法假定表示矩阵$Z$的秩较低(为1或大于1). MTT算法利用的是候选目标之间的空间相关性产生的稀疏表示的相似性, 而CLRST算法则是利用时间上的相关性产生的稀疏表示的相似性.

    Zhong等[41-42]将基于重构误差的判别式模型和基于稀疏编码直方图的生成式模型进行乘性结合提出了基于稀疏表示的混合式跟踪算法.候选目标基于目标模板的稀疏重构误差为${{\epsilon }_{\text{pos}}}$, 基于背景模板的稀疏重构误差为${{\epsilon }_{\text{neg}}}$, 构建的判别式模型的置信度为$H=\exp (-({{\epsilon }_{\text{pos}}}-{{\epsilon }_{\text{neg}}})/\sigma)$.基于稀疏性的生成式模型为候选目标中所有图像块基于目标字典的稀疏表示按照空间位置依次连接起来构成的稀疏编码直方图, 并利用重构误差阈值将被遮挡图像块的稀疏表示置0, 去除遮挡后的稀疏编码直方图为$\pmb{\rho }$, 使用直方图交叉函数来计算候选目标$\pmb{\rho }$和模板${{\pmb{\rho }}_{0}}$之间的相似性.基于稀疏性的混合式模型为

    $ \begin{align} p=\, &HF=\exp \left(-\frac{({{\epsilon }_{\text{pos}}}-{{\epsilon }_{\text{neg}}})}{\sigma} \right)\times\nonumber\\ &\left(\sum\nolimits_{j}{\min ({{\pmb{\rho }}^{j}}, \pmb{\rho }_{0}^{j})}\right) \end{align} $

    (18)

    其中, $H$给予正样本(${{\epsilon }_{\text{pos}}}<{{\epsilon }_{\text{neg}}}$)较高的权重, 因此$H$可以看作是$F$的权重.对于较难区分的目标$({{\epsilon }_{\text{pos}}}\approx {{\epsilon }_{\text{neg}}})$, $H\approx 1$, 此时$F$起主要作用, 因此在混合式模型中生成式模型起着更为重要的作用.实验结果表明[41-42]大多数情况下混合式模型优于单个的判别式模型和生成式模型.主要原因是判别式模型主要用来区分目标和背景, 不能够有效处理遮挡, 而基于局部特征的生成式模型能够有效处理遮挡, 而单独的生成式模型不能够有效处理复杂背景.混合式模型集成了二者的优点使得算法的鲁棒性较好.

    基于稀疏表示的跟踪算法按照算法模型的不同更新的方案也不同.生成式模型中字典的组成不同, 字典的在线更新方案也不尽相同.对于由目标模板构建的字典, L$_1$跟踪算法是通过计算跟踪结果与字典中原子的相似度通过设定阈值来对原子进行更新[24].由于跟踪结果的正确与否不得而知, 因此一旦将错误的跟踪结果更新到字典中, 会导致模型退化. Zhang等[32]将字典中的模板分为固定模板、稳定模板和变化模板.其中固定模板为第一帧中在人工标定的基础上提取的目标模板, 固定模板在跟踪过程中保持不变.固定模板和稳定模板主要用来阻止漂移, 稳定模板用来抓住跟踪过程中目标的稳定特征, 变化模板用来对目标的变化作出响应, 三种模板以不同的方式进行更新.对于由PCA构建的字典, 则可以使用增量子空间学习算法实现PCA的在线更新[69], 也可将其应用于字典中模板的在线更新[39-40].文献[70]将一阶马尔科夫链用于字典中原子的更新.

    判别式模型的更新主要是在跟踪结果的基础上提取正负样本对分类器进行在线更新.由于跟踪结果的正确与否是不可知的, 因此在跟踪结果的基础上采集样本的真实属性也是未知的, 所以分类器的更新过程更多的是半监督训练和非监督训练过程. Wang等[29]将候选目标在初始分类器和新分类器上的响应加权作为候选目标的分类器响应, 由于初始分类器是通过监督训练得到的, 可以一定程度上减轻分类器更新中的漂移.

    基于稀疏表示的视频目标跟踪的算法复杂度较高[21], 对于字典$D\in {{\bf R}^{m\times n}}$, 粒子数量为$N$, 基于Lasso的稀疏表示求解的算法时间复杂度为O$(N{{m}^{2}}{{n}^{3/2}})$, 因此一般通过以下三种方法提高算法速度: 1)减少有效候选目标的数量; 2)降低字典的维数; 3)提高每次稀疏表示的求解速度.

    减少有效候选目标的数量的目的是为了减少稀疏表示的求解次数, 粒子滤波框架下传统算法的稀疏表示求解次数等于粒子的个数.为了减少每次跟踪过程中${{\ell }_{1}}$范数最小化的求解次数, Mei等引入最小平方误差界, 在计算稀疏表示之前通过线性最小平方重构误差剔除大量的非重要粒子, 从而减少了稀疏表示的计算次数[34].文献[44-45]利用候选目标构建字典, 将跟踪问题看作识别问题, 仅需要求解几个目标模板在由候选目标组成的字典上的稀疏表示, 大大减少了稀疏表示的计算次数.

    由于稀疏表示求解的算法复杂度与字典的维数成正比, 因此可以通过降低字典维数来提高算法求解速度.降低字典维数可以通过以下两种方法实现: 1)降低原子的维数; 2)减少字典中原子的个数.文献[32]利用协方差矩阵在实现特征融合的同时降低了特征的维数.由于目标模板中通常包括一些非线性的背景特征, Liu等[38]通过样本标签分布学习, 利用稀疏模型建立正负样本和标签之间的映射关系, 通过判别式特征选择目标模板中包含的背景特征被剔除, 选择更具有判别力的特征实现特征降维. Li等[43]利用满足约束等距性的测量矩阵同时作用于字典和候选目标的特征实现降维.基于样本标签学习的特征选择方法降维和基于约束等距性的特征降维虽然形式一样, 都是将高维特征降维至低维空间, 但二者有本质的区别.基于标签学习的特征选择降维方法是从高维特征空间中选择更具判别力的特征实现降维.而基于约束等距性的特征降维是利用满足约束等距性的哈希矩阵将高维特征降维至低维空间, 在降维过程中保持了原始高维数据的空间结构.

    为了在跟踪鲁棒性和算法速度之间做出折中, 很多算法不得不采用低维数的字典, 而低维特征下难以对目标进行精确描述.对于基于稀疏表示的判别式跟踪算法而言, 低维字典严重限制了稀疏表示的判别力, 降低了目标和背景的可分性.文献[71]提出了基于乘积稀疏表示的支持向量跟踪算法, 将原始稀疏编码问题分解为两个较小子字典上的稀疏编码问题, 不仅使得等效字典中原子个数大大增加, 使得目标能够获得更高维的稀疏表示, 而且降低了稀疏性求解过程的计算量, 使得目标和背景在高维的稀疏表示下更加线性可分, 提高了跟踪算法的鲁棒性.

    L$_1$跟踪算法字典中加入微模板是为了处理遮挡和噪声等异常, Yan等[50]将字典中微模板去除, 从重构误差的概率分布出发提出了加权Lasso模型, 使算法模型适用于更为一般的噪声.另外基于局部特征构建的字典本身对于遮挡具有一定的鲁棒性也不需要微模板.同时利用目标和背景构建的字典中也不包括微模板.

    提高每次${{\ell }_{1}}$范数最小化的计算速度, Bao等将加速最近梯度算法[35]引入到稀疏模型求解中, 加速最近梯度算法的有效性在于它的二次收敛性. Li等[43]使用正交匹配追踪算法求解稀疏表示, 显然要比L$_1$跟踪算法中的内点法[72]速度要快得多.

    表 1所示, 自2013年以来出现了多个视频目标跟踪算法评估的基准数据库[7, 22, 73-76].其中VOT2013[73]、OTB50[7]、VOT2014[77]和OTB100[22]为GT (Groundtruth)全标注的基准数据库. PTB中为附带景深的RGB-D图像[74], 受到景深探测器景深探测范围的限制, 无法获取大景深的视频, 公开的视频数据中只给出5个视频的GT, 并且当目标被全遮挡时GT的标注为空, 需要在线提交跟踪结果进行评估. ALOV++中按照影响视频目标跟踪的因素将视频分成13类, GT是每隔5帧标注一次[75]. NUS-PRO中将视频分成5类:人脸视频、行人视频、运动员视频、刚体视频和长视频, 每类视频又分成不同的子类, 所有图像大小均为1 280 $\times$ 720, 没有公开GT, 需要在线提交跟踪结果进行评估[76].

    表 1  视频跟踪评估基准数据
    Table 1  Summary of some visual tracking evaluation benchmark datasets
    下载: 导出CSV 
    | 显示表格

    不同于目标检测、图像分类等计算机视觉领域, 目前为止视频目标跟踪还没有统一的评估标准[78-80].

    中心误差[78] (Center error in pixel, CE)定义为算法标定的目标中心和人工标定的目标中心之间的欧氏距离(像素).由于中心误差不能反映目标的尺度变化, 因此后续提出了标准化的中心误差, 即将中心误差除以目标的大小.虽然标准化中心误差一定程度上能够反映目标的尺度变化, 但是中心误差的大小会随着目标大小成比例的变化, 并且跟踪失败后中心误差可能是随机产生的任意值, 并不能反映算法的真实性能.

    基于PASCAL VOC中目标检测的评估标准[81], 算法重叠率(Overlap rate, OR)能够同时较好地反应算法的跟踪位置和目标尺度, 且重叠率的值有界.基于重叠率阈值的跟踪成功率(Success rate, SR)定义为重叠率大于阈值的比例.

    由于不同的跟踪任务对于跟踪精度的要求不同, Wu等[7]提出了精度曲线和成功曲线.精度曲线[7] (Precision plot)是指算法中心误差小于中心误差阈值的比例随中心误差阈值的变化情况, 通常选择中心误差阈值为20像素时的值作为算法的跟踪精度.成功曲线[7] (Success plot)是指跟踪成功率随重叠率阈值的变化情况.通常选择重叠率阈值[81]为0.5, 但是由于跟踪精度的要求不同选择重叠率阈值为0.5不具有代表性, Wu等[7]利用成功曲线下的面积(Success rate area under curve, SR-AUC)作为算法评估的依据.当重叠率阈值选择的足够多时, 算法的SR-AUC值等于在所有实验视频上重叠率的均值[78].

    传统的评估方法是对算法在整个视频上运行一次的跟踪结果进行评估, 这里称之为单次通过评估OPE (One-pass evaluation).但有些算法对于初始化(初始位置和初始帧)非常敏感, 不同的初始化导致跟踪结果的差别很大, 并且很多算法跟踪失败后没有重新初始化, 导致失败后的跟踪结果往往是随机的, 没有太大的参考价值.所以文献[7]提出了算法初始化鲁棒性评估标准:时间鲁棒性评估(Temporal robustness evaluation, TRE)和空间鲁棒性评估(Spatial robustness evaluation, SRE).

    时间鲁棒性评估是指从不同的初始帧开始将跟踪算法进行多次评估, 将多次评估的结果进行平均得到TRE.

    空间鲁棒性评估是通过移动初始帧GT的位置, 缩放GT窗口的大小来评估算法对初始化误差的敏感性.移动GT的位置是将目标的中心位置向上、下、左、右、左上、右上、左下、右下分别移动对应维度的10 %, 其中向上下左右移动时, GT的尺度不变; 向左上、右上、左下、右下移动时宽度和高度分别增加对应维度的10 %.缩放GT窗口是指GT的中心位置不变, 将GT的宽度和高度分别变为原来宽度和高度的80 %、90 %、110 %、120 %.空间鲁棒性评估是上述12个评估的均值.文献[7]的实验结果表明同一算法的平均TRE一般高于OPE, 这主要是由于跟踪算法一般在较短的视频上的跟踪效果较好, 这也说明误差累积产生的漂移是导致跟踪失败的重要原因.平均的SRE一般低于OPE, 这主要是由于SRE中不精确的初始化导致后续跟踪漂移较快, 这也说明了目标精确初始化的重要性.

    由于跟踪失败之后算法跟踪结果往往是随机产生的, 导致失败后的跟踪结果没有太大的参考价值, 并且没有人为干预时算法一般很难再跟踪上目标.等价于算法的评估过程中仅使用了视频的一部分, 并没有充分利用整个视频数据.并且一个视频中可能包含多个挑战因素, 算法可能对于视频中的某个因素是鲁棒的, 而对于另外的因素是不鲁棒的.因此VOT2014中提出了新的鲁棒性评估标准[77].在跟踪过程中当重叠率小于阈值时对目标进行重新初始化, 将重新初始化的次数作为算法鲁棒性的评估标准, 重新初始化的次数越少说明算法的鲁棒性越好, 反之说明算法的鲁棒性越差.但是由于实际跟踪中导致跟踪失败的原因可能是多个因素共同作用的结果, 上述方法难以对单一挑战因素进行有效剥离.

    处理速度是视频目标跟踪算法需要考虑的重要因素, 按照实时性的要求算法处理速度需要达到每秒20帧以上, 即单帧处理时间小于50 ms.由于视频图像的分辨率不同, 跟踪目标区域的大小不同, 以及算法实现环境不同, 这些都会影响到算法的处理速度, 因此算法的实时性评估需要综合考虑多方面因素.

    由上述分析可知, 尽管目前跟踪算法的评估标准较多, 但是核心的评估标准还是基于GT的中心误差和重叠率.因此本文主要选取中心误差和重叠率的均值和标准差、跟踪成功曲线、跟踪精度曲线、跟踪成功率和算法单帧平均处理时间作为评估标准.

    将现有公开代码的基于稀疏表示的跟踪算法总结如表 2所示.实验在Intel (R) Core (TM) i7-3770CPU@3.40 GHz, 内存16.0 GB的64位计算机上通过Matlab (R2014a)软件实现.测试视频为OTB50上的50个视频[7], 共计29 507帧.实验中算法均采用相同的初始位置, 算法中的参数均采用源代码中的默认参数.算法中如果涉及粒子滤波框架下的仿射变换模型, 则采用相同的仿射变换标准差和粒子个数.为了获得客观的比较结果, 将算法在测试视频上的5次实验结果的平均值作为最终的实验结果.需要指出的是由于实验中目标的初始位置、参数设置、粒子个数、实现环境和硬件平台等与相关文献中可能有所不同, 以及算法本身含有的某些随机因素, 某些实验结果和算法速度与相关文献中给出的结果有出入, 但是从大量实验结果的比较中得出的算法总体性能与相关文献一致.

    表 2  算法简称和论文代码地址
    Table 2  The sparse tracker$'$s abbreviation, paper and code$'$s URL
    算法 论文题目和代码地址
    L$_1$ Robust visual tracking using l1 mimization. In ICCV, 2009.
    http://www.dabi.temple.edu/~hbling/publication-selected.htm
    LSK Robust tracking using local sparse appearance model and k-selection. In CVPR, 2011.
    http://www.uky.edu/~lya227/spt.html
    L1APG Real time robust l1 tracker using accelerated proximal gradient approach. In CVPR, 2012.
    http://www.dabi.temple.edu/~hbling/publication-selected.htm
    ASLA Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012.
    http://ice.dlut.edu.cn/lu/publications.html
    SCM Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    http://ice.dlut.edu.cn/lu/publications.html
    MTT Robust visual tracking via multi-task sparse learning. In CVPR, 2012.
    http://faculty.ucmerced.edu/mhyang/pubs.html
    LRT Low-rank sparse learning for robust visual tracking. In ECCV, 2012.
    http://faculty.ucmerced.edu/mhyang/pubs.html
    CT Real-time compressive tracking. In ECCV, 2012.
    http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
    DLSR Online discriminative object tracking with local sparse representation. In WACV, 2012.
    http://faculty.ucmerced.edu/mhyang/pubs.html
    SRPCA Online object tracking with sparse prototypes. In TIP, 2013.
    http://ice.dlut.edu.cn/lu/publications.html
    DSSM Visual trcking via discriminative sparse similiarity map. In TIP, 2014.
    http://ice.dlut.edu.cn/lu/publications.html
    SST Structural sparse tracking. In CVPR, 2015.
    http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/index.html
    CST In defense of sparse tracking: Circulant sparse tracker. In CVPR, 2016
    http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/index.html
    下载: 导出CSV 
    | 显示表格

    上述基于稀疏表示的跟踪算法在OTB50上的跟踪精度[7]随中心误差阈值的变化曲线如图 4所示, 其中右下角为对应算法在中心误差阈值为20像素时的跟踪精度, MDNet为文献[82]提出算法, DLSSVM为文献[83]提出算法, CFNet-conv5为文献[84]提出算法.

    图 4  算法跟踪精度随中心误差阈值的变化曲线
    Fig. 4  The tracker$'$s tracking precision versus center error threshold

    上述基于稀疏表示的跟踪算法在OTB50上的跟踪成功率随重叠率阈值的变化曲线[7]图 5所示, 其中右上角为对应算法成功率曲线下的面积.

    图 5  算法跟踪成功率随重叠率阈值的变化曲线
    Fig. 5  The tracker$'$s success rate versus overlap rate threshold

    当跟踪成功率的重叠率阈值设为0.5时[81], 上述算法在OTB50上的跟踪成功率如表 3所示.

    表 3  算法跟踪成功率(%)比较
    Table 3  The tracker$'$s success rate (%) comparison
    算法 ASLA SCM CST SST LRT LSK MTT DSSM CT L1APG L$_1$ DLSR SRPCA
    成功率 70.69 68.96 68.20 59.30 59.02 56.09 54.98 45.80 42.29 41.61 35.56 34.22 25.83
    下载: 导出CSV 
    | 显示表格

    表 4给出上述基于稀疏表示的视频目标跟踪算法在OTB50上的单帧平均处理时间, 其中实现环境中"M"表示使用Matlab编程实现, "MC"表示使用Matlab和C/C++混合编程实现, "E"表示使用可执行的二值代码实现.从表 4中可以看出, 目前Matlab环境下大多数基于稀疏表示的视频目标跟踪算法还难以实现实时跟踪.这主要是由于此类算法大多是在粒子滤波框架下进行, 粒子数量是直接影响算法速度的主要因素, 另外稀疏表示求解的算法时间复杂度较高也是影响算法速度的重要原因.

    表 4  算法单帧平均处理时间比较(ms)
    Table 4  The comparison of tracker$'$s average processing time (ms)
    算法 ASLA SCM CST SST LRT LSK MTT DSSM CT L1APG L$_1$ DLSR SRPCA
    实现环境 MC MC M M M ME M M MC MC MC MC MC
    时间 241 7846 454 450 3152 382 2279 586 12 79 397 23030 249
    下载: 导出CSV 
    | 显示表格

    表 5给出上述基于稀疏表示的跟踪算法的模型组成和其在OTB50上的重叠率的统计特征比较.

    表 5  基于稀疏表示的视频跟踪算法模型和重叠率比较
    Table 5  The comparison of the sparse representation-based tracker$'$s model and overlap rate mean and std
    算法简称 特征字典 运动模型 搜索方案 匹配模式 模型更新 重叠率均值 重叠率标准差
    ASLA 局部灰度 仿射运动 粒子滤波 生成式 增量学习 0.5860 0.3225
    SCM 局部灰度 仿射运动 粒子滤波 混合式 模板替换 0.5562 0.3436
    CST HOG 仿射运动 粒子滤波 生成式 模板替换 0.5480 0.3063
    LRT 全局灰度 仿射运动 粒子滤波 判别式 模板替换 0.4841 0.3247
    SST 局部灰度 仿射运动 粒子滤波 生成式 模板替换 0.4840 0.3187
    LSK 局部灰度 相似性变换 均值漂移 生成式 加权更新 0.4801 0.3379
    MTT 全局灰度 仿射运动 粒子滤波 生成式 模板替换 0.4623 0.3411
    CT 扩展类haar 平移运动 稠密采样 判别式 Bayes更新 0.3909 0.2850
    DSSM 全局灰度 仿射运动 粒子滤波 判别式 模板替换 0.3818 0.3520
    L1APG 全局灰度 仿射运动 粒子滤波 生成式 模板替换 0.3660 0.3565
    DLSR 局部灰度 仿射运动 粒子滤波 判别式 SVM更新 0.3116 0.3414
    L$_1$ 全局灰度 仿射运动 粒子滤波 生成式 模板替换 0.3068 0.3687
    SRPCA 全局PCA 仿射运动 粒子滤波 生成式 增量学习 0.2412 0.3321
    下载: 导出CSV 
    | 显示表格

    从上述实验结果和算法模型的分析比较可以看出, 特征字典上大多数算法直接使用灰度特征构建字典, 从算法重叠率的比较可以看出基于局部灰度特征构建的字典明显优于基于全局灰度构建的字典, 这主要是由于局部图像块对于遮挡和局部表观变化具有一定的鲁棒性, 所有图像块组合起来又能够表示目标完整的结构信息, 而全局灰度特征显然不具有上述优势.

    运动模型上仿射运动能够精确描述目标的尺度变化和旋转, 所以大多数基于稀疏表示的跟踪算法采用仿射运动模型.搜索方案上粒子滤波和稠密采样能够有效避免陷入局部最优但计算量较大, 直接表现为算法的单帧处理时间较高, 均值漂移效率较高但是容易陷入局部最优, 导致跟踪性能下降.

    从重叠率的统计特征比较可以看出ASLA算法和SCM算法取得了较好的跟踪性能, 远高于其他基于稀疏表示的跟踪算法.并且文献[7]的实验结果表明, 与其他非稀疏表示跟踪算法的横向比较中, ASLA算法和SCM算法的跟踪性能也较为优异.这主要是由于ASLA算法和SCM算法均采用了结构化的分块稀疏表示机制, 同时利用了目标的局部表观和空间结构信息.因此在稀疏表示跟踪算法中分块稀疏表示和空间结构信息对于鲁棒视频目标跟踪是至关重要的.

    伴随着稀疏表示理论的不断发展, 基于稀疏表示的视频目标跟踪研究也取得了较大进展.但是对于复杂环境下的持续鲁棒跟踪问题, 仍然存在一些亟待解决的问题.在上述研究的基础上, 作者认为以下几个方面是值得继续研究的方向.

    1) 上述稀疏表示模型中的正则项只考虑了信号的稀疏性, 没有考虑图像本身的特性[85].图像作为二维信号, 具有很强的空间相关性, 表现为局部光滑特性.因此针对图像的重构, 基于图像离散梯度稀疏性的最小全变分模型更适合二维图像重构, 且重构结果精确鲁棒.所以最小全变分模型框架下的稀疏表示跟踪算法是重要的研究方向.

    2) 由于基于稀疏表示的视频跟踪中字典和目标特征是不断变化的, 也就是构成子空间的支撑集和待重构信号是不断变化的, 因此基于稀疏表示的跟踪算法本质上是动态稀疏表示问题[86], 也就是目标特征是具有动态特性的时变稀疏信号.而上述模型中为了研究问题的方便均将其看做静态稀疏信号的重构问题, 所以动态稀疏表示下的跟踪算法也是值得研究的重要问题.

    3) 由上述研究现状可以看出稀疏表示跟踪算法仍然难以实现实时跟踪, 除了算法优化外, 研究新的域下的稀疏表示的快速求解[87-88]是提高算法速度的关键, 也是面向实际应用的重要问题.

    4) 目前稀疏表示跟踪算法的字典构建主要是人工设计完成, 基于学习的字典构建方法还比较少.深度学习在视频目标跟踪中展现出的强大优势[82, 84], 尤其是在对目标特征提取和表示方面, 因此基于深度学习的字典构建方案也是提高稀疏表示跟踪算法鲁棒性的重要方向.


  • 本文责任编委 刘德荣
  • 图  1  数字孪生概念模型

    Fig.  1  The conceptual model of digital twin

    图  2  增强现实实现数字孪生可视化框架[94]

    Fig.  2  The framework of visualising the digital twin data by using AR[94]

    图  3  数字孪生城市

    Fig.  3  Smart city with digital twins

    图  4  平行系统的研究框架

    Fig.  4  The research framework of parallel systems

    图  5  基于ACP的平行系统架构体系

    Fig.  5  The framework of the ACP-based parallel systems

    图  6  平行感知框架

    Fig.  6  The framework of parallel perception

    图  7  平行系统架构

    Fig.  7  The architecture of parallel systems

    表  1  数字孪生模型对比

    Table  1  Comparisons of digital twin models

    模型名称 提出者 分类 用途 模型实现方法
    镜像空间模型 Grieves[2] 通用模型 描述数字孪生系统组成 概念
    产品生命周期管理集成模型 Behrang等[32] 专用模型 制造系统快速重配置 概念
    3D打印数字孪生模型 Mukherjee等[18] 专用模型 3D打印产品检验 CAD
    微制造单元数字孪生模型 Lohtander等[34] 专用模型 描述微制造单元行为 FlexSim
    基于云的数字孪生参考模型 Kritzinger等[35] 通用模型 描述基于云计算的数字孪生架构 Qfsm
    装配流程数字孪生模型 Caputo等[37] 专用模型 装配流程数字孪生设计 MATLAB
    数字孪生应用模型 Zheng等[27] 通用模型 数字孪生设计方法 概念
    信息物理制造模型 Cai等[36] 专用模型 制造系统数字孪生构建 SolidWorks
    可重构数字孪生模型 Zhang等[38] 专用模型 装配流程数字孪生设计
    流水车间数字孪生模型 Liu等[39] 专用模型 流水生产系统设计 概念
    数控机床数字孪生模型 Luo等[40] 专用模型 数控机床数字孪生建模 DTMT, MWorks
    加工刀具状态预测数字孪生模型 Qiao等[41] 专用模型 构建道具状态监测数字孪生 深度学习
    数字孪生五维模型 陶飞等[28] 通用模型 通用数字孪生模型架构 概念
    数字孪生技术模型 刘大同等[29] 通用模型 描述数字孪生模型技术体系 概念
    下载: 导出CSV
  • [1] Lee E A. Cyber physical systems: design challenges. In: Proceedings of the 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). Orlando, USA: IEEE, 2008. 363-369
    [2] Grieves M W. Product lifecycle management:the new paradigm for enterprises. International Journal of Product Development, 2005, 2(1-2):71-84
    [3] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. Air Force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012. 1818-1832
    [4] Kim Y H, Kim C M, Han Y H, Jeong Y S, Park D S. An efficient strategy of nonuniform sensor deployment in cyber physical systems. The Journal of Supercomputing, 2013, 66(1):70-80 doi: 10.1007/s11227-013-0977-9
    [5] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. air force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012. 1-14
    [6] Tuegel E J, Ingraffea A R, Eason T G, Spottswood S M. Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011, 2011: Article No. 154798
    [7] Korth B, Schwede C, Zajac M. Simulation-ready digital twin for realtime management of logistics systems. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4194-4201
    [8] Schluse M, Rossmann J. From simulation to experimentable digital twins: simulation-based development and operation of complex technical systems. In: Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE). Edinburgh, England: IEEE, 2016. 1-6
    [9] Kharlamov E, Martin-Recuerda F, Perry B, Cameron D, Fjellheim R, Waaler A. Towards semantically enhanced digital twins. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4189-4193
    [10] Merkle L, Segura A S, Grummel J T, Lienkamp M. Architecture of a digital twin for enabling digital services for battery systems. In: Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). Taipei, China: IEEE, 2019. 155-160
    [11] Soni R, Bhatia M, Singh T. Digital twin:intersection of mind and machine. International Journal of Computational Intelligence and IoT, 2019, 2(3):667-670
    [12] Haag S, Anderl R. Digital twin-proof of concept. Manufacturing Letters, 2018, 15:64-66 doi: 10.1016/j.mfglet.2018.02.006
    [13] Schroeder G N, Steinmetz C, Pereira C E, Espindola D B. Digital twin data modeling with AutomationML and a communication methodology for data exchange. IFAC-PapersOnLine, 2016, 49(30):12-17 doi: 10.1016/j.ifacol.2016.11.115
    [14] Schleich B, Anwer N, Mathieu L, Wartzack S. Shaping the digital twin for design and production engineering. CIRP Annals, 2017, 66(1):141-144 doi: 10.1016/j.cirp.2017.04.040
    [15] DebRoy T, Zhang W, Turner J, Babu S S. Building digital twins of 3D printing machines. Scripta Materialia, 2017, 35:119-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f751c0bd504329df0ae5fc7d2a5d11b9
    [16] Gao Y P, Lv H Y, Hou Y Z, Liu J H, Xu W T. Real-time modeling and simulation method of digital twin production line. In: Proceedings of the 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2019. 1639-1642
    [17] Martinez G S, Sierla S, Karhela T, Vyatkin V. Automatic generation of a simulation-based digital twin of an industrial process plant. In: Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society. Washington, USA: IEEE, 2018. 3084-3089
    [18] Mukherjee T, DebRoy T. A digital twin for rapid qualification of 3D printed metallic components. Applied Materials Today, 2019, 4:59-65
    [19] David J, Lobov A, Lanz M. Attaining learning objectives by ontological reasoning using digital twins. Procedia Manufacturing, 2019, 31:349-355 doi: 10.1016/j.promfg.2019.03.055
    [20] Kousi N, Gkournelos C, Aivaliotis S, Giannoulis C, Michalos G, Makris S. Digital twin for adaptation of robots' behavior in flexible robotic assembly lines. Procedia Manufacturing, 2019, 28:121-126 doi: 10.1016/j.promfg.2018.12.020
    [21] Borth M, Verriet J, Muller G. Digital twin strategies for SoS 4 challenges and 4 architecture setups for digital twins of SoS. In: Proceedings of the 14th Annual Conference System of Systems Engineering (SoSE). Anchorage, USA: IEEE, 2019. 164-169
    [22] Vachálek J, Bartalsky L, Rovny O, Sismisova D, Morhac M, Loksik M. The digital twin of an industrial production line within the industry 4.0 concept. In: Proceedings of the 21st International Conference on Process Control (PC). Strbske Pleso, Slovakia: IEEE, 2017. 258-262
    [23] Mohammadi N, Taylor J E. Smart city digital twins. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, USA: IEEE, 2017. 1-5
    [24] 刘青, 刘滨, 王冠, 张宸, 梁知行, 张鹏.数字孪生的模型、问题与进展研究.河北科技大学学报, 2019, 40(1):68-78 http://d.old.wanfangdata.com.cn/Periodical/hbkjdx201901010

    Liu Qing, Liu Bin, Wang Guan, Zhang Chen, Liang Zhi-Xing, Zhang Peng. Research on digital twin:model, problem and progress. Journal of Hebei University of Science and Technology, 2019, 40(1):68-78 http://d.old.wanfangdata.com.cn/Periodical/hbkjdx201901010
    [25] Uhlemann T H J, Lehmann C, Steinhilper R. The digital twin:realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 2017, 61:335-340 doi: 10.1016/j.procir.2016.11.152
    [26] Talkhestani B A, Jazdi N, Schloegl W, Weyrich M. Consistency check to synchronize the digital twin of manufacturing automation based on anchor points. Procedia CIRP, 2018, 72:159-164 doi: 10.1016/j.procir.2018.03.166
    [27] Zheng Y, Yang S, Cheng H C. An application framework of digital twin and its case study. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1141-1153 doi: 10.1007/s12652-018-0911-3
    [28] Tao F, Zhang H, Liu A, Nee A Y C. Digital twin in industry:state-of-the-art. IEEE Transactions on Industrial Informatics, 2019, 15(4):2405-2415 doi: 10.1109/TII.2018.2873186
    [29] 刘大同, 郭凯, 王本宽, 彭宇.数字孪生技术综述与展望.仪器仪表学报, 2018, 39(11):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201811001

    Liu Da-Tong, Guo Kai, Wang Ben-Kuan, Peng Yu. Summary and perspective survey on digital twin technology. Chinese Journal of Scientific Instrument, 2018, 39(11):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201811001
    [30] Goncalves E M N, Freitas A, Botelho S. An AutomationML based ontology for sensor fusion in industrial plants. Sensors, 2019, 19(6):1-18 doi: 10.1109/JSEN.2018.2885911
    [31] Madni A M, Madni C C, Lucero S D. Leveraging digital twin technology in model-based systems engineering. Systems, 2019, 7(1): Article No.7
    [32] Li Y, Ma Z. A formal approach for graphically building fuzzy XML model. International Journal of Intelligent Systems, , 2019, 34(11):3058-3076 doi: 10.1002/int.22188
    [33] Miller A M, Alvarez R, Hartman N. Towards an extended model-based definition for the digital twin. Computer-Aided Design and Applications, 2018, 15(6):880-891 doi: 10.1080/16864360.2018.1462569
    [34] Lohtander M, Ahonen N, Lanz M, Ratava J, Kaakkunen J. Micro manufacturing unit and the corresponding 3D-model for the digital twin. Procedia Manufacturing, 2018, 25:55-61 doi: 10.1016/j.promfg.2018.06.057
    [35] Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital twin in manufacturing:a categorical literature review and classification. IFAC-PapersOnLine, 2018, 51(11):1016-1022 doi: 10.1016/j.ifacol.2018.08.474
    [36] Cai Y, Starly B, Cohen P, Lee Y-S. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing, 2017, 10:1031-1042 doi: 10.1016/j.promfg.2017.07.094
    [37] Caputo F, Greco A, Fera M, Macchiaroli R. Digital twins to enhance the integration of ergonomics in the workplace design. International Journal of Industrial Ergonomics, 2019, 71:20-31 doi: 10.1016/j.ergon.2019.02.001
    [38] Zhang C Y, Xu W J, Liu J Y, Liu Z H, Zhou Z D, Pham D T. A reconfigurable modeling approach for digital twin-based manufacturing system. Procedia CIRP, 2019, 83:118-125 doi: 10.1016/j.procir.2019.03.141
    [39] Liu Q, Zhang H, Leng J W, Chen X. Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. International Journal of Production Research, 2019, 57(12):3903-3919 doi: 10.1080/00207543.2018.1471243
    [40] Luo W C, Hu T L, Zhang C R, Wei Y L. Digital twin for CNC machine tool:modeling and using strategy. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1129-1140 doi: 10.1007/s12652-018-0946-5
    [41] Qiao Q Z, Wang J J, Ye L K, Gao R X. Digital twin for machining tool condition prediction. Procedia CIRP, 2019, 81:1388-1393 doi: 10.1016/j.procir.2019.04.049
    [42] 温景容, 武穆清, 宿景芳.信息物理融合系统.自动化学报, 2012, 38(4):507-517 http://www.aas.net.cn/CN/abstract/abstract17704.shtml

    Wen Jing-Rong, Wu Mu-Qing, Su Jing-Fang. Cyber-physical system. Acta Automatica Sinica, 2012, 38(4):507-517 http://www.aas.net.cn/CN/abstract/abstract17704.shtml
    [43] Xiang F, Zhi Z, Jiang G Z. Digital twins technolgy and its data fusion in iron and steel product life cycle. In: Proceedings of the 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China: IEEE, 2018. 1-5
    [44] 李洪阳, 魏慕恒, 黄洁, 邱伯华, 赵晔, 骆文城, 等.信息物理系统技术综述.自动化学报, 2019, 45(1):37-50 http://www.aas.net.cn/CN/abstract/abstract19415.shtml

    Li Hong-Yang, Wei Mu-Heng, Huang Jie, Qiu Bo-Hua, Zhao Ye, Luo Wen-Cheng, et al. Survey on cyber-physical systems. Acta Automatica Sinica, 2019, 45(1):37-50 http://www.aas.net.cn/CN/abstract/abstract19415.shtml
    [45] Guo A, Yu D, Hu Y, Wang S, An T, Zhang T F. Design and implementation of data collection system based on CPS model. In: Proceedings of the 2015 International Conference on Computer Science and Mechanical Automation (CSMA). Hangzhou, China: IEEE, 2015. 139-143
    [46] Kuo S Y, Chou Y H, Chen C Y. Quantum-inspired algorithm for cyber-physical visual surveillance deployment systems. Computer Networks, 2017, 117:5-18 doi: 10.1016/j.comnet.2016.11.013
    [47] 黎作鹏, 张天驰, 张菁.信息物理融合系统(CPS)研究综述.计算机科学, 2011, 38(9):25-31 doi: 10.3969/j.issn.1002-137X.2011.09.005

    Li Zuo-Peng, Zhang Tian-Chi, Zhang Jing. Survey on the research of cyber-physical systems (CPS). Computer Science, 2011, 38(9):25-31 doi: 10.3969/j.issn.1002-137X.2011.09.005
    [48] Siddiqa A, Hashem I A T, Yaqoob I, Marjani M, Shamshirband S, Gani A, et al. A survey of big data management:taxonomy and state-of-the-art. Journal of Network and Computer Applications, 2016, 71:151-166 doi: 10.1016/j.jnca.2016.04.008
    [49] Elattar M, Cao T, Wendt V, Jaspemeite J, Trachtler A. Reliable multipath communication approach for internet-based cyber-physical systems. In: Proceedings of the 26th International Symposium on Industrial Electronics (ISIE). Edinburgh, England: IEEE, 2017. 1226-1233
    [50] Xia F, Wang L Q, Zhang D Q, He D J, Kong X J. An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 2015, 58(2):125-138 doi: 10.1007/s11235-014-9895-2
    [51] Xia F, Ma L H, Dong J X, Sun Y X. Network QoS management in cyber-physical systems. In: Proceedings of the 2008 International Conference on Embedded Software and Systems Symposia. Chengdu, China: IEEE, 2008. 302-307
    [52] Lien S Y, Cheng S M, Shih S Y, Chen K C. Radio resource management for QoS guarantees in cyber-physical systems. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(9):1752-1761 doi: 10.1109/TPDS.2012.151
    [53] 刘彬, 张云勇.基于数字孪生模型的工业互联网应用.电信科学, 2019, 35(5): Article No. 2019088

    Liu Bin, Zhang Yun-Yong. Application of digital twin model based industrial internet. Telecommunications Science, 2019, 35(5): Article No. 2019088
    [54] Zhuang Y, Yu L, Shen H Y, Kolodzey W, Iri N, Caulfield G, et al. Data collection with accuracy-aware congestion control in sensor networks. IEEE Transactions on Mobile Computing, 2019, 18(5):1068-1082 doi: 10.1109/TMC.2018.2853159
    [55] Zambal S, Eitzinger C, Clarke M, Klintworth J, Mechin P-Y. A digital twin for composite parts manufacturing: effects of defects analysis based on manufacturing data. In: Proceedings of the 16th International Conference on Industrial Informatics (INDIN). Porto, Portugal: IEEE, 2018. 803-808
    [56] Riemer D. Feeding the digital twin: basics, models and lessons learned from building an IoT analytics toolbox (invited talk). In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. Article No. 4212
    [57] Shahriar M R, Sunny S M N A, Liu X Q, Leu M C, Hu L W, Nguyen N T. MTComm based virtualization and integration of physical machine operations with digital-twins in cyber-physical manufacturing cloud. In: Proceedings of the 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/the 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). Shanghai, China: IEEE, 2018. 46-51
    [58] Yumnam A S, Sreeram Y C, Naeem S A. Overview: weblog mining, privacy issues and application of Web Log mining. In: Proceedings of the 2014 International Conference on Computing for Sustainable Global Development (INDIACom). New Delhi, India: IEEE, 2014. 638-641
    [59] El Saddik A. Digital twins:the convergence of multimedia technologies. IEEE MultiMedia, 2018, 25(2):87-92 doi: 10.1109/MMUL.2018.023121167
    [60] Smith D, Singh S. Approaches to multisensor data fusion in target tracking:a survey. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(12):1696-1710 doi: 10.1109/TKDE.2006.183
    [61] He Y, Guo J C, Zheng X L. From surveillance to digital twin:challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Processing Magazine, 2018, 35(5):120-129 doi: 10.1109/MSP.2018.2842228
    [62] Yi B, Li X B, Yang Y. Heterogeneous model integration of complex mechanical parts based on semantic feature fusion. Engineering with Computers, 2017, 33(4):797-805 doi: 10.1007/s00366-016-0498-2
    [63] Atat R, Liu L J, Wu J S, Li G Y, Ye C X, Yang Y. Big data meet cyber-physical systems:a panoramic survey. IEEE Access, 2018, 6:73603-73636 doi: 10.1109/ACCESS.2018.2878681
    [64] Zordan V B, van der Horst N C. Mapping optical motion capture data to skeletal motion using a physical model. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. San Diego, USA: Eurographics Association, 2003. 245-250
    [65] He R, Chen G M, Dong C, Sun S F, Shen X Y. Data-driven digital twin technology for optimized control in process systems. ISA Transactions, 2019, DOI: 10.1016/j.isatra.2019.05.011
    [66] Hyeong-Su K, Jin-Woo K, Yun S, Kim W T. A novel wildfire digital-twin framework using interactive wildfire spread simulator. In: Proceedings of the 11th International Conference on Ubiquitous and Future Networks (ICUFN). Zagreb, Croatia: IEEE, 2019. 636-638
    [67] Zehnder P, Riemer D. Representing industrial data streams in digital twins using semantic labeling. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4223-4226
    [68] Hu L W, Nguyen N-T, Tao W J, Leu M C, Liu X F, Shahriar M R, et al. Modeling of cloud-based digital twins for smart manufacturing with MT connect. Procedia Manufacturing, 2018, 26:1193-1203 doi: 10.1016/j.promfg.2018.07.155
    [69] Minos-Stensrud M, Haakstad O H, Sakseid O, Westby B, Alcocer A. Towards automated 3D reconstruction in SME factories and digital twin model generation. In: Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS). Daegwallyeong, South Korea: IEEE, 2018. 1777-1781
    [70] Gandzha S, Aminov D, Kiessh I, Kosimov B. Application of digital twins technology for analysis of brushless electric machines with axial magnetic flux. In: Proceedings of the 2018 Global Smart Industry Conference (GloSIC). Chelyabinsk, Russia: IEEE, 2018. 1-6
    [71] Stojanovic N, Milenovic D. Data-driven digital twin approach for process optimization: an industry use case. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data). Seattle, USA: IEEE, 2018. 4202-4211
    [72] Sun H Q, Li C, Fang X Y, Gu H. Optimized throughput improvement of assembly flow line with digital twin online analytics. In: Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Macau, China: IEEE, 2017. 1833-1837
    [73] Seshadri B S, Krishnamurthy T. Structural health management of damaged aircraft structures using digital twin concept. In: Proceedings of the 25th AIAA/AHS Adaptive Structures Conference. Grapevine, USA: AIAA, 2017. 1-13
    [74] Zhang H, Wang R G, Wang C. Monitoring and warning for digital twin-driven mountain geological disaster. In: Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA). Tianjin, China: IEEE, 2019. 502-507
    [75] Chen X Y, Guo T Y. Research on the predicting model of convenience store model based on digital twins. In: Proceedings of the 2018 International Conference on Smart Grid and Electrical Automation (ICSGEA). Changsha, China: IEEE, 2018. 224-226
    [76] Martinez-Velazquez R, Gamez R, El Saddik A. Cardio twin: a digital twin of the human heart running on the edge. In: Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Istanbul, Turkey: IEEE, 2019. 1-6
    [77] Cronrath C, Aderiani A R, Lennartson B. Enhancing digital twins through reinforcement learning. In: Proceedings of the 15th International Conference on Automation Science and Engineering (CASE). Vancouver, Canada: IEEE, 2019. 293-298
    [78] Xu Y, Sun Y M, Liu X L, Zheng Y H. A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access, 2019, 7:19990-19999 doi: 10.1109/ACCESS.2018.2890566
    [79] Banyai A, Illes B, Glistau E, Mahcado N I C, Tamas P, Manzoor F, et al. Smart cyber-physical manufacturing:extended and real-time optimization of logistics resources in matrix production. Applied Sciences, 2019, 9(7):1-33
    [80] Biesinger F, Meike D, Krass B, Weyrich M. A case study for a digital twin of body-in-white production systems general concept for automated updating of planning projects in the digital factory. In: Proceedings of the 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Turin, Italy: IEEE, 2018. 19-26
    [81] Liu J F, Zhou H G, Liu X J, Tian G Z, Wu M F, Cao L P, et al. Dynamic evaluation method of machining process planning based on digital twin. IEEE Access, 2019, 7:19312-19323 doi: 10.1109/ACCESS.2019.2893309
    [82] Zhao R L, Yan D X, Liu Q, Leng J W, Wan J F, Chen X, et al. Digital twin-driven cyber-physical system for autonomously controlling of micro punching system. IEEE Access, 2019, 7:9459-9469 doi: 10.1109/ACCESS.2019.2891060
    [83] Xu Y, Sun Y M, Wan J F, Liu X L, Song Z T. Industrial big data for fault diagnosis:taxonomy, review, and applications. IEEE Access, 2017, 5:17368-17380 doi: 10.1109/ACCESS.2017.2731945
    [84] Wan J F, Tang S L, Li D, Wang S Y, Liu C L, Abbas H, et al. A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 2017, 13(4):2039-2047 doi: 10.1109/TII.2017.2670505
    [85] Rosen R, von Wichert G, Lo G, Bettenhausen K D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 2015, 48(3):567-572 doi: 10.1016/j.ifacol.2015.06.141
    [86] Kuenzel M, Kraus T, Straub S. Collaborative engineering-main features and challenges of cross-company collaboration in engineering of products and services. In: Proceedings of the 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). Valbonne Sophia-Antipolis, France: IEEE, 2019. 1-7
    [87] 陶飞, 刘蔚然, 张萌, 胡天亮, 戚庆林, 张贺, 等.数字孪生五维模型及十大领域应用.计算机集成制造系统, 2019, 25(1):1-18 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201901001

    Tao Fei, Liu Wei-Ran, Zhang Meng, Hu Tian-Liang, Qi QingLin, Zhang He, et al. Five-dimension digital twin model and its ten applications. Computer Integrated Manufacturing Systems, 2019, 25(1):1-18 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201901001
    [88] 陶飞, 程颖, 程江峰, 张萌, 徐文君, 戚庆林.数字孪生车间信息物理融合理论与技术.计算机集成制造系统, 2017, 23(8):1603-1611 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201708001

    Tao Fei, Cheng Ying, Cheng Jiang-Feng, Zhang Meng, Xu WenJun, Qi Qing-Lin. Theories and technologies for cyber-physical fusion in digital twin shop-floor. Computer Integrated Manufacturing Systems, 2017, 23(8):1603-1611 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201708001
    [89] Schluse M, Priggemeyer M, Atorf L, Rossmann J. Experimentable digital twins-treamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics, 2018, 14(4):1722-1731 doi: 10.1109/TII.2018.2804917
    [90] Song E Y, Burns M, Pandey M, Roth T. IEEE 1451 smart sensor digital twin federation for IoT/CPS research. In: Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS). Sophia Antipolis, France: IEEE, 2019. 1-6
    [91] Sleuters J, Li Y H, Verriet J, Velikova M, Doornbos R. A digital twin method for automated behavior analysis of large-scale distributed IoT systems. In: Proceedings of the 14th Annual Conference System of Systems Engineering (SoSE). Anchorage, USA: IEEE, 2019. 7-12
    [92] Bazilevs Y, Deng X, Korobenko A, di Scalea F L, Todd M D, Taylor S G. Isogeometric fatigue damage prediction in largescale composite structures driven by dynamic sensor data. Journal of Applied Mechanics, 2015, 82(9): Article No. 091008
    [93] Ke S Q, Xiang F, Zhang Z, Zuo Y. A enhanced interaction framework based on VR, AR and MR in digital twin. Procedia CIRP, 2019, 83:753-758 doi: 10.1016/j.procir.2019.04.103
    [94] Zhu Z X, Liu C, Xu X. Visualisation of the digital twin data in manufacturing by using augmented reality. Procedia CIRP, 2019, 81:898-903 doi: 10.1016/j.procir.2019.03.223
    [95] Revetria R, Tonelli F, Damiani L, Demartini M, Bisio F, Peruzzo N. A real-time mechanical structures monitoring system based on digital twin, Iot and augmented reality. In: Proceedings of the 2019 Spring Simulation Conference (SpringSim). Tucson, USA: IEEE, 2019. 1-10
    [96] Blaga A, Tamas L. Augmented reality for digital manufacturing. In: Proceedings of the 26th Mediterranean Conference on Control and Automation (MED). Zadar, Croatia: IEEE, 2018. 173-178
    [97] Karadeniz A M, Arif I, Kanak A, Ergun S. Digital twin of eGastronomic things: a case study for ice cream machines. In: Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo, Japan: IEEE, 2019. 173-178
    [98] Pargmann H, Euhausen D, Faber R. Intelligent big data processing for wind farm monitoring and analysis based on cloudtechnologies and digital twins: a quantitative approach. In: Proceedings of the 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). Chengdu, China: IEEE, 2018. 233-237
    [99] Rabah S, Assila A, Khouri E, Maier F, Ababsa F, Bourny V, Maier P, et al. Towards improving the future of manufacturing through digital twin and augmented reality technologies. Procedia Manufacturing, 2018, 17:460-467 doi: 10.1016/j.promfg.2018.10.070
    [100] Schroeder G, Steinmetz C, Pereira C E, Muller I, Garcia N, Espindola D, Rodrigues R. Visualising the digital twin using web services and augmented reality. In: Proceedings of the 14th International Conference on Industrial Informatics (INDIN). Poitiers, France: IEEE, 2016. 522-527
    [101] 李欣, 刘秀, 万欣欣.数字孪生应用及安全发展综述.系统仿真学报, 2019, 31(3):385-392 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903003

    Li Xin, Liu Xiu, Wan Xin-Xin. Overview of digital twins application and safe development. Journal of System Simulation, 2019, 31(3):385-392 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903003
    [102] Doostmohammadian M, Khanc U A. Vulnerability of CPS inference to DoS attacks. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2014. 2015-2018
    [103] Humayed A, Lin J Q, Li F J, Luo B. Cyber-physical systems security-a survey. IEEE Internet of Things Journal, 2017, 4(6):1802-1831 doi: 10.1109/JIOT.2017.2703172
    [104] Feng M, Xu H. Deep reinforecement learning based optimal defense for cyber-physical system in presence of unknown cyberattack. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, USA: IEEE, 2017. 1-8
    [105] Xiao K M, Zhu C, Xie J J, Zhou Y, Zhu X Q, Zhang W M. Dynamic defense strategy against stealth malware propagation in cyber-physical systems. In: Proceedings of the 2018 IEEE Conference on Computer Communications. Honolulu, USA: IEEE, 2018. 1790-1798
    [106] Wang F Y, Yuan Y, Zhang J, Qin R, Smith M H. Blockchainized internet of minds:a new opportunity for cyber-physical-social systems. IEEE Transactions on Computational Social Systems, 2018, 5(4):897-906 doi: 10.1109/TCSS.2018.2881344
    [107] Qin R, Yuan Y, Wang S, Wang F Y. Economic issues in bitcoin mining and blockchain research. In: Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). Changshu, China: IEEE, 2018. 268-273
    [108] Mandolla C, Petruzzelli A M, Percoco G, Urbinati A. Building a digital twin for additive manufacturing through the exploitation of blockchain:a case analysis of the aircraft industry. Computers in Industry, 2019, 109:134-152 doi: 10.1016/j.compind.2019.04.011
    [109] Damjanovic-Behrendt V. A digital twin-based privacy enhancement mechanism for the automotive industry. In: Proceedings of the 2018 International Conference on Intelligent Systems (IS). Funchal-Madeira, Portugal: IEEE, 2018. 272-279
    [110] 陶飞, 戚庆林.面向服务的智能制造.机械工程学报, 2018, 54(16):11-23 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201816002

    Tao Fei, Qi Qing-Lin. Service-oriented smart manufacturing. Journal of Mechanical Engineering, 2018, 54(16):11-23 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201816002
    [111] Wang J, Ye L, Gao R, Li C, Zhang L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. International Journal of Production Research, 2019, 57(12):3920-3934 doi: 10.1080/00207543.2018.1552032
    [112] Kannan K, Arunachalam N. A digital twin for grinding wheel: an information sharing platform for sustainable grinding process. Journal of Manufacturing Science and Engineering, 2019, 141(2): Article No. 021015
    [113] Li C, Mahadevan S, Ling Y, Choze S, Wang L. Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA Journal, 2017, 55(3):930-941 doi: 10.2514/1.J055201
    [114] Min Q, Lu Y, Liu Z, Su C, Wang B. Machine learning based digital twin framework for production optimization in petrochemical industry. International Journal of Information Management, 2019(49):502-519
    [115] Wang X V, Wang L H. Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. International Journal of Production Research, 2019, 57(12):3892-3902 doi: 10.1080/00207543.2018.1497819
    [116] Dong R, She C, Hardjawana W, Li Y, Vucetic B. Deep learning for hybrid 5G services in mobile edge computing systems:learn from a digital twin. IEEE Transactions on Wireless Communications, 2019, 18(10):4692-4707 doi: 10.1109/TWC.2019.2927312
    [117] Kunath M, Winkler H. Integrating the digital twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP, 2018, 72:225-231 doi: 10.1016/j.procir.2018.03.192
    [118] Biesinger F, Meike D, Krass B, Weyrich M. A digital twin for production planning based on cyber-physical systems:a case study for a cyber-physical system-based creation of a digital twin. Procedia CIRP, 2019, 79:355-360 doi: 10.1016/j.procir.2019.02.087
    [119] Zhang H W, Ma L, Sun J, Lin H S, Thurer M. Digital twin in services and industrial product service systems::review and analysis. Procedia CIRP, 2019, 83:57-60 doi: 10.1016/j.procir.2019.02.131
    [120] Shubenkova K, Valiev A, Shepelev V, Tsiulin S, Reinau K H. Possibility of digital twins technology for improving efficiency of the branded service system. In: Proceedings of the 2018 Global Smart Industry Conference (GloSIC). Chelyabinsk, Russia: IEEE, 2018. 1-7
    [121] 杨洋.数字孪生技术在供应链管理中的应用与挑战.中国流通经济, 2019, 33(6):58-65 http://d.old.wanfangdata.com.cn/Periodical/zgltjj201906006

    Yang Yang. Application and development of digital twin in supply chain management. China Business and Market, 2019, 33(6):58-65 http://d.old.wanfangdata.com.cn/Periodical/zgltjj201906006
    [122] Defraeye T, Tagliavini G, Wu W T, Prawiranto K, Schudel S, Kerisima M A, et al. Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resources, Conservation and Recycling, 2019, 149:778-794 doi: 10.1016/j.resconrec.2019.06.002
    [123] Dalstam A, Engberg M, Nafors D, Johansson B, Sundblom A. A stepwise implementation of the virtual factory in manufacturing industry. In: Proceedings of the 2018 Winter Simulation Conference (WSC). Gothenburg, Sweden: IEEE, 2018, 3229-3240
    [124] 刘志峰, 陈伟, 杨聪彬, 程强, 赵永胜.基于数字孪生的零件智能制造车间调度云平台.计算机集成制造系统, 2019, 25(6):1444-1453 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906013

    Liu Zhi-Feng, Chen Wei, Yang Cong-Bin, Cheng Qiang, Zhao Yong-Sheng. Intelligent manufacturing workshop dispatching cloud platform based on digital twins. Computer Integrated Manufacturing Systems, 2019, 25(6):1444-1453 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906013
    [125] Zhang C Y, Ji W X. Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing jobshop. Procedia CIRP, 2019, 83:624-629 doi: 10.1016/j.procir.2019.04.095
    [126] Nikolakis N, Alexopoulos K, Xanthakis E, Chryssolouris G. The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing, 2019, 32(1):1-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/0951192X.2018.1529430
    [127] Ding K, Chan F T S, Zhang X D, Zhou G H, Zhang F Q. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research, 2019, 57(20):6315-6334 doi: 10.1080/00207543.2019.1566661
    [128] Coronado P D U, Lynn R, Louhichi W, Parto M, Wescoat E, Kurfess T. Part data integration in the shop floor digital twin:mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems, 2018, 48:25-33 doi: 10.1016/j.jmsy.2018.02.002
    [129] Tao F, Cheng Y, Zhang L, Nee A Y C. Advanced manufacturing systems:socialization characteristics and trends. Journal of Intelligent Manufacturing, 2017, 28(5):1079-1094 doi: 10.1007/s10845-015-1042-8
    [130] Tao F, Zhang M. Digital twin shop-floor:a new shop-floor paradigm towards smart manufacturing. IEEE Access, 2017, 5:20418-20427 doi: 10.1109/ACCESS.2017.2756069
    [131] 赵虎, 赵宁, 张赛朋.结合价值流程图与数字孪生技术的工厂设计.计算机集成制造系统, 2019, 25(6):1481-1490 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906017

    Zhao Hu, Zhao Ning, Zhang Sai-Peng. Factory design approach based on value stream mapping and digital twin. Computer Integrated Manufacturing Systems, 2019, 25(6):1481-1490 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906017
    [132] Fang Y L, Peng C, Lou P, Zhou Z D, Hu J M, Yan J W. Digital-twin based job shop scheduling towards smart manufacturing. IEEE Transactions on Industrial Informatics, DOI: 10.1109/TII.2019.2938572
    [133] Zhuang C B, Liu J H, Xiong H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):1149-1163 doi: 10.1007/s00170-018-1617-6
    [134] Zhang C, Zhou G H, He J, Li Z, Cheng W. A data- and knowledge-driven framework for digital twin manufacturing cell. Procedia CIRP, 2019, 83:345-350 doi: 10.1016/j.procir.2019.04.084
    [135] Cavalcante I M, Frazzon E M, Forcellini F A, Ivanov D. A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 2019, 49:86-97 doi: 10.1016/j.ijinfomgt.2019.03.004
    [136] Soderberg R, Wormefjord K, Carlson J S, Lindkvist L. Toward a digital twin for real-time geometry assurance in individualized production. CIRP Annals, 2017, 66(1):137-140 doi: 10.1016/j.cirp.2017.04.038
    [137] 张伟.数字孪生在智能装备制造中的应用研究.现代信息科技, 2019, 3(8):197-198 doi: 10.3969/j.issn.2096-4706.2019.08.078

    Zhang Wei. Application research of digital twin in intelligent equipment manufacturing. Modern Information Technology, 2019, 3(8):197-198 doi: 10.3969/j.issn.2096-4706.2019.08.078
    [138] Qi Q L, Tao F. Digital twin and big data towards smart manufacturing and industry 4.0:360 degree comparison. IEEE Access, 2018, 6:3585-3593
    [139] Leng J W, Zhang H, Yan D X, Liu Q, Chen X, Zhang D. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1155-1166 doi: 10.1007/s12652-018-0881-5
    [140] Guo J P, Zhao N, Sun L, Zhang S P. Modular based flexible digital twin for factory design. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1189-1200 doi: 10.1007/s12652-018-0953-6
    [141] Aivaliotis P, Georgoulias K, Arkouli Z, Makris S. Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP, 2019, 81:417-422 doi: 10.1016/j.procir.2019.03.072
    [142] Brandtstaedter H, Ludwig C, Hubner L, Tsouchnika E, Jungiewicz A, Wever U. Digital twins for large electric drive trains. In: Proceedings of the 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe). Antwerp, Belgium: IEEE, 2018. 1-5
    [143] 赵亮, 高龙, 陶剑.数字孪生技术在航空产品寿命预测中的应用.国防科技工业, 2019(5):42-44 http://www.cnki.com.cn/Article/CJFDTotal-ZGBG201905021.htm

    Zhao Liang, Gao Long, Tao Jian. Application of digital twinning technology in life prediction of aviation products. Defense Science and Technology Industry, 2019(5):42-44 http://www.cnki.com.cn/Article/CJFDTotal-ZGBG201905021.htm
    [144] 陆清, 吴双, 赵喆, 周凡利.数字孪生技术在飞机设计验证中的应用.民用飞机设计与研究, 2019(3):1-8 http://www.cnki.com.cn/Article/CJFDTotal-MYFJ201903006.htm

    Lu Qing, Wu Shuang, Zhao Zhe, Zhou Fan-Li. Application of digital twinning technology in aircraft design verification. Civil Aircraft Design and Research, 2019(3):1-8 http://www.cnki.com.cn/Article/CJFDTotal-MYFJ201903006.htm
    [145] Peng Y, Zhang X L, Song Y C, Liu D T. A low cost flexible digital twin platform for spacecraft lithium-ion battery pack degradation assessment. In: Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Auckland, New Zealand: IEEE, 2019. 1-6
    [146] Asha K, Kariyappa B S, Vishal K. Digital twin ranorex test automation of SIPROTEC 5 protection devices. In: Proceedings of the 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). Coimbatore, India: IEEE, 2019. 955-958
    [147] 戴晟, 赵罡, 于勇, 王伟.数字化产品定义发展趋势:从样机到孪生.计算机辅助设计与图形学学报, 2018, 30(8):1554-1562 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201808018

    Dai Sheng, Zhao Gang, Yu Yong, Wang Wei. Trend of digital product definition:from mock-up to twin. Journal of ComputerAided Design and Computer Graphics, 2018, 30(8):1554-1562 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201808018
    [148] 刘潇翔, 汤亮, 曾海波, 刘羽白, 张新邦.航天控制系统基于数字孪生的智慧设计仿真.系统仿真学报, 2019, 31(3):377-384 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903002

    Liu Xiao-Xiang, Tang Liang, Zeng Hai-Bo, Liu Yu-Bai, Zhang Xin-Bang. Smart design and simulation of aerospace control system based on digital twin. Journal of System Simulation, 2019, 31(3):377-384 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903002
    [149] Xiang F, Zhang Z, Zuo Y, Tao F. Digital twin driven green material optimal-selection towards sustainable manufacturing. Procedia CIRP, 2019, 81:1290-1294 doi: 10.1016/j.procir.2019.04.015
    [150] Malozemov A A, Bondar V N, Egorov V V, Malozemov G A. Digital twins technology for internal combustion engines development. In: Proceedings of the 2018 Global Smart Industry Conference (GloSIC). Chelyabinsk, Russia: IEEE, 2018. 1-6
    [151] 张冰, 李欣, 万欣欣.从数字孪生到数字工程建模仿真迈入新时代.系统仿真学报, 2019, 31(3):369-376 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903001

    Zhang Bing, Li Xin, Wan Xin-Xin. From digital twin to digital engineering modeling and simulation entering a new era. Journal of System Simulation, 2019, 31(3):369-376 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201903001
    [152] 城市大脑: 探索"数字孪生城市"[Online], available: https://yq.aliyun.com/articles/603873-spm=a2c4e.11153987.0.0.26ce5a35X7zQjB, September 5, 2019
    [153] 王飞跃, 李长贵, 国元元, 王静, 王晓, 邱天雨, 等.平行高特:基于ACP的平行痛风诊疗系统框架.模式识别与人工智能, 2017, 30(12):1057-1068 http://www.cnki.com.cn/Article/CJFDTotal-MSSB201712001.htm

    Wang Fei-Yue, Li Chang-Gui, Guo Yuan-Yuan, Wang Jing, Wang Xiao, Qiu Tian-Yu, et al. Parallel gout:an ACP-based system framework for gout diagnosis and treatment. Pattern Recognition and Artificial Intelligence, 2017, 30(12):1057-1068 http://www.cnki.com.cn/Article/CJFDTotal-MSSB201712001.htm
    [154] Liu Y, Zhang L, Yang Y, Zhou L F, Ren L, Wang F, et al. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 2019, 7:49088-49101 doi: 10.1109/ACCESS.2019.2909828
    [155] Si X, Jing L. Mass detection in digital mammograms using twin support vector machine-based CAD system. In: Proceedings of the 2009 WASE International Conference on Information Engineering. Taiyuan, China: IEEE, 2009. 240-243
    [156] Karakra A, Fontanili F, Lamine E, Lamothe J. HospiT'Win: a predictive simulation-based digital twin for patients pathways in hospital. In: Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Chicago, USA: IEEE, 2019. 1-4
    [157] Naplekov I, Zheleznikov I, Pashchenko D, Kobysheva P, Moskvitina A, Mustafin R, et al. Methods of computational modeling of coronary heart vessels for its digital twin. MATEC Web of Conferences, 2018, 172: Article No. 01009
    [158] Laaki H, Miche Y, Tammi K. Prototyping a digital twin for real time remote control over mobile networks:application of remote surgery. IEEE Access, 2019, 7:20325-20336 doi: 10.1109/ACCESS.2019.2897018
    [159] Koulamas C, Kalogeras A. Cyber-physical systems and digital twins in the industrial internet of things[Cyber-Physical Systems]. Computer, 2018, 51(11):95-98 doi: 10.1109/MC.2018.2876181
    [160] Canedo A. Industrial IoT lifecycle via digital twins. In: Proceedings of the 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). Pittsburgh, USA: IEEE, 2016.
    [161] Shivajee V, Singh R K, Rastogi S. Manufacturing conversion cost reduction using quality control tools and digitization of real-time data. Journal of Cleaner Production, 2019, 237: Article No.117678
    [162] Abramkin S E, Dushin S E. Prospects for the development of control systems for gas producing complexes. In: Proceedings of the 2nd International Conference on Control in Technical Systems (CTS). St. Petersburg, Russia: IEEE, 2017. 150-153
    [163] 熊明, 古丽, 吴志锋, 邓勇, 李双琴, 邹妍, 等.在役油气管道数字孪生体的构建及应用.油气储运, 2019, 38(5):503-509 http://d.old.wanfangdata.com.cn/Periodical/yqcy201905003

    Xiong Ming, Gu Li, Wu Zhi-Feng, Deng Yong, Li Shuang-Qin, Zou Yan, et al. Construction and application of digital twin in the in-service oil and gas pipeline. Oil and Gas Storage and Transportation, 2019, 38(5):503-509 http://d.old.wanfangdata.com.cn/Periodical/yqcy201905003
    [164] Zhou M K, Yan J F, Feng D H. Digital twin framework and its application to power grid online analysis. CSEE Journal of Power and Energy Systems, 2019, 5(3):391-398
    [165] Pileggi P, Verriet J, Broekhuijsen J, van Leeuwen C, Wijbrandi W, Konsman M. A digital twin for cyber-physical energy systems. In: Proceedings of the 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). Montreal, Canada: IEEE, 2019. 1-6
    [166] Brosinsky C, Westermann D, Krebs R. Recent and prospective developments in power system control centers: adapting the digital twin technology for application in power system control centers. In: Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON). Limassol, Cyprus: IEEE, 2018. 1-6
    [167] 侯家琛, 董西松, 熊刚, 张俊, 谭珂.平行核电:迈向智慧核电的智能技术.智能科学与技术学报, 2019, 1(2):192-201 http://d.old.wanfangdata.com.cn/Periodical/xtgcllysj201205014

    Hou Jia-Chen, Dong Xi-Song, Xiong Gang, Zhang Jun, Tan Ke. Parallel nuclear power:intelligent technology for smart nuclear power. Chinese Journal of Intelligent Science and Technology, 2019, 1(2):192-201 http://d.old.wanfangdata.com.cn/Periodical/xtgcllysj201205014
    [168] Jo S K, Park D H, Park H, Kim S H. Smart livestock farms using digital twin: feasibility study. In: Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC). Jeju, South Korea: IEEE, 2018. 1461-1463
    [169] Delbrügger T, Lenz L T, Losch D, Rossmann J. A navigation framework for digital twins of factories based on building information modeling. In: Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Limassol, Cyprus: IEEE, 2017. 1-4
    [170] Autiosalo J. Platform for industrial internet and digital twin focused education, research, and innovation: Ilmatar the overhead crane. In: Proceedings of the 4th World Forum on Internet of Things (WF-IoT). Singapore, Singapore: IEEE, 2018. 241-244
    [171] 庄存波, 刘检华, 熊辉, 丁晓宇, 刘少丽, 瓮刚.产品数字孪生体的内涵、体系结构及其发展趋势.计算机集成制造系统, 2017, 23(4):753-768 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201704010

    Zhuang Cun-Bo, Liu Jian-Hua, Xiong Hui, Ding Xiao-Yu, Liu Shao-Li, Weng Gang. Connotation, architecture and trends of product digital twin. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201704010
    [172] Wang F Y. Shadow Systems: A New Concept for Nested and Embedded Co-simulation for Intelligent Systems. Tucson, Arizona State, USA: University of Arizona, 1994.
    [173] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489 doi: 10.3321/j.issn:1001-0920.2004.05.002

    Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5):485-489 doi: 10.3321/j.issn:1001-0920.2004.05.002
    [174] Wang F Y, Zhang J J, Zheng X H, Wang X, Yuan Y, Dai X X, et al. Where does AlphaGo go:from church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2):113-120 doi: 10.1109/JAS.2016.7471613
    [175] 袁勇, 王飞跃.平行区块链:概念、方法与内涵解析.自动化学报, 2017, 43(10):1703-1712 http://www.aas.net.cn/CN/abstract/abstract19148.shtml

    Yuan Yong, Wang Fei-Yue. Parallel blockchain:concept, methods and issues. Acta Automatica Sinica, 2017, 43(10):1703-1712 http://www.aas.net.cn/CN/abstract/abstract19148.shtml
    [176] 王晓, 要婷婷, 韩双双, 曹东璞, 王飞跃.平行车联网:基于ACP的智能车辆网联管理与控制.自动化学报, 2018, 44(8):1391-1404 http://www.aas.net.cn/CN/abstract/abstract19324.shtml

    Wang Xiao, Yao Ting-Ting, Han Shuang-Shuang, Cao DongPu, Wang Fei-Yue. Parallel internet of vehicles:the ACP-based networked management and control for intelligent vehicles. Acta Automatica Sinica, 2018, 44(8):1391-1404 http://www.aas.net.cn/CN/abstract/abstract19324.shtml
    [177] Wang F Y. The emergence of intelligent enterprises:from CPS to CPSS. IEEE Intelligent Systems, 2010, 25(4):85-88 doi: 10.1109/MIS.2010.104
    [178] 周敏, 董海荣, 徐惠春, 李浥东, 王飞跃.平行应急疏散系统:基本概念、体系框架及其应用.自动化学报, 2019, 45(6):1074-1086 http://www.aas.net.cn/CN/abstract/abstract19506.shtml

    Zhou Min, Dong Hai-Rong, Xu Hui-Chun, Li Yi-Dong, Wang Fei-Yue. Parallel emergency evacuation systems:basic concept, framework and applications. Acta Automatica Sinica, 2019, 45(6):1074-1086 http://www.aas.net.cn/CN/abstract/abstract19506.shtml
    [179] 王坤峰, 鲁越, 王雨桐, 熊子威, 王飞跃.平行图像:图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7):577-587 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201707001

    Wang Kun-Feng, Lu Yue, Wang Yu-Tong, Xiong Zi-Wei, Wang Fei-Yue. Parallel imaging:a new theoretical framework for image generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7):577-587 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201707001
    [180] 孟祥冰, 王蓉, 张梅, 王飞跃.平行感知:ACP理论在视觉SLAM技术中的应用.指挥与控制学报, 2018, 3(4):350-358 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201804014

    Meng Xiang-Bing, Wang Rong, Zhang Mei, Wang Fei-Yue. Parallel perception:an ACP-based approach to visual SLAM. Journal of Command and Control, 2018, 3(4):350-358 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201804014
    [181] 李力, 林懿伦, 曹东璞, 郑南宁, 王飞跃.平行学习-机器学习的一个新型理论框架.自动化学报, 2017, 43(1):1-8 doi: 10.3969/j.issn.1003-8930.2017.01.001

    Li Li, Lin Yi-Lun, Cao Dong-Pu, Zheng Nan-Ning, Wang FeiYue. Parallel learning-a new framework for machine learning. Acta Automatica Sinica, 2017, 43(1):1-8 doi: 10.3969/j.issn.1003-8930.2017.01.001
    [182] 王飞跃.情报5.0:平行时代的平行情报体系.情报学报, 2015, 34(6):563-574 doi: 10.3772/j.issn.1000-0135.2015.006.001

    Wang Fei-yue. Intelligence 5.0:parallel intelligence in parallel age. Journal of the China Society for Scientific and Technical Information, 2015, 34(6):563-574 doi: 10.3772/j.issn.1000-0135.2015.006.001
    [183] 吕宜生, 欧彦, 汤淑明, 朱凤华, 赵红霞.基于人工交通系统的路网交通运行状况评估的计算实验.吉林大学学报(工学版), 2009, 39(S2):87-90 http://www.cnki.com.cn/Article/CJFDTotal-JLGY2009S2019.htm

    Lv Yi-Sheng, Ou Yan, Tang Shu-Ming, Zhu Feng-Hua, Zhao Hong-Xia. Computational experiments of evaluating road network traffic conditions based on artificial transportation systems. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(S2):87-90 http://www.cnki.com.cn/Article/CJFDTotal-JLGY2009S2019.htm
    [184] Wang F Y, Wang X, Li L X, Li L. Steps toward parallel intelligence. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):345-348 doi: 10.1109/JAS.2016.7510067
    [185] 刘烁, 王帅, 孟庆振, 叶佩军, 王涛, 黄文林, 等.基于ACP行为动力学的犯罪主体行为平行建模分析.自动化学报, 2018, 44(2):251-261 http://www.aas.net.cn/CN/abstract/abstract19220.shtml

    Liu Shuo, Wang Shuai, Meng Qing-Zhen, Ye Pei-Jun, Wang Tao, Huang Wen-Lin, et al. Parallel modeling of criminal subjects behavior based on ACP behavioral dynamics. Acta Automatica Sinica, 2018, 44(2):251-261 http://www.aas.net.cn/CN/abstract/abstract19220.shtml
    [186] Wang F Y. Parallel control and management for intelligent transportation systems:concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638 doi: 10.1109/TITS.2010.2060218
    [187] Wang F Y. Scanning the issue. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2310-2317 doi: 10.1109/TITS.2015.2478319
    [188] 杨林瑶, 韩双双, 王晓, 李玉珂, 王飞跃.网络系统实验平台:发展现状及展望.自动化学报, 2019, 45(9):1637-1654 http://www.aas.net.cn/CN/abstract/abstract19558.shtml

    Yang Lin-Yao, Han Shuang-Shuang, Wang Xiao, Li Yu-Ke, Wang Fei-Yue. Computational experiment platforms for networks:the state of the art and prospect. Acta Automatica Sinica, 2019, 45(9):1637-1654 http://www.aas.net.cn/CN/abstract/abstract19558.shtml
    [189] 王飞跃, 张梅, 孟祥冰, 王雁, 马娇楠, 刘武, 等.平行眼:基于ACP的智能眼科诊疗.模式识别与人工智能, 2018, 31(6):495-504 http://d.old.wanfangdata.com.cn/Periodical/gxyq201205007

    Wang Fei-Yue, Zhang Mei, Meng Xiang-Bing, Wang Yan, Ma Jiao-Nan, Liu Wu, et al. Parallel eyes:an ACP-based smart ophthalmic diagnosis and treatment. Pattern Recognition and Artificial Intelligence, 2018, 31(6):495-504 http://d.old.wanfangdata.com.cn/Periodical/gxyq201205007
    [190] 王飞跃, 张梅, 孟祥冰, 王蓉, 王晓, 张志成, 等.平行手术:基于ACP的智能手术计算方法.模式识别与人工智能, 2017, 30(11):961-970 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201711001

    Wang Fei-Yue, Zhang Mei, Meng Xiang-Bing, Wang Rong, Wang Xiao, Zhang Zhi-Cheng, et al. Parallel surgery:an ACPbased approach for intelligent operations. Pattern Recognition and Artificial Intelligence, 2017, 30(11):961-970 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201711001
    [191] Chen Y Y, Lv Y S, Wang F Y. Traffic flow imputation using parallel data and generative adversarial networks. IEEE Transactions on Intelligent Transportation Systems, 2019, DOI:10. 1109/TITIS.2019.2910295
    [192] 吕宜生, 陈圆圆, 金峻臣, 李镇江, 叶佩军, 朱凤华.平行交通:虚实互动的智能交通管理与控制.智能科学与技术学报, 2019, 1(1):21-33

    Lv Yi-Sheng, Chen Yuan-Yuan, Jin Jun-Chen, Li Zhen-Jiang, Ye Pei-Jun, Zhu Feng-Hua. Parallel transportation:virtual-real interaction for intelligent traffic management and control. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):21-33
    [193] Chen Y Y, Lv Y S, Wang X, Wang F Y. Traffic flow prediction with parallel data. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 614-619
    [194] 王坤峰, 左旺孟, 谭营, 秦涛, 李力, 王飞跃.生成式对抗网络:从生成数据到创造智能.自动化学报, 2018, 44(5):769-774 http://www.aas.net.cn/CN/abstract/abstract19269.shtml

    Wang Kun-Feng, Zuo Wang-Meng, Tan Ying, Qin Tao, Li Li, Wang Fei-Yue. Generative adversarial networks:from generating data to creating intelligence. Acta Automatica Sinica, 2018, 44(5):769-774 http://www.aas.net.cn/CN/abstract/abstract19269.shtml
    [195] 林懿伦, 戴星原, 李力, 王晓, 王飞跃.人工智能研究的新前线:生成式对抗网络.自动化学报, 2018, 44(5):775-792 http://www.aas.net.cn/CN/abstract/abstract19270.shtml

    Lin Yi-Lun, Dai Xing-Yuan, Li Li, Wang Xiao, Wang Fei-Yue. The new frontier of AI research:generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):775-792 http://www.aas.net.cn/CN/abstract/abstract19270.shtml
    [196] 郑文博, 王坤峰, 王飞跃.基于贝叶斯生成对抗网络的背景消减算法.自动化学报, 2018, 44(5):878-890 http://www.aas.net.cn/CN/abstract/abstract19279.shtml

    Zheng Wen-Bo, Wang Kun-Feng, Wang Fei-Yue. Background subtraction algorithm with Bayesian generative adversarial networks. Acta Automatica Sinica, 2018, 44(5):878-890 http://www.aas.net.cn/CN/abstract/abstract19279.shtml
    [197] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml
    [198] 王飞跃, 邱晓刚, 曾大军, 曹志冬, 樊宗臣.基于平行系统的非常规突发事件计算实验平台研究.复杂系统与复杂性科学, 2010, 7(4):1-10 doi: 10.3969/j.issn.1672-3813.2010.04.001

    Wang Fei-Yue, Qiu Xiao-Gang, Zeng Da-Jun, Cao Zhi-Dong, Fan Zong-Chen. A computational experimental platform for emergency response based on parallel systems. Complex Systems and Complexity Science, 2010, 7(4):1-10 doi: 10.3969/j.issn.1672-3813.2010.04.001
    [199] Wang X, Zheng X H, Zhang X Z, Zeng K, Wang F Y. Analysis of cyber interactive behaviors using artificial community and computational experiments. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(6):995-1006 doi: 10.1109/TSMC.2016.2615130
    [200] Wang F Y, Yang L Q, Cheng X, Han S S, Yang J. Network softwarization and parallel networks:beyond software-defined networks. IEEE Network, 2016, 30(4):60-65 doi: 10.1109/MNET.2016.7513865
    [201] 王飞跃, 杨柳青, 胡晓娅, 程翔, 韩双双, 杨坚.平行网络与网络软件化:一种新颖的网络架构.中国科学:信息科学, 2017, 47(7):811-831 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201707001.htm

    Wang Fei-Yue, Yang Liu-Qing, Hu Xiao-Ya, Cheng Xiang, Han Shuang-Shuang, Yang Jian. Parallel networks and network softwarization:a novel network architecture. Scientia Sinica Informationis, 2017, 47(7):811-831 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201707001.htm
    [202] 王飞跃, 杨坚, 韩双双, 杨柳青, 程翔.基于平行系统理论的平行网络架构.指挥与控制学报, 2016, 2(1):71-77 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201601012

    Wang Fei-Yue, Yang Jian, Han Shuang-Shuang, Yang LiuQing, Cheng Xiang. The framework of parallel network based on the parallel system theory. Journal of Command and Control, 2016, 2(1):71-77 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201601012
    [203] Almalaq A, Hao J, Zhang J, Wang F Y. Parallel building:a complex system approach for smart building energy management. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6):1452-1461
    [204] 王飞跃.人工社会、计算实验、平行系统-关于复杂社会经济系统计算研究的讨论.复杂系统与复杂性科学, 2004, 1(4):25-35 doi: 10.3969/j.issn.1672-3813.2004.04.002

    Wang Fei-Yue. Artificial societies, computational experiments, and parallel systems:a discussion on computational theory of complex social-economic systems. Complex Systems and Complexity Science, 2004, 1(4):25-35 doi: 10.3969/j.issn.1672-3813.2004.04.002
    [205] 王迎春, 韩双双, 胡成云, 宋瑞琦, 要婷婷, 曹东璞, 等.基于ACP方法的平行手机信令数据分析系统.自动化学报, 2019, 45(5):866-876 http://www.aas.net.cn/CN/abstract/abstract19487.shtml

    Wang Ying-Chun, Han Shuang-Shuang, Hu Cheng-Yun, Song Rui-Qi, Yao Ting-Ting, Cao Dong-Pu, et al. Mobile phone signaling data analysis system based on ACP approach. Acta Automatica Sinica, 2019, 45(5):866-876 http://www.aas.net.cn/CN/abstract/abstract19487.shtml
    [206] 沈震, 罗璨, 商秀芹, 白天翔, 董西松, 宋晓光, 等.空间平行机器与平行制造.空间控制技术与应用, 2019, 45(4):80-90 doi: 10.3969/j.issn.1674-1579.2019.04.010

    Shen Zhen, Luo Can, Shang Xiu-Qin, Bai Tian-Xiang, Dong XiSong, Song Xiao-Guang, et al. Space parallel machine and parallel manufacturing. Aerospace Control and Application, 2019, 45(4):80-90 doi: 10.3969/j.issn.1674-1579.2019.04.010
    [207] 白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2):161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml

    Bai Tian-Xiang, Wang Shuai, Shen Zhen, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel robotics and parallel unmanned systems:framework, structure, process, platform and applications. Acta Automatica Sinica, 2017, 43(2):161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml
    [208] 张慧, 王坤峰, 王飞跃.深度学习在目标视觉检测中的应用进展与展望.自动化学报, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml
    [209] 刘昕, 王晓, 张卫山, 汪建基, 王飞跃.平行数据:从大数据到数据智能.模式识别与人工智能, 2017, 30(8):673-681 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201708001

    Liu Xin, Wang Xiao, Zhang Wei-Shan, Wang Jian-Ji, Wang Fei-Yue. Parallel data:from big data to data intelligence. Pattern Recognition and Artificial Intelligence, 2017, 30(8):673-681 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201708001
    [210] 王坤峰, 苟超, 王飞跃.平行视觉:基于ACP的智能视觉计算方法.自动化学报, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml

    Wang Kun-Feng, Gou Chao, Wang Fei-Yue. Parallel vision:an ACP-based approach to intelligent vision computing. Acta Automatica Sinica, 2016, 42(10):1490-1500 http://www.aas.net.cn/CN/abstract/abstract18936.shtml
    [211] Xing Y, Lv C, Chen L, Wang H J, Wang H, Cao D P, et al. Advances in vision-based lane detection:algorithms, integration, assessment, and perspectives on ACP-based parallel vision. IEEE/CAA Journal of Automatica Sinica, 2018, 5(3):645-661 doi: 10.1109/JAS.2018.7511063
    [212] Li X, Wang K F, Tian Y L, Yan L, Deng F, Wang F Y. The ParallelEye dataset:a large collection of virtual images for traffic vision research. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6):2072-2084 doi: 10.1109/TITS.2018.2857566
    [213] Li X, Wang Y T, Yan L, Wang K F, Deng F, Wang F Y. ParallelEye-CS:a new dataset of synthetic images for testing the visual intelligence of intelligent vehicles. IEEE Transactions on Vehicular Technology, 2019, 68(10):9619-9631 doi: 10.1109/TVT.2019.2936227
    [214] 殷林飞, 陈吕鹏, 余涛, 张孝顺.基于CPSS平行系统懒惰强化学习算法的实时发电调控.自动化学报, 2019, 45(4):706-719 http://www.aas.net.cn/CN/abstract/abstract19472.shtml

    Yin Lin-Fei, Chen Lv-Peng, Yu Tao, Zhang Xiao-Shun. Lazy reinforcement learning through parallel systems and social system for real-time economic generation dispatch and control. Acta Automatica Sinica, 2019, 45(4):706-719 http://www.aas.net.cn/CN/abstract/abstract19472.shtml
    [215] 万里鹏, 兰旭光, 张翰博, 郑南宁.深度强化学习理论及其应用综述.模式识别与人工智能, 2019, 32(1):67-81 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201901010

    Wan Li-Peng, Lan Xu-Guang, Zhang Han-Bo, Zheng Nan-Ning. A review of deep reinforcement learning theory and application. Pattern Recognition and Artificial Intelligence, 2019, 32(1):67-81 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201901010
    [216] Li L, Lin Y L, Zheng N N, Wang F Y. Parallel learning:a perspective and a framework. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3):389-395 doi: 10.1109/JAS.2017.7510493
    [217] Liu T, Tian B, Ai Y F, Li L, Cao D P, Wang F Y. Parallel reinforcement learning:a framework and case study. IEEE/CAA Journal of Automatica Sinica, 2018, 5(4):827-835 doi: 10.1109/JAS.2018.7511144
    [218] Liu T, Tian B, Ai Y F, Zou Y, Wang F Y. Parallel reinforcement learning-based energy efficiency improvement for a cyberphysical system. IEEE/CAA Journal of Automatica Sinica, DOI: 10.1109/JAS.2019.1911633
    [219] 欧阳丽炜, 王帅, 袁勇, 倪晓春, 王飞跃.智能合约:架构及进展.自动化学报, 2019, 45(3):445-457 http://www.aas.net.cn/CN/abstract/abstract19450.shtml

    Ouyang Li-Wei, Wang Shuai, Yuan Yong, Ni Xiao-Chun, Wang Fei-Yue. Smart contracts:architecture and research progress. Acta Automatica Sinica, 2019, 45(3):445-457 http://www.aas.net.cn/CN/abstract/abstract19450.shtml
    [220] Wang S, Huang C, Li J, Yuan Y, Wang F Y. Decentralized Construction of Knowledge Graphs for Deep Recommender Systems Based on Blockchain-Powered Smart Contracts. IEEE Access, 2019(7):136951-136961 https://ieeexplore.ieee.org/document/8844724?arnumber=8844724
    [221] 曾帅, 袁勇, 倪晓春, 王飞跃.面向比特币的区块链扩容:关键技术, 制约因素与衍生问题.自动化学报, 2019, 45(6):1015-1030 http://www.aas.net.cn/CN/abstract/abstract19501.shtml

    Zeng Shuai, Yuan Yong, Ni Xiao-Chun, Wang Fei-Yue. Scaling blockchain towards bitcoin:key technologies, Constraints and Related Issues. Acta Automatica Sinica, 2019, 45(6):1015-1030 http://www.aas.net.cn/CN/abstract/abstract19501.shtml
    [222] 袁勇, 王飞跃.区块链技术发展现状与展望.自动化学报, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml

    Yuan Yong, Wang Fei-Yue. Blockchain:the state of the art and future trends. Acta Automatica Sinica, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml
    [223] 袁勇, 倪晓春, 曾帅, 王飞跃.区块链共识算法的发展现状与展望.自动化学报, 2018, 44(11):2011-2022 http://www.aas.net.cn/CN/abstract/abstract19383.shtml

    Yuan Yong, Ni Xiao-Chun, Zeng Shuai, Wang Fei-Yue. Blockchain consensus algorithms:the state of the art and future trends. Acta Automatica Sinica, 2018, 44(11):2011-2022 http://www.aas.net.cn/CN/abstract/abstract19383.shtml
    [224] Wang S, Ding W W, Li J J, Yuan Y, Ouyang L W, Wang F Y. Decentralized autonomous organizations:concept, model, and applications. IEEE Transactions on Computational Social Systems, 2019, 6(5):870-878 doi: 10.1109/TCSS.2019.2938190
    [225] Wang F Y, Yuan Y, Rong C M, Zhang J J. Parallel blockchain:an architecture for CPSS-based smart societies. IEEE Transactions on Computational Social Systems, 2018, 5(2):303-310 doi: 10.1109/TCSS.2018.2832379
    [226] 王飞跃, 袁勇, 王帅, 李娟娟, 秦蕊.军事区块链:从不对称的战争到对称的和平.指挥与控制学报, 2018, 4(3):175-182 doi: 10.3969/j.issn.2096-0204.2018.03.0175

    Wang Fei-Yue, Yuan Yong, Wang Shuai, Li Juan-Juan, Qin Rui. Military blockchain:from asymmetric warfare to symmetric peace. Journal of Command and Control, 2018, 4(3):175-182 doi: 10.3969/j.issn.2096-0204.2018.03.0175
    [227] Liu D R, Xu Y C, Wei Q L, Liu X L. Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1):36-46 doi: 10.1109/JAS.2017.7510739
    [228] Song Y H, He X Y, Liu Z J, He W, Sun C Y, Wang F Y. Parallel control of distributed parameter systems. IEEE Transactions on Cybernetics, 2018, 48(12):3291-3301 doi: 10.1109/TCYB.2018.2849569
    [229] 王飞跃, 魏庆来.智能控制:从学习控制到平行控制.控制理论与应用, 2018, 35(7):939-948 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003033

    Wang Fei-Yue, Wei Qing-Lai. Intelligent control:from learning control to parallel control. Control Theory and Applications, 2018, 35(7):939-948 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003033
    [230] Wang F Y, Zhang J, Wei Q L, Zheng X H, Li L. PDP:parallel dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1):1-5 doi: 10.1109/JAS.2017.7510310
    [231] 刘志杰, 欧阳云呈, 宋宇骅, 贺威, 王飞跃.分布参数系统的平行控制:从基于模型的控制到数据驱动的智能控制.指挥与控制学报, 2017, 3(3):177-185 doi: 10.3969/j.issn.2096-0204.2017.03.0177

    Liu Zhi-Jie, Ouyang Yun-Cheng, Song Yu-Hua, He Wei, Wang Fei-Yue. Parallel control of distributed parameter systems:from model based control to data driven intelligent control. Journal of Command and Control, 2017, 3(3):177-185 doi: 10.3969/j.issn.2096-0204.2017.03.0177
    [232] 赵祥模, 承靖钧, 徐志刚, 王文威, 王润民, 王冠群, 等.基于整车在环仿真的自动驾驶汽车室内快速测试平台.中国公路学报, 2019, 32(6):124-136 http://d.old.wanfangdata.com.cn/Periodical/zgglxb201906013

    Zhao Xiang-Mo, Cheng Jing-Jun, Xu Zhi-Gang, Wang WenWei, Wang Run-Min, Wang Guan-Qun, et al. An indoor rapidtesting platform for autonomous vehicle based on vehicle-in-theloop simulation. China Journal of Highway Transportation, 2019, 32(6):124-136 http://d.old.wanfangdata.com.cn/Periodical/zgglxb201906013
    [233] Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, Xu L H, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): Article No. eaaw4106
    [234] 尹培丽, 王建华, 陈阳泉, 王飞跃.平行测量:复杂测量系统的一个新型理论框架及案例研究.自动化学报, 2018, 44(3):425-433 http://www.aas.net.cn/CN/abstract/abstract19235.shtml

    Yin Pei-Li, Wang Jian-Hua, Chen Yang-Quan, Wang Fei-Yue. Parallel measurements:a new theory and framework for complex measurement system and a case study. Acta Automatica Sinica, 2018, 44(3):425-433 http://www.aas.net.cn/CN/abstract/abstract19235.shtml
    [235] Li L, Huang W L, Liu Y H, Zheng N N, Wang F Y. Intelligence testing for autonomous vehicles:a new approach. IEEE Transactions on Intelligent Vehicles, 2016, 1(2):158-166 doi: 10.1109/TIV.2016.2608003
    [236] Vijayakumar K, Kumar K P M, Jesline D. Implementation of software agents and advanced AoA for disease data analysis. Journal of Medical Systems, 2019, 43(8):274-279 doi: 10.1007/s10916-019-1411-5
    [237] 袁勇, 王飞跃.不完全信息议价博弈的序贯均衡分析与计算实验.自动化学报, 2016, 42(5):724-734 http://www.aas.net.cn/CN/abstract/abstract18862.shtml

    Yuan Yong, Wang Fei-Yue. Sequential equilibrium analysis and computational experiments of a bargaining game with incomplete information. Acta Automatica Sinica, 2016, 42(5):724-734 http://www.aas.net.cn/CN/abstract/abstract18862.shtml
    [238] 李力, 王飞跃.地面交通控制的百年回顾和未来展望.自动化学报, 2018, 44(4):577-583 http://www.aas.net.cn/CN/abstract/abstract19251.shtml

    Li Li, Wang Fei-Yue. Ground traffic control in the past century and its future perspective. Acta Automatica Sinica, 2018, 44(4):577-583 http://www.aas.net.cn/CN/abstract/abstract19251.shtml
    [239] Wang F Y, Zhang J J. Transportation 5.0 in CPSS: towards ACP-based society-centered intelligent transportation. In: Proceedings of the 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE, 2017. 762-767
    [240] Zhu F H, Lv Y S, Chen Y Y, Wang X, Xiong G, Wang F Y. Parallel transportation systems:toward IoT-enabled smart urban traffic control and management. IEEE Transactions on Intelligent Transportation Systems, 2019, DOI:10.1109/TITS.2019. 2934991
    [241] Lv Y S, Chen Y Y, Li L, Wang F Y. Generative adversarial networks for parallel transportation systems. IEEE Intelligent Transportation Systems Magazine, 2018, 10(3):4-10 doi: 10.1109/MITS.2018.2842249
    [242] 宁滨, 王飞跃, 董海荣, 李润梅, 文丁, 李莉.基于ACP方法的城市轨道交通平行系统体系研究.交通运输系统工程与信息, 2010, 10(6):22-28 doi: 10.3969/j.issn.1009-6744.2010.06.003

    Ning Bin, Wang Fei-Yue, Dong Hai-Rong, Li Run-Mei, Wen Ding, Li Li. Parallel systems for urban rail transportation based on ACP approach. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(6):22-28 doi: 10.3969/j.issn.1009-6744.2010.06.003
    [243] Shen D Y, Wang X, Wang J, Guan X Y, Yang P H, Xu L. Parallel intermodal road-rail transportation system based on ACP approach. In: Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff, Canada: IEEE, 2017. 444-449
    [244] 王飞跃, 苟超, 王建功, 沈甜雨, 郑文博, 于慧.平行皮肤:基于视觉的皮肤病分析框架.模式识别与人工智能, 2019, 32 (7):577-588 http://d.old.wanfangdata.com.cn/Periodical/zhfsyxyfhzz98200001021

    Wang Fei-Yue, Gou Chao, Wang Jian-Gong, Shen Tian-Yu, Zheng Wen-Bo, Yu Hui. Parallel skin:a vision based dermatological analysis framework. Pattern Recognition and Artificial Intelligence, 2019, 32(7):577-588 http://d.old.wanfangdata.com.cn/Periodical/zhfsyxyfhzz98200001021
    [245] Wang S, Wang J, Wang X, Qiu T Y, Yuan Y, Ouyang L W, et al. Blockchain-powered parallel healthcare systems based on the ACP approach. IEEE Transactions on Computational Social Systems, 2018, 5(4):942-950 doi: 10.1109/TCSS.2018.2865526
    [246] Duan W, Cao Z D, Wang Y Z, Zhu B, Zeng D, Wang F Y, et al. An ACP approach to public health emergency management:using a campus outbreak of H1N1 influenza as a case study. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2013, 43(5):1028-1041 doi: 10.1109/TSMC.2013.2256855
    [247] 沈宇, 王晓, 韩双双, 陈龙, 王飞跃.代理技术Agent在智能车辆与驾驶中的应用现状.指挥与控制学报, 2019, 5(2):87-98 doi: 10.3969/j.issn.2096-0204.2019.02.0087

    Shen Yu, Wang Xiao, Han Shuang-Shuang, Chen Long, Wang Fei-Yue. Agent-based technology in intelligent vehicles and driving:state-of-the-art and prospect. Journal of Command and Control, 2019, 5(2):87-98 doi: 10.3969/j.issn.2096-0204.2019.02.0087
    [248] Xing Y, Lv C, Wang H J, Cao D P, Velenis E, Wang F Y. Driver activity recognition for intelligent vehicles:a deep learning approach. IEEE Transactions on Vehicular Technology, 2019, 68(6):5379-5390 doi: 10.1109/TVT.2019.2908425
    [249] 陈龙, 宇文旋, 曹东璞, 李力, 王飞跃.平行无人系统.无人系统技术, 2018, 1(1):23-37 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201702001

    Chen Long, Yu Wen-Xuan, Cao Dong-Pu, Li Li, Wang Fei-Yue. Parallel unmanned system. Unmanned Systems Technology, 2018, 1(1):23-37 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201702001
    [250] Han S S, Wang X, Zhang J J, Cao D P, Wang F Y. Parallel vehicular networks:a CPSS-based approach via multimodal big data in IoV. IEEE Internet of Things Journal, 2019, 6(1):1079-1089 https://ieeexplore.ieee.org/abstract/document/8445558
    [251] Wang F Y, Zheng N N, Cao D P, Martinez C M, Li L, Liu T. Parallel driving in CPSS:a unified approach for transport automation and vehicle intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4):577-587 doi: 10.1109/JAS.2017.7510598
    [252] Han S S, Cao D P, Li L, Li L X, Li S E, Zheng N N, et al. From software-defined vehicles to self-driving vehicles:a report on CPSS-based parallel driving. IEEE Intelligent Transportation Systems Magazine, 2019, 11(1):6-14
    [253] Chen L, Hu X M, Tian W, Wang H, Cao D P, Wang F Y. Parallel planning:a new motion planning framework for autonomous driving. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1):236-246 doi: 10.1109/JAS.2018.7511186
    [254] Wang F Y, Yuan Y, Li J J, Cao D P, Li L X, Ioannou P A, et al. From intelligent vehicles to smart societies:a parallel driving approach. IEEE Transactions on Computational Social Systems, 2018, 5(3):594-604 doi: 10.1109/TCSS.2018.2862058
    [255] 王飞跃, 刘玉超, 秦继荣, 戴浩. C2M和5G:新时代的智能指挥与控制.指挥与控制学报, 2019, 5(2):79-81 doi: 10.3969/j.issn.2096-0204.2019.02.0079

    Wang Fei-Yue, Liu Yu-Chao, Qin Ji-Rong, Dai Hao. C2M and 5G:intelligent command and control in the connected and smart age. Journal of Command and Control, 2019, 5(2):79-81 doi: 10.3969/j.issn.2096-0204.2019.02.0079
    [256] Wang F Y. Control 5.0:from Newton to Merton in Popper's cyber-social-physical spaces. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3):233-234 doi: 10.1109/JAS.2016.7508796
    [257] 阳东升, 姜军, 王飞跃.从平台到体系:指挥对抗活动机理的演变及其PREA环对策.指挥与控制学报, 2018, 4(4):263-271 http://d.old.wanfangdata.com.cn/Periodical/kjjbydc200703013

    Yang Dong-Sheng, Jiang Jun, Wang Fei-Yue. From platforms to systems of systems:on mechanism evolution of command confrontation and its PREA loop. Journal of Command and Control, 2018, 4(4):263-271 http://d.old.wanfangdata.com.cn/Periodical/kjjbydc200703013
    [258] 白天翔, 徐德, 王飞跃.局域网络化自主作战的概念与展望.指挥与控制学报, 2017, 3(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701001

    Bai Tian-Xiang, Xu De, Wang Fei-Yue. Concept and outlook of local network-centric autonomous warfare. Journal of Command and Control, 2017, 3(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701001
    [259] 王飞跃.面向赛博空间的战争组织与行动:关于平行军事体系的讨论.军事运筹与系统工程, 2012, 26(3):5-10 doi: 10.3969/j.issn.1672-8211.2012.03.002

    Wang Fei-Yue. War organization and action for cyberspace:discussion of parallel military systems. Military Operations Research and Systems Engineering, 2012, 26(3):5-10 doi: 10.3969/j.issn.1672-8211.2012.03.002
    [260] 葛承垄, 朱元昌, 邸彦强, 胡志伟, 孟宪国.装备平行仿真理论框架研究.指挥与控制学报, 2017, 3(1):48-56 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701008

    Ge Cheng-Long, Zhu Yuan-Chang, Di Yan-Qiang, Hu Zhi-Wei, Meng Xian-Guo. Theoretical framework for equipment parallel simulation. Journal of Command and Control, 2017, 3(1):48-56 http://d.old.wanfangdata.com.cn/Periodical/zhykzxb201701008
    [261] 阳东升, 王坤峰, 陈德旺, 包战, 苏振东, 王睿, 等.平行航母:从数字航母到智能航母.指挥与控制学报, 2018, 4(2):101-110 doi: 10.3969/j.issn.2096-0204.2018.02.0101

    Yang Dong-Sheng, Wang Kun-Feng, Chen De-Wang, Bao Zhan, Su Zhen-Dong, Wang Rui, et al. Parallel carrier fleets:from digital architectures to smart formations. Journal of Command and Control, 2018, 4(2):101-110 doi: 10.3969/j.issn.2096-0204.2018.02.0101
    [262] 邢阳, 刘忠民, 刘腾, 秦继荣, 包战, 王飞跃.平行坦克的数字四胞胎结构及其核心技术.指挥与控制学报, 2018, 4(2):111-120 doi: 10.3969/j.issn.2096-0204.2018.02.0111

    Xing Yang, Liu Zhong-Min, Liu Teng, Qin Ji-Rong, Bao Zhan, Wang Fei-Yue. Parallel tanks:defining a digital quadruplet for smart tank systems. Journal of Command and Control, 2018, 4(2):111-120 doi: 10.3969/j.issn.2096-0204.2018.02.0111
    [263] 沈震, 刘雅婷, 董西松, 白天翔, 胡斌, 熊刚, 等.平行机群:概念、框架与应用.指挥与控制学报, 2018, 4(3):201-212 doi: 10.3969/j.issn.2096-0204.2018.03.0201

    Shen Zhen, Liu Ya-Ting, Dong Xi-Song, Bai Tian-Xiang, Hu Bin, Xiong Gang, et al. Parallel multi-UAV system:concepts, framework and applications. Journal of Command and Control, 2018, 4(3):201-212 doi: 10.3969/j.issn.2096-0204.2018.03.0201
    [264] 白天翔, 王帅, 赵学亮, 秦继荣.平行武器:迈向智能战争的武器.指挥与控制学报, 2017, 3(2):89-98 doi: 10.3969/j.issn.2096-0204.2017.02.0089

    Bai Tian-Xiang, Wang Shuai, Zhao Xue-Liang, Qin Ji-Rong. Parallel weapons:weapons towards intelligent warfare. Journal of Command and Control, 2017, 3(2):89-98 doi: 10.3969/j.issn.2096-0204.2017.02.0089
    [265] 程长建, 崔峰, 李乐飞, 熊刚, 邹余敏, 廖昌勇.复杂生产系统的平行管理方法与案例.复杂系统与复杂性科学, 2010, 7(1):24-32 doi: 10.3969/j.issn.1672-3813.2010.01.003

    Cheng Chang-Jian, Cui Feng, Li Le-Fei, Xiong Gang, Zou YuMin, Liao Chang-Yong. Parallel management systems for complex productions systems:methods and cases. Complex Systems and Complexity Science, 2010, 7(1):24-32 doi: 10.3969/j.issn.1672-3813.2010.01.003
    [266] 郑松, 吴晓林, 王飞跃, 林东东, 郑蓉, 柯伟林, 等.平行系统方法在自动化集装箱码头中的应用研究.自动化学报, 2019, 45(3):490-504 http://www.aas.net.cn/CN/abstract/abstract19454.shtml

    Zheng Song, Wu Xiao-Lin, Wang Fei-Yue, Lin Dong-Dong, Zheng Rong, Ke Wei-Lin, et al. Applying the parallel systems approach to automatic container terminal. Acta Automatica Sinica, 2019, 45(3):490-504 http://www.aas.net.cn/CN/abstract/abstract19454.shtml
    [267] 沈大勇, 王晓, 刘胜.平行装卸:迈向智慧物流的智能技术.智能科学与技术学报, 2019, 1(1):34-39 http://d.old.wanfangdata.com.cn/Periodical/bjqgyxyxb200001007

    Shen Da-Yong, Wang Xiao, Liu Sheng. Parallel loading and unloading:smart technology toward intelligent logistics. Chinese Journal of Intelligent Science and Technology, 2019, 1(1):34-39 http://d.old.wanfangdata.com.cn/Periodical/bjqgyxyxb200001007
    [268] 熊刚, 王飞跃, 侯家琛, 董西松, 张家麟, 付满昌.提高核电站安全可靠性的平行系统方法.系统工程理论与实践, 2012, 32(5):1018-1026 doi: 10.3969/j.issn.1000-6788.2012.05.014

    Xiong Gang, Wang Fei-Yue, Hou Jia-Chen, Dong Xi-Song, Zhang Jia-Lin, Fu Man-Chang. To improve safety and reliability of nuclear power plant with parallel system method. Systems Engineering-Theory and Practice, 2012, 32(5):1018-1026 doi: 10.3969/j.issn.1000-6788.2012.05.014
    [269] 王飞跃, 孙奇, 江国进, 谭珂, 张俊, 侯家琛, 等.核能5.0:智能时代的核电工业新形态与体系架构.自动化学报, 2018, 44(5):922-934 http://www.aas.net.cn/CN/abstract/abstract19283.shtml

    Wang Fei-Yue, Sun Qi, Jiang Guo-Jin, Tan Ke, Zhang Jun, Hou Jia-Chen, et al. Nuclear energy 5.0:new formation and system architecture of nuclear power industry in the new IT era. Acta Automatica Sinica, 2018, 44(5):922-934 http://www.aas.net.cn/CN/abstract/abstract19283.shtml
    [270] Zhang J J, Gao D W, Zhang Y C, Wang X, Zhao X Y, Duan D L, et al. Social energy:mining energy from the society. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3):466-482 doi: 10.1109/JAS.2017.7510547
    [271] Han J, Wang F Y, Lv Y, Zhu F, Lin Y, Dai X, et al. Efficient deployment of patrols to catch arsonists. In: Proceedings of the 2018 Chinese Automation Congress (CAC), Xi'an, China: IEEE, 2018, 792-797
    [272] 刘烁, 王帅, 傅焕章, 王飞跃.软件定义的犯罪现场分析过程及其知识自动化方案.模式识别与人工智能, 2016, 29(10):876-883 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201610002

    Liu Shuo, Wang Shuai, Fu Huan-Zhang, Wang Fei-Yue. Software-defined crime scene analysis process and its knowledge automation scheme. Pattern Recognition and Artificial Intelligence, 2016, 29(10):876-883 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201610002
    [273] 陈彬, 邱晓刚, 王亦平.智能化的平行实验方法.系统仿真学报, 2017, 29(9):2064-2072 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201709025

    Chen Bin, Qiu Xiao-Gang, Wang Yi-Ping. Intelligent ACP based experimental approach. Journal of System Simulation, 2017, 29(9):2064-2072 http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201709025
    [274] 王秀娟, 李冬, 林宝刚, 华净, 康孟珍, 张冬青, 等.油菜分枝拓扑结构随机模拟.中国科学:生命科学, 2019, 49(1):67-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201901007

    Wang Xiu-Juan, Li Dong, Lin Bao-Gang, Hua Jing, Kang Meng-Zhen, Zhang Dong-Qing, et al. Stochastic simulation of branch morphological structure in oilseed rape. Scientia Sinica (Vitae), 2019, 49(1):67-76 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201901007
    [275] Kang M Z, Wang F Y. From parallel plants to smart plants:intelligent control and management for plant growth. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2):161-166 doi: 10.1109/JAS.2017.7510487
    [276] Kang M Z, Fan X R, Hua J, Wang H Y, Wang X J, Wang F Y. Managing traditional solar greenhouse with CPSS:a just-for-fit philosophy. IEEE Transactions on Cybernetics, 2018, 48(12):3371-3380 doi: 10.1109/TCYB.2018.2858264
    [277] 康孟珍, 王秀娟, 华净, 王浩宇, 王飞跃.平行农业:迈向智慧农业的智能技术.智能科学与技术学报, 2019, 1(2):107-117 http://d.old.wanfangdata.com.cn/Periodical/jxsl201606019

    Kang Meng-Zhen, Wang Xiu-Juan, Hua Jing, Wang Hao-Yu, Wang Fei-Yue. Parallel agriculture:intelligent technology toward smart agriculture. Chinese Journal of Intelligent Science and Technology, 2019, 1(2):107-117 http://d.old.wanfangdata.com.cn/Periodical/jxsl201606019
    [278] Josifovska K, Yigitbas E, Engels G. Reference framework for digital twins within cyber-physical systems. In: Proceedings of the 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems. Montreal, Canada: IEEE, 2019. 25-31
    [279] Yun S, Park J H, Kim W T. Data-centric middleware based digital twin platform for dependable cyber-physical systems. In: Proceedings of the 9th International Conference on Ubiquitous and Future Networks (ICUFN). Milan, Italy: IEEE, 2017. 922-926
    [280] Steinmetz C, Rettberg A, Ribeiro F G C, Schroeder G, Pereira C E. Internet of things ontology for digital twin in cyber physical systems. In: Proceedings of the 8th Brazilian Symposium on Computing Systems Engineering (SBESC). Salvador, Brazil: IEEE, 2018. 154-159
    [281] 李馥娟, 王群, 钱焕延.信息物理融合系统研究.电子技术应用, 2018, 44(9):24-28 http://d.old.wanfangdata.com.cn/Thesis/Y2581439

    Li Fu-Juan, Wang Qun, Qian Huan-Yan. A review of cyberphysical systems. Application of Electronic Technique, 2018, 44(9):24-28 http://d.old.wanfangdata.com.cn/Thesis/Y2581439
    [282] 张程, 陈付龙, 刘超, 齐学梅.基于XML的信息物理融合系统组件建模与仿真.计算机应用, 2019, 39(6):1842-1848 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201906047

    Zhang Cheng, Chen Fu-Long, Liu Chao, Qi Xue-Mei. XMLbased component modeling and stimulation of cyber physical system. Journal of Computer Applications, 2019, 39(6):1842-1848 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201906047
    [283] 陈明, 刘江山, 李杰林, 刘晋飞.基于信息物理系统新特性的智能工厂部署策略研究.中国工程机械学报, 2017, 15(5):383-388 http://d.old.wanfangdata.com.cn/Periodical/zggcjxxb201705002

    Chen Ming, Liu Jiang-Shan, Li Jie-Lin, Liu Jin-Fei. Research of smart factory deployment strategy based on new characteristics of cyber-physical system. Chinese Journal of Construction Machinery, 2017, 15(5):383-388 http://d.old.wanfangdata.com.cn/Periodical/zggcjxxb201705002
    [284] 邓建玲, 王飞跃, 陈耀斌, 赵向阳.从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架.自动化学报, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml

    Deng Jian-Ling, Wang Fei-Yue, Chen Yao-Bin, Zhao XiangYang. From industries 4.0 to energy 5.0:concept and framework of intelligent energy systems. Acta Automatica Sinica, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml
    [285] 程乐峰, 余涛, 张孝顺, 殷林飞, 瞿凯平.信息-物理-社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战.中国电机工程学报, 2018, 48(1):25-40 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201801003.htm

    Cheng Le-Feng, Yu Tao, Zhang Xiao-Shun, Yin Lin-Fei, Qu Kai-Ping. Cyber-physical-social systems based smart energy robotic dispatcher and its knowledge automation:framework, techniques and challenges. Proceedings of the CSEE, 2018, 48(1):25-40 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201801003.htm
    [286] Wang F Y, Wang X, Li J J, Ye P J, Li Q. Social computing:from crowdsourcing to crowd intelligence by cyber movement organizations. IEEE Transactions on Computational Social Systems, 2019, 6(4):619-626 doi: 10.1109/TCSS.2019.2930420
    [287] Zhang J J, Wang F Y, Wang X, Xiong G, Zhu F H, Lv Y S, et al. Cyber-physical-social systems:the state of the art and perspectives. IEEE Transactions on Computational Social Systems, 2018, 5(3):829-840 doi: 10.1109/TCSS.2018.2861224
    [288] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001

    Wang Fei-Yue. Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001
    [289] 段伟.平行仿真的内涵、发展与应用.指挥与控制学报, 2019, 5(2):82-86 doi: 10.3969/j.issn.2096-0204.2019.02.0082

    Duan Wei. Parallel simulation:motivation, concept and application. Journal of Command and Control, 2019, 5(2):82-86 doi: 10.3969/j.issn.2096-0204.2019.02.0082
    [290] Wang F Y, Yang L Q, Yang J, Zhang Y L, Han S S, Zhao K. Urban intelligent parking system based on the parallel theory. In: Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC). Kauai, USA: IEEE, 2016. 1-5
    [291] Mo H, Wang F Y, Zhu F H. Time-varying universe based linguistic dynamic analysis of timing design for parallel traffic light. In: Proceedings of the 2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS). Chengdu, China: IEEE, 2015. 130-133
    [292] Zhao Y F, Kong Q J, Gao H, Zhu F H, Wang F Y. Parallel management for traffic signal control. In: Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao, China: IEEE, 2014. 2888-2893
    [293] Halenar I, Juhas M, Juhasova B, Borkin D. Virtualization of production using digital twin technology. In: Proceedings of the 20th International Carpathian Control Conference (ICCC). Krakow-Wieliczka, Poland: IEEE, 2019. 1-5
    [294] 周有城, 武春龙, 孙建广, 刘芳, 李辉.面向智能产品的数字孪生体功能模型构建方法.计算机集成制造系统, 2019, 25(6):1392-1404 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906009

    Zhou You-Cheng, Wu Chun-Long, Sun Jian-Guang, Liu Fang, Li Hui. Function model construction method based on digital twin for intelligent products. Computer Integrated Manufacturing Systems, 2019, 25(6):1392-1404 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201906009
    [295] Brosinsky C, Song X Y, Westermann D. Digital twin-concept of a continuously adaptive power system mirror. In: Proceedings of the 2019 International ETG-Congress. Esslingen, Germany: IEEE, 2019. 1-6
    [296] 景轩, 姚锡凡.走向社会信息物理生产系统.自动化学报, 2019, 45(4):637-656 http://www.aas.net.cn/CN/abstract/abstract19467.shtml

    Jing Xuan, Yao Xi-Fan. Towards social cyber-physical production systems. Acta Automatica Sinica, 2019, 45(4):637-656 http://www.aas.net.cn/CN/abstract/abstract19467.shtml
    [297] 王飞跃, 张俊.智联网:概念、问题和平台.自动化学报, 2017, 43(12):2061-2070 http://www.aas.net.cn/CN/abstract/abstract19181.shtml

    Wang Fei-Yue, Zhang Jun. Internet of minds:the concept, issues and platforms. Acta Automatica Sinica, 2017, 43(12):2061-2070 http://www.aas.net.cn/CN/abstract/abstract19181.shtml
    [298] 王飞跃, 张军, 张俊, 王晓.工业智联网:基本概念、关键技术与核心应用.自动化学报, 2018, 44(9):1606-1617 http://www.aas.net.cn/CN/abstract/abstract19342.shtml

    Wang Fei-Yue, Zhang Jun, Zhang Jun, Wang Xiao. Industrial internet of minds:concept, technology and application. Acta Automatica Sinica, 2018, 44(9):1606-1617 http://www.aas.net.cn/CN/abstract/abstract19342.shtml
    [299] Wang F Y, Zhang J J, Qin R, Yuan Y. Social energy:emerging token economy for energy production and consumption. IEEE Transactions on Computational Social Systems, 2019, 6(3):388-393 doi: 10.1109/TCSS.2019.2918874
    [300] Wang F Y, Tang Y, Liu X W, Yuan Y. Social education:opportunities and challenges in cyber-physical-social space. IEEE Transactions on Computational Social Systems, 2019, 6(2):191-196 doi: 10.1109/TCSS.2019.2905941
    [301] 张俊, 王飞跃.知识可编程智能芯片系统:概念、架构与展望.模式识别与人工智能, 2018, 31(10):869-876 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201810001

    Zhang Jun, Wang Fei-Yue. Knowledge programmable intelligent chip systems (KPI-CS):concept, architecture and vision. Pattern Recognition and Artificial Intelligence, 2018, 31(10):869-876 http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201810001
    [302] Stark R, Fresemann C, Lindow K. Development and operation of Digital Twins for technical systems and services. CIRP Annals, 2019, 68(1):129-132 doi: 10.1016/j.cirp.2019.04.024
    [303] 朱娜娜, 张伟男, 韩双梅, 马海群.基于社会传感器的网络安全态势感知与应急管理模型研究.智能计算机与应用, 2017, 7(6):135-138 doi: 10.3969/j.issn.2095-2163.2017.06.039

    Zhu Na-Na, Zhang Wei-Nan, Han Shuang-Mei, Ma Hai-Qun. Research on network security situational awareness and emergency management model based on social sensor. Intelligent Computer and Applications, 2017, 7(6):135-138 doi: 10.3969/j.issn.2095-2163.2017.06.039
    [304] 王飞跃.社会信号处理与分析的基本框架:从社会传感网络到计算辩证解析方法.中国科学:信息科学, 2013, 43(12):1598-1611 http://www.cnki.com.cn/Article/CJFDTotal-PZKX201312008.htm

    Wang Fei-Yue. The basic framework of social signal processing and analysis:from social sensor networks to computing dialectical analytical method. Scientia Sinica Informationis, 2013, 43(12):1598-1611 http://www.cnki.com.cn/Article/CJFDTotal-PZKX201312008.htm
  • 期刊类型引用(7)

    1. 赵子成,张开华,樊佳庆,刘青山. 基于运动引导的高效无监督视频目标分割网络. 自动化学报. 2023(04): 872-880 . 本站查看
    2. 霍占强,刘玉洁,付苗苗,乔应旭. 基于卷积神经网络的直线描述方法研究. 计算机工程. 2021(05): 251-259 . 百度学术
    3. 陈娟,杨倩,文泉,刘歆浏,刘议聪. 面向“挑战性课程”的多目标跟踪实验设计. 实验技术与管理. 2020(01): 155-158 . 百度学术
    4. 邹燕飞. 基于一阶和二阶聚合通道特征的实时行人检测. 信息技术. 2020(04): 46-50+55 . 百度学术
    5. 刘万军,李放. 加权模型下的相似匹配跟踪方法. 计算机应用研究. 2020(10): 3180-3183 . 百度学术
    6. 林相泽,张俊媛,朱赛华,刘德营. 基于K-SVD和正交匹配追踪稀疏表示的稻飞虱图像分类方法. 农业工程学报. 2019(19): 216-222 . 百度学术
    7. 杜华臻,张文安,杨旭升. 基于激光雷达的移动机器人人体目标跟随. 高技术通讯. 2019(12): 1239-1246 . 百度学术

    其他类型引用(22)

  • 加载中
  • 图(7) / 表(1)
    计量
    • 文章访问数:  7370
    • HTML全文浏览量:  2641
    • PDF下载量:  1604
    • 被引次数: 29
    出版历程
    • 收稿日期:  2019-09-17
    • 录用日期:  2019-10-17
    • 刊出日期:  2019-11-20

    目录

    /

    返回文章
    返回