-
-
无线网络化多传感器融合估计以其一系列优点, 已经被广泛应用于控制、目标跟踪、生物监测、信号处理和通信等领域, [1-4].然而在实际应用系统中将不可避免地存在传感器故障、模型的不确定性、时间延迟和丢包问题, 使得系统融合估计性能受到严重损害.针对此类系统, 已有学者将随机系统理论、时滞系统理论和融合估计理论相结合, 提出了一些融合估计算法.文献[5]通过增广矩阵方法, 将同时存在不确定观测、随机测量时延和多丢包现象的系统转化为无时滞系统, 并利用射影理论导出最优融合估计器; 考虑到文献[5]中状态维数增加将导致计算负担加重, 文献[6]基于MMSE (Minimum mean square error)准则, 导出了传感器失效下, 既有观测时延又有状态时延的不确定系统的鲁棒Kalman滤波器.文献[7]在集中式融合框架下, 对存在传感器失效、模型不确定性、观测数据包延迟和丢失情况下的融合估计问题进行了讨论, 并提出两种不同的融合估计算法.文献[8]利用文献[9]的结论, 在未考虑模型不确定的前提下, 提出了具有传感器失效、局部最优估计传输时延和丢包下的分布式Kalman融合估计方法.
在恶劣复杂的使用环境中, 除传感器失效现象外, 还会出现因传感器老化、网络拥堵等原因导致的传感器增益退化, [10-12].相比于传感器失效, 传感器增益退化在无线网络化多传感器融合估计系统中并未得到广泛研究, 而且同时考虑传感器增益退化、模型不确定性、数据时延和丢包问题的文献极少.文献[13]在文献[14]的基础上, 给出了一种传感器增益退化下, 具有数据传输延迟和丢失的离散不确定系统的集中式融合估计器.集中式融合结构虽能保证融合估计性能最优, 但是其容错能力较差, 工程上难以实现.因此, 本文在分布式融合框架下, 研究了具有传感器增益退化、模型不确定性、数据传输延迟和丢包的多传感器融合估计问题.其中, 模型的不确定性描述为系统矩阵受到随机扰动, 传感器增益退化现象通过统计特性已知的随机变量来描述, 并由此得到传感器增益退化下的量测方程, 随机时延和丢包现象存在于局部最优状态估计向融合中心传输的过程中.首先, 基于状态方程和量测方程, 设计了一种局部最优无偏估计器, 使得局部估计误差均方差最小.然后, 将传输时延描述为随机过程, 并在融合中心端建立符合存储规则的时延, -, 丢包模型, 利用最优线性无偏估计方法, [15-18], 导出最小方差意义下的分布式融合估计器.最后, 通过算例仿真证明所设计融合估计器的有效性.
1. 问题描述与分析
考虑如下离散不确定线性时变随机系统:
$ {{{\textbf{x}}}_{k+1}}=({{A}_{k}}+{{g}_{k}}{{\hat{A}}_{k}}){{\textbf{{x}}}_{k}}+{{{\textbf{w}}}_{k}} $
(1) 其中, ${{\pmb{\textbf{x}}}_{k}}\in {{\bf R}^{n}}$ 是系统状态, ${{A}_{k}}$ 和 ${{\hat{A}}_{k}}$ 是已知矩阵, ${{\pmb{\textbf{w}}}_{k}}\in{{\bf R}^{n}}$ 是协方差矩阵为 ${{W}_{k}}$ 的零均值白噪声, ${{g}_{k}}$ 是乘性白噪声, 且已知 ${\rm E}\{{{g}_{k}}\}={{\bar{g}}_{k}}$ , ${\rm E}\{g_{k}^{2}\}={{\tilde{g}}_{k}}$ .
如图 1所示, 假设系统由 $N$ 个传感器进行观测, 第 $i$ 个传感器的量测方程描述为:
$ {\textbf{y}}_{k}^{i}=f_{k}^{i}C_{k}^{i}{{\pmb{\textbf{x}}}_{k}}+\pmb{\textbf{v}}_{k}^{i}, ~~i=1, 2, \cdots, N $
(2) 其中, $\pmb{\textbf{y}}_{k}^{i}\in {{\bf R}^{{{m}^{i}}}}$ 是第 $i$ 个传感器的测量输出, $C_{k}^{i}$ 是已知的量测矩阵, $\pmb{\textbf{v}}_{k}^{i}$ 是协方差矩阵为 $V_{k}^{i}$ 的零均值白噪声, 并假设 $\pmb{\textbf{v}}_{k}^{i}$ 与 ${{\pmb{\textbf{w}}}_{k}}$ 、 ${{g}_{k}}$ 均不相关. $f_{k}^{i}$ 是分布在区间 $[{{a}^{i}}, {{b}^{i}}]~(0\le{{a}^{i}}\le{{b}^{i}}\le1)$ 上的随机变量, 它用来描述传感器增益退化程度, 且已知 ${\rm E}\{f_{k}^{i}\}=\bar{f}_{k}^{i}$ , ${\rm E}\{f{{_{k}^{i}}^{2}}\}=\tilde{f}_{k}^{i}$ .
不失一般性, 对系统做如下假设:
假设1.对于任意 $i$ 和 $k$ , $f_{k}^{i}$ 、 ${{g}_{k}}$ 、 ${{\pmb{\textbf{w}}}_{k}}$ 和 $\pmb{\textbf{v}}_{k}^{i}$ 两两互不相关.
假设2.初始状态 ${{\pmb{\textbf{x}}}_{0}}$ 与 $f_{k}^{i}$ 、 ${{g}_{k}}$ 、 ${{\pmb{\textbf{w}}}_{k}}$ 和 $\pmb{\textbf{v}}_{k}^{i}$ 均不相关, 并定义 ${{X}_{0, 0}}:={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\pmb{\textbf{x}}_{0}^{{\rm T}}\}$ .
假设第 $i$ 个子系统(1)和(2)的局部最优(线性最小方差意义下)状态估计记为 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ .在这里, 因为标准Kalman滤波器要求系统矩阵是确定的, 且系统噪声为协方差已知的白噪声, 而本文所研究的系统方程(1)中, 系统矩阵 $({{A}_{k}}+{{g}_{k}}{{\hat{A}}_{k}})$ 中存在乘性随机噪声 ${{g}_{k}}$ , 使得每一时刻系统矩阵不再是确定的, 且并未假设 ${{g}_{k}}$ 是白噪声, 因此标准Kalman滤波器不适合解决系统模型(1)和(2)的最优估计问题.所以, 为得到具有传感器增益退化和模型不确定性子系统的局部最优状态估计, 本文采用如下滤波器的形式:
$ \hat{\pmb{\textbf{x}}}_{k+1}^{i}=L_{k}^{i}(\pmb{\textbf{y}}_{k}^{i}-\bar{f}_{k}^{i}C_{k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i})+({{A}_{k}}+{{\bar{g}}_{k}}{{\hat{A}}_{k}})\hat{\pmb{\textbf{x}}}_{k}^{i} $
(3) 其中, $L_{k}^{i}$ 表示局部滤波增益, 局部最优误差协方差矩阵为 $P_{k}^{i, i}:={\rm E}\{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{i}){{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{i})}^{\rm T}}\}$ , 局部最优误差交叉协方差矩阵为 $P_{k}^{i, j}:={\rm E}\{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{i}){{({{\pmb x}_{k}}-\hat{\pmb x}_{k}^{j})}^{\rm T}}\}$ .
下面给出定理1证明滤波器(3)是无偏的.
定理1.在满足 ${{\hat{\pmb{\textbf{x}}}}_{0}}={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\}$ 的前提下, 式(3)所描述的滤波器是无偏的.
证明.利用数学归纳法, 令 $\tilde{\pmb{\textbf{x}}}_{k}^{i}={{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{k}^{i}$ , 当 $k=0$ 时, ${{\hat{\pmb{\textbf{x}}}}_{0}}={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\}$ , 假设 $k$ 时刻 ${\rm E}\{\tilde{\pmb{\textbf{x}}}_{k}^{i}\}=0$ , 则 $k+1$ 时刻, 有
$ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{k+1}^{i}\}={\rm E}\{({{A}_{k}}+{{g}_{k}}{{{\hat{A}}}_{k}}){{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}}\}-\nonumber\\ ({{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}})\hat{\pmb{\textbf{x}}}_{k}^{i}-L_{k}^{i}({\rm E}\{\pmb{\textbf{y}}_{k}^{i}\}-\bar{f}_{k}^{i}C_{k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i})=\nonumber\\ [({{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}})-L_{k}^{i}\bar{f}_{k}^{i}C_{k}^{i}]{\rm E}\{\tilde{\pmb{\textbf{x}}}_{k}^{i}\}=0 $
(4) 为方便运算, 定义运算符号 $co{{l}_{i}}({{D}_{i}}):={{[D_{1}^{\rm T}, \cdots, D_{i}^{\rm T}, \cdots, D_{N}^{{\rm T}}]}^{{\rm T}}}$ , 根据最优线性无偏估计方法, [15-18], 最优分布式融合估计器为:
$ \hat{\pmb{\textbf{x}}}_{k}^{o}={{(I_{o}^{{\rm T}}P_{k}^{-1}{{I}_{o}})}^{-1}}I_{o}^{{\rm T}}P_{k}^{-1}{{\pmb{\textbf{z}}}_{k}} $
(5) 其中, $\hat{\pmb{\textbf{x}}}_{k}^{o}$ 表示融合估计值, ${{I}_{o}}:={col}_{i}({{I}_{n}})$ , ${{I}_{n}}$ 表示 $n$ 维单位矩阵, ${{\pmb{\textbf{z}}}_{k}}:={col}_{i}(\hat{\pmb{\textbf{x}}}_{k}^{i})$ , ${{P}_{k}}=\left[{matrix} P_{k}^{1, 1} & \cdots & P_{k}^{1, N} \\ \vdots & \ddots & \vdots \\ P_{k}^{N, 1} & \cdots & P_{k}^{N, N} \\ {matrix} \right]$ .最小融合估计误差协方差矩阵 $P_{k}^{o}:={\rm E}\{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{k}^{o}){{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{k}^{o})}^{{\rm T}}}\}$ 为:
$ P_{k}^{o}={{(I_{o}^{{\rm T}}P_{k}^{-1}{{I}_{o}})}^{-1}} $
(6) 在分布式框架下, 随机时延和丢包现象存在于局部最优状态估计向融合中心传输的过程中, 本文将传输时延和丢包描述为:
$ \left\{ {\begin{array}{l} {\pmb{\textbf{z}}_{k}^{i}=\sum\limits_{m=0}^{L}{\delta (\tau _{k}^{i}, m)\hat{\pmb{\textbf{x}}}_{k-m}^{i}}, \quad 0\le m\le L} \\ \hat{\pmb{\textbf{x}}}_{d}^{i}=0, ~~~~~~~~d=-L, -L+1, \cdots, -1\\ \end{array}} \right. $
(7) 其中, $\pmb{\textbf{z}}_{k}^{i}\in {{\bf R}^{n}}$ 表示经第 $i$ 通道到达融合中心的信号, $L$ 表示最大时延, $\delta (\cdot)$ 是标准Dirca函数, 并满足 ${\rm E}\{\delta (\tau _{k}^{i}, m)\}={\rm Prob}\{\tau _{k}^{i}=m\}=p_{m, k}^{i}$ , $\sum_{m=0}^{L}{p_{m, k}^{i}}\le 1$ . $\tau_{k}^{i}=m$ 表示 $k$ 时刻第 $i$ 通道的传输时延为 $m$ .显然, 数据丢包发生的概率为 $-\sum_{m=0}^{L}{p_{m, k}^{i}}$ .
针对不同时刻数据包可能会同时到达融合中心的情况, 采用文献[19]提出的信号存储原则, 每个时刻的局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ 在被发送前已经被标记好时间顺序, 融合中心根据所收到信号的标记, 只存储最新时刻的数据包, 丢掉其他数据包.
由于时延和丢包的存在, 在 $k$ 时刻, 经第 $i$ 通道到达融合中心的局部最优状态估计为 $\hat{\pmb{\textbf{x}}}_{k-m}^{i}~(m=0, 1, \cdots, L)$ , 或者发生数据丢包.因此, 不能将此时的信号直接用于分布式融合估计.为此, 设 $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ 为 $k$ 时刻第 $i$ 通道在融合中心端用于设计分布式融合估计器的局部重组状态估计, 下角标`` $r$ "表示重组, `` $k$ "表示 $k$ 时刻, 上角标`` $i$ "表示第 $i$ 通道. $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ 的形式可描述为:
$ \hat{\pmb{\textbf{x}}}_{r, k}^{i}=\sum\limits_{m=0}^{L}{\Bigg[\delta (\tau _{k}^{i}, m)}\prod\limits_{\tau=1}^{m}{({{A}_{k-\tau }}+{{{\bar{g}}}_{k-\tau }}{{{\hat{A}}}_{k-\tau }})\hat{\pmb{\textbf{x}}}_{k-m}^{i}}\Bigg] +\nonumber\\ \left[1-\sum\limits_{m=0}^{L}{\delta(\tau_{k}^{i}, m)}\right]({{A}_{k-1}}+{{{\bar{g}}}_{k-1}}{{{\hat{A}}}_{k-1}})\hat{\pmb{\textbf{x}}}_{r, k-1}^{i} $
(8) 式(8)的含义为:发生时延 $m$ 时, $k$ 时刻经第 $i$ 通道到达融合中心的时延信号为 $\hat{\pmb{\textbf{x}}}_{k-m}^{i}$ , 则对应的局部重组状态估计取为 $\hat{\pmb{\textbf{x}}}_{k-m}^{i}$ 的 $m$ 步预测值, 即为 $\prod_{\tau=1}^{m}{({{A}_{k-\tau }}+{{{\bar{g}}}_{k-\tau }}{{{\hat{A}}}_{k-\tau }})\hat{\pmb{\textbf{x}}}_{k-m}^{i}}$ ; 发生数据丢包时, 则取上一时刻第 $i$ 通道的局部重组状态估计的一步预测值作为本时刻的局部重组状态估计, 即为 $({{A}_{k-1}}+{{\bar{g}}_{k-1}}{{\hat{A}}_{k-1}})\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}$ .
针对上述具有传感器增益退化、模型不确定性、随机时延和丢包的多传感器融合估计系统, 本文要解决的问题是:
1) 针对第 $i$ 个子系统(1)和(2), 设计局部增益 $L_{k}^{i}$ , 使得局部估计误差协方差最小.
2) 基于所设计的局部滤波增益 $L_{k}^{i}$ 及相应的 $N$ 个局部重组状态估计 $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ , 根据最优线性无偏估计方法, 得到分布式融合估计器的递推形式.
2. 局部最优滤波增益设计
在引出主要结论之前, 首先定义如下算子:
$ \left\{ {\begin{array}{l} {{X}_{k, k}}:={\rm E}\{{{\pmb{\textbf{x}}}_{k}}\pmb{\textbf{x}}_{k}^{{\rm T}}\}, Y_{k, k}^{i, j}:={\rm E}\{\pmb{\textbf{y}}_{k}^{i}\pmb{\textbf{y}}{{_{k}^{j}}^{{\rm T}}}\} \nonumber\\ H_{k, k}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{k}}\pmb{\textbf{y}}{{_{k}^{i}}^{{\rm T}}}\}, \Lambda _{k, k}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{k}}\hat{\pmb{\textbf{x}}}{{_{k}^{i}}^{{\rm T}}}\} \nonumber\\ M_{k, k}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\pmb{\textbf{y}}{{_{k}^{j}}^{{\rm T}}}\}, \Gamma _{k, k}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{k}^{j}}^{{\rm T}}}\} \nonumber\\ {{A}_{\bar{g}, k}}:={{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}}, {{A}_{g, k}}:={{A}_{k}}+{{g}_{k}}{{{\hat{A}}}_{k}}\nonumber\\ \end{array}} \right. $
(9) 定理2.对于第 $i$ 个子系统(1)和(2), 使得局部滤波器(3)误差协方差最小的局部滤波增益的递推形式为:
$ L_{k}^{i}=S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}} $
(10) 局部最优误差协方差递推形式为:
$ P_{k+1}^{i, i}={{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}-S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}}S_{k}^{i}+{{W}_{k}}+\nonumber\\ ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}} $
(11) 局部最优误差交叉协方差递推形式为:
$ P_{k+1}^{i, j}={{A}_{\bar{g}, k}}P_{k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}+{{W}_{k}}-{{A}_{\bar{g}, k}}[H_{k, k}^{j}-M_{k, k}^{i, j} +\nonumber\\~~~\bar{f}_{k}^{j}C_{k}^{j{\rm T}}(\Gamma _{k, k}^{i, j}-\Lambda _{k, k}^{j})]L_{k}^{j{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}-\nonumber\\~~~L_{k}^{i}[H_{k, k}^{i{\rm T}}-M_{k, k}^{j, i{\rm T}}+\bar{f}_{k}^{i}C_{k}^{i}{{(\Gamma _{k, k}^{j, i}-\Lambda _{k, k}^{i})}^{{\rm T}}}]{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\~~~L_{k}^{i}(\bar{f}_{k}^{i}\bar{f}_{k}^{j}C_{k}^{i}{{X}_{k, k}}C_{k}^{j{\rm T}}-\bar{f}_{k}^{j}M_{k, k}^{j, i{\rm T}}C_{k}^{j{\rm T}}-\bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, j}+\nonumber\\~~~\bar{f}_{k}^{i}\bar{f}_{k}^{j}C_{k}^{i}\Gamma _{k, k}^{i, j}C_{k}^{j{\rm T}})L_{k}^{j{\rm T}} $
(12) 其中, 各量递推公式为:
$ S_{k}^{i}=[H{{_{k, k}^{i}}^{{\rm T}}}-M{{_{k, k}^{i, i}}^{{\rm T}}}+\bar{f}_{k}^{i}C_{k}^{i}{{(\Gamma_{k, k}^{i, i}-\Lambda_{k, k}^{i})}^{{\rm T}}}]{{A}_{\bar{g}, k}}^{{\rm T}} $
(13) $ T_{k}^{i}=\tilde{f}_{k}^{i}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}M{{_{k, k}^{i, i}}^{{\rm T}}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, i}+\nonumber\\ {{(\bar{f}_{k}^{i})}^{2}}C_{k}^{i}\Gamma _{k, k}^{i, i}C{{_{k}^{i}}^{{\rm T}}}+V_{k}^{i} $
(14) $ {{X}_{k, k}}={{A}_{k-1}}{{X}_{k-1, k-1}}A_{k-1}^{{\rm T}}+{{{\bar{g}}}_{k-1}}({{A}_{k-1}}{{X}_{k-1, k-1}}\times\nonumber\\ \hat{A}_{k-1}^{{\rm T}} +{{{\hat{A}}}_{k-1}}{{X}_{k-1, k-1}}A_{k-1}^{{\rm T}})+{{{\tilde{g}}}_{k-1}}{{{\hat{A}}}_{k-1}}\nonumber\times\\ {{X}_{k-1, k-1}}\hat{A}_{k-1}^{{\rm T}}+{{W}_{k}} $
(15) $ Y_{k}^{i, j}=\bar{f}_{k}^{i}\bar{f}_{k}^{j}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{j}}^{{\rm T}}} $
(16) $ H_{k}^{i}=\bar{f}_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}} $
(17) $ \Lambda _{k, k}^{i}={{A}_{\bar{g}, k-1}}(H_{k-1, k-1}^{i}-\bar{f}_{k-1}^{i}\Lambda _{k-1, k-1}^{i}C{{_{k-1}^{i}}^{{\rm T}}}) \times\nonumber\\ L_{k-1}^{i{\rm T}} +{{A}_{\bar{g}, k-1}}\Lambda _{k-1, k-1}^{i}{{A}_{\bar{g}, k-1}}^{{\rm T}} $
(18) $ M_{k, k}^{i, j}=\bar{f}_{k}^{j}\Lambda {{_{k, k}^{i}}^{{\rm T}}}C{{_{k}^{j}}^{{\rm T}}} $
(19) $ \Gamma _{k, k}^{i, j}=L_{k-1}^{i}(Y_{k-1}^{i, j}-\bar{f}_{k-1}^{j}M{{_{k-1, k-1}^{j, i}}^{{\rm T}}}C{{_{k-1}^{j}}^{{\rm T}}}-\nonumber\\~~~~\bar{f}_{k-1}^{i}C_{k-1}^{i}M_{k-1, k-1}^{i, j}+\bar{f}_{k-1}^{i}\bar{f}_{k-1}^{j}C_{k-1}^{i}\Gamma _{k-1, k-1}^{i, j}\times \nonumber\\~~~~C{{_{k-1}^{j}}^{{\rm T}}})L{{_{k-1}^{j}}^{{\rm T}}}+{{A}_{\bar{g}, k-1}}\Gamma _{k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}} +\nonumber\\~~~~L_{k-1}^{i}(M{{_{k-1, k-1}^{j, i}}^{{\rm T}}}-\bar{f}_{k-1}^{i}C_{k-1}^{i}\Gamma _{k-1, k-1}^{i, j}){{A}_{\bar{g}, k-1}}^{{\rm T}} + \nonumber\\~~~~{{A}_{\bar{g}, k-1}}(M_{k-1, k-1}^{i, j}-\bar{f}_{k-1}^{j}\Gamma _{k-1, k-1}^{i, j}C{{_{k-1}^{j}}^{{\rm T}}})L{{_{k-1}^{j}}^{{\rm T}}} $
(20) 并且, 根据假设2, ${{X}_{0, 0}}$ 为已知, 其他变量初值设置如下:
$ \left\{ {\begin{array}{l} Y_{0, 0}^{i, j}=\bar{f}_{0}^{i}\bar{f}_{0}^{j}C_{0}^{i}{{X}_{0, 0}}C{{_{0}^{j}}^{{\rm T}}}\nonumber\\ H_{0, 0}^{i}=\bar{f}_{0}^{i}{{X}_{0, 0}}C{{_{0}^{i}}^{{\rm T}}}\nonumber\\ \Lambda _{0, 0}^{i}={\rm E}\{{{{\pmb{\textbf{x}}}}_{0}}\}{\rm E}\{{{\pmb{\textbf{x}}}_{0}}^{{\rm T}}\}\nonumber\\ M_{0, 0}^{i, j}=\bar{f}_{0}^{j}\Lambda {{_{0, 0}^{i}}^{{\rm T}}}C{{_{0}^{j}}^{{\rm T}}}\nonumber\\ \Gamma _{0, 0}^{i, j}={\rm E}\{{{\pmb{\textbf{x}}}_{0}}\}{\rm E}\{{{\pmb{\textbf{x}}}_{0}}^{{\rm T}}\} \nonumber\\ \end{array}} \right. $
(21) 证明.下面证明式(10), 由式(1)~(3)可得:
$ \tilde{\pmb{\textbf{x}}}_{k+1}^{i}={{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{k+1}^{i}=\nonumber\\ ({{A}_{k}}+{{{\bar{g}}}_{k}}{{{\hat{A}}}_{k}})\tilde{\pmb{\textbf{x}}}_{k}^{i}+({{g}_{k}}-{{{\bar{g}}}_{k}}){{{\hat{A}}}_{k}}{{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}}-\nonumber\\ L_{k}^{i}(\pmb{\textbf{y}}_{k}^{i}-\bar{f}_{k}^{i}C_{k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i}) $
(22) 结合式(9)以及假设1和假设2, 可得:
$ P_{k+1}^{i, i}:={\rm E}\{({{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{k+1}^{i}){{({{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{k+1}^{i})}^{{\rm T}}}\}=\nonumber\\ {{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}-\nonumber\\ {{A}_{\bar{g}, k}}[H_{k, k}^{i}-M_{k, k}^{i, i}+\bar{f}_{k}^{i}(\Gamma _{k, k}^{i, i}-\Lambda _{k, k}^{i})C{{_{k}^{i}}^{{\rm T}}}]L{{_{k}^{i}}^{{\rm T}}}-\nonumber\\ L_{k}^{i}{{[H_{k, k}^{i}-M_{k, k}^{i, i}+\bar{f}_{k}^{i}(\Gamma _{k, k}^{i, i}-\Lambda _{k, k}^{i})C{{_{k}^{i}}^{{\rm T}}}]}^{{\rm T}}}{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\ L_{k}^{i}[\tilde{f}_{k}^{i}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}}+{{(\bar{f}_{k}^{i})}^{2}}C_{k}^{i}\Gamma _{k, k}^{i, i}C{{_{k}^{i}}^{{\rm T}}}-\nonumber\\ \bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, i}-\bar{f}_{k}^{i}M{{_{k, k}^{i, i}}^{{\rm T}}}C{{_{k}^{i}}^{{\rm T}}}+V_{k}^{i}]L{{_{k}^{i}}^{\rm T}}+{{W}_{k}} \nonumber\\ $
(23) 下面令
$ S_{k}^{i}=[H{{_{k, k}^{i}}^{{\rm T}}}-M{{_{k, k}^{i, i}}^{{\rm T}}}+\bar{f}_{k}^{i}C_{k}^{i}{{(\Gamma _{k, k}^{i, i}-\Lambda _{k, k}^{i})}^{{\rm T}}}]{{A}_{\bar{g}, k}}^{{\rm T}} $
(24) $ T_{k}^{i}=\tilde{f}_{k}^{i}C_{k}^{i}{{X}_{k, k}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}M{{_{k, k}^{i, i}}^{{\rm T}}}C{{_{k}^{i}}^{{\rm T}}}-\bar{f}_{k}^{i}C_{k}^{i}M_{k, k}^{i, i} +\nonumber\\ {{(\bar{f}_{k}^{i})}^{2}}C_{k}^{i}\Gamma _{k, k}^{i, i}C{{_{k}^{i}}^{{\rm T}}}+V_{k}^{i} $
(25) 将式(24)和式(25)代入式(23)可得:
$ P_{k+1}^{i, i}={{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}+{{W}_{k}}-\nonumber\\ S{{_{k}^{i}}^{{\rm T}}}L{{_{k}^{i}}^{{\rm T}}}-L_{k}^{i}S_{k}^{i}+L_{k}^{i}T_{k}^{i}L{{_{k}^{i}}^{{\rm T}}}+{{W}_{k}}=\nonumber\\ (L_{k}^{i}T_{k}^{i}-S{{_{k}^{i}}^{{\rm T}}}){{(T_{k}^{i})}^{-1}}{{(L_{k}^{i}T_{k}^{i}-S{{_{k}^{i}}^{{\rm T}}})}^{-1}}+{{W}_{k}}+\nonumber\\ {{A}_{\bar{g}, k}}P_{k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}\hat{A}_{k}^{{\rm T}}-\nonumber\\ S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}}S_{k}^{i} $
(26) 令 $L_{k}^{i}=S{{_{k}^{i}}^{{\rm T}}}{{(T_{k}^{i})}^{-1}}$ , 则式(23)中 $P_{k+1}^{i, i}$ 最小, 得到式(11)和式(12).
需要特别指出的是, 定理2与文献[13]中提出的定理1在形式上有很多相似之处, 这是因为本文求取传感器 $i$ 的局部最优状态估计和文献[13]求取全局融合估计, 都是基于最小方差估计方法, 中间变量的定义和结论推导在形式上有相似之处, 但是二者各自定义的中间变量有明显不同的意义.本文采用的是分布式融合估计, 即先利用传感器 $i$ 在 $k$ 时刻的测量数据 $\pmb{\textbf{y}}_{k}^{i}$ 得到局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ , 时延和丢包发生在 $\hat{\pmb{\textbf{x}}}_{k}^{i}$ 传送至融合中心的过程中, 定理2求取的是局部最优估计, 且式(9)中各中间变量是基于传感器 $i$ 定义的, 未加入时延和丢包环节, 而文献[13]中定理1虽采用与本文中式(3)形式一致的滤波器结构, 但其采用的是集中式融合估计方法, 融合中心直接利用所有传感器的测量数据进行融合估计, 时延和丢包发生在测量数据 $\pmb{\textbf{y}}_{k}^{i}$ 传送至融合中心的过程中, 所定义的各中间变量是基于全局的, 具有明显的时延特征.
3. 分布式融合估计器
在得到主要结论之前, 首先介绍如下两个引理.
引理1.定义矩阵 $A_{\bar{g}, \bar{f}, m}^{i}:=({{A}_{m}}+{{\bar{g}}_{m}}{{\hat{A}}_{m}})-\bar{f}_{m}^{i}L_{m}^{i}C_{m}^{i}$ , 并假定算子 $\prod_{e=1}^{0}{(\cdot)}={{I}_{n}}$ .则对于 $\Gamma_{m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}~(m\ge0, n\ge0)$ , 有
1) 情况1: $m=n$ 时,
$ \Gamma _{m, n}^{i, j}=\Gamma _{m, m}^{i, j} $
(27) 2) 情况2: $m-n=1$ 时,
$ \Gamma _{m, n}^{i, j}=A_{\bar{g}, \bar{f}, m-1}^{i}\Gamma _{m-1, m-1}^{i, j}+\bar{f}_{m-1}^{i}L_{m-1}^{i}C_{m-1}^{i}\times\nonumber\\ \Lambda_{m-1, m-1}^{j} $
(28) 3) 情况3: $m-n\ge 2$ 时,
$ \Gamma _{m, n}^{i, j}=\bar{f}_{m-1}^{i}L_{m-1}^{i}C_{m-1}^{i}(\prod\limits_{e=1}^{m-n-1}{{{A}_{\bar{g}, m-1-e}}})\Lambda _{n, n}^{j} +\nonumber\\ (\prod\limits_{f=1}^{m-n}{A_{\bar{g}, \bar{f}, m-f}^{i})}\Gamma _{n, n}^{i, j}\sum\limits_{c=2}^{m-n}{[\bar{f}_{m-c}^{i}(\prod\limits_{d=1}^{c-1}{A_{\bar{g}, \bar{f}, m-d}^{i}})}+\nonumber\\ L_{m-c}^{i}C_{m-c}^{i}(\prod\limits_{h=1}^{m-n-c}{{{A}_{\bar{g}, m-c-h}})\Lambda _{n, n}^{j}]} $
(29) 4) 情况4: $n-m=1$ 时,
$ \Gamma _{m, n}^{i, j}=\Gamma _{n-1, n-1}^{i, j}A{{_{\bar{g}, \bar{f}, n-1}^{j}}^{{\rm T}}}+\bar{f}_{n-1}^{j}\Lambda {{_{n-1, n-1}^{i}}^{{\rm T}}} \times\nonumber\\ C{{_{n-1}^{j}}^{{\rm T}}}L{{_{n-1}^{j}}^{{\rm T}}} $
(30) 5) 情况5: $n-m\ge 2$ 时,
$ \Gamma _{m, n}^{i, j}\!=\! \bar{f}_{n-1}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}{{)}^{{\rm T}}}}C{{_{n-1}^{j}}^{{\rm T}}}L{{_{n-1}^{j}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}{[\bar{f}_{n-c}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}{{)}^{{\rm T}}}C{{_{n-c}^{j}}^{{\rm T}}}}}\times \nonumber\\ L{{_{n-c}^{j}}^{{\rm T}}}{{(\prod\limits_{d=1}^{c-1}{A_{\bar{g}, \bar{f}, n-d}^{j}})}^{{\rm T}}}]+\Gamma _{m, m}^{i, j}(\prod\limits_{f=1}^{n-m}{A_{\bar{g}, \bar{f}, n-f}^{j}{{)}^{{\rm T}}}} \nonumber\\ $
(31) 对于 $\Lambda_{m, n}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}$ , 有:
1) 情况1: $m=n$ 时,
$ \Lambda _{m, n}^{i}=\Lambda _{m, m}^{i} $
(32) 2) 情况2: $m-n\ge1$ 时,
$ \Lambda _{m, n}^{i}=(\prod\limits_{\tau=1}^{m-n}{{{A}_{\bar{g}, m-1}}})\Lambda _{n, n}^{i} $
(33) 3) 情况3: $n-m=1$ 时,
$ \Lambda _{m, n}^{i}=H_{n-1, n-1}^{i}L{{_{n-1}^{i}}^{{\rm T}}}+\Lambda _{n-1, n-1}^{i}A{{_{\bar{g}, \bar{f}, n-1}^{i}}^{{\rm T}}} $
(34) 4) 情况4: $n-m\ge 2$ 时,
$ \Lambda _{m, n}^{i}=\bar{f}_{n-1}^{i}{{X}_{m, m}}(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}})^{\rm T}C{{_{n-1}^{i}}^{{\rm T}}}L{{_{n-1}^{i}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}{[\bar{f}_{n-c}^{i}{{X}_{m, m}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}{{)}^{{\rm T}}}C{{_{n-c}^{i}}^{{\rm T}}}}} \times \nonumber\\ L{{_{n-c}^{i}}^{{\rm T}}}{{(\prod\limits_{d=1}^{c-1}{A_{\bar{g}, \bar{f}, n-d}^{i}})}^{{\rm T}}}]+\Lambda _{m, m}^{i} \times \nonumber\\ (\prod\limits_{f=1}^{n-m}{A_{\bar{g}, \bar{f}, n-f}^{i}{{)}^{{\rm T}}}} $
(35) 由于引理1证明过程较繁琐, 为增加文章可读性, 具体证明过程见附录A.
引理 2定义如下变量:
$~~\left\{ {\begin{array}{l} \pmb{\textbf{r}}_{m+1}^{i}:=\!\!\sum\limits_{t=0}^{L}{[\delta (\tau _{m+1}^{i}, t)\prod\limits_{\tau=1}^{t}{({{A}_{m+1-\tau }}}}+{{{\bar{g}}}_{m+1-\tau }} \times\nonumber\\~~~~~~~~~~~~~~~{{{\hat{A}}}_{m+1-\tau }})\hat{\pmb{\textbf{x}}}_{m+1-t}^{i}] \nonumber\\ Y_{r, m, n}^{i, j}:={\rm E}\{\pmb{\textbf{y}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\}, R_{m, n}^{i, j}:={\rm E}\{\pmb{\textbf{r}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\} \nonumber\\ R_{y, m, n}^{i, j}:={\rm E}\{\pmb{\textbf{y}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\}, R_{x, m, n}^{i}:={\rm E}\{\pmb{\textbf{r}}_{m}^{i}{{\pmb{\textbf{x}}}_{n}}^{{\rm T}}\} \nonumber\\ \bar{R}_{x, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\}, \hat{R}_{x, m, n}^{i, j}:={\rm E}\{\pmb{\textbf{r}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\} \nonumber\\ X_{r, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{r, m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\}, \bar{X}_{r, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\pmb{\textbf{r}}{{_{n}^{j}}^{{\rm T}}}\} \nonumber\\ \hat{X}_{r, m, n}^{i}:={\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{r, n}^{i}}^{{\rm T}}}\}, \hat{X}_{r, m, n}^{i, j}:={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, n}^{j}}^{{\rm T}}}\} \nonumber\\ \Phi _{m, k}^{i}:=\sum\limits_{m=0}^{L}{\delta (\tau _{k}^{i}, m), \bar{\Phi }_{m, k}^{i}:=1-\sum\limits_{m=0}^{L}{\delta (\tau _{k}^{i}, m)}} \nonumber\\ p_{L, m, k}^{i}:=\sum\limits_{m=0}^{L}{p_{m, k}^{i}, ~\bar{p}_{L, m, k}^{i}:=1-\sum\limits_{m=0}^{L}{p_{m, k}^{i}}} \end{array}} \right. $
(36) 则有下式成立:
$ R_{k+1, k+1}^{i, j}=\left\{ \begin{matrix} \sum\limits_{m=0}^{L}{\sum\limits_{n=0}^{L}{[p_{m, k+1}^{i}p_{n, k+1}^{j}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}}}\times \\ \Gamma _{k+1-m, k+1-n}^{i, j}(\prod\limits_{s=1}^{n}{{{A}_{\bar{g}, k+1-s}}{{)}^{\text{T}}}}], ~~i\ne j \\ \sum\limits_{m=0}^{L}{[p_{m, k+1}^{i}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}\Gamma _{k+1-m, k+1-m}^{i, i}}\times \\ (\prod\limits_{s=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}{{)}^{\text{T}}}]}, ~~i=j \\ \end{matrix} \right. $
(37) $ \hat{R}_{x, k+1, k}^{i, j}=\sum\limits_{m=0}^{L}{[p_{m, k+1}^{i}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}}\hat{X}_{r, k+1-m, k}^{i, j}] $
(38) $ R_{x, k+1, k}^{i}=\sum\limits_{m=0}^{L}{[p_{m, k+1}^{i}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})\Lambda {{_{k, k+1-m}^{i}}^{{\rm T}}}]} $
(39) $ X_{r, k, k}^{i, j}=\nonumber\\ \left\{ {\begin{array}{l} R_{k, k}^{i, j}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{R}{{_{x, k, k-1}^{j, i}}^{{\rm T}}} +\nonumber\\ \quad\bar{p}_{L, n, k}^{j}\hat{R}_{x, k, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i} \times\nonumber\\ \quad\bar{p}_{L, n, k}^{j}{{A}_{\bar{g}, k-1}}X_{r, k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}}, \, i\ne j \nonumber\\[5mm] R_{k, k}^{i, i}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{R}{{_{x, k, k-1}^{i, i}}^{{\rm T}}} +\nonumber\\ \quad\bar{p}_{L, m, k}^{i}\hat{R}_{x, k, k-1}^{i, i}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i}\times\nonumber\\ \quad{{A}_{\bar{g}, k-1}}X_{r, k-1, k-1}^{i, i}{{A}_{\bar{g}, k-1}}^{{\rm T}}, ~~~~~~~~~i=j \end{array}} \right. $
(40) $ \hat{X}_{r, k, k}^{i}=\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{X}_{r, k-1, k-1}^{i}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\nonumber\\ {{A}_{\bar{g}, k-1}}R{{_{x, k, k-1}^{i}}^{{\rm T}}} $
(41) $ \hat{X}_{r, k+1-m, k}^{i, j}=\nonumber\\ \left\{ {\begin{array}{l} L_{k}^{i}Y_{r, k, k}^{i, j}+A_{\bar{g}, \bar{f}, k}^{i}\hat{X}_{r, k, k}^{i, j}, ~~~~~~~~~~~~~~~~~~~~~~~m=0 \nonumber\\[4mm] L_{k-1}^{i}R_{y, k-1, k}^{i, j}+A_{\bar{g}, \bar{f}, k-1}^{i}\bar{X}_{r, k-1, k}^{i, j} +\nonumber\\ L_{k-1}^{i}\bar{p}_{L, n, k}^{j}Y_{r, k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}} +\nonumber\\ A_{\bar{g}, \bar{f}, k-1}^{i}\bar{p}_{L, n, k}^{j}\times \hat{X}_{r, k-1, k-1}^{i, j}{{A}_{\bar{g}, k-1}}^{{\rm T}}, ~~~m=1 \nonumber\\[4mm] \sum\limits_{\tau=1}^{m-1}{[\bar{X}_{r, k+1-m, k-\tau }^{i, j}}{(\prod\limits_{s=1}^{\tau }{\bar{p}_{L, n, k+1-\tau }^{j}}{{A}_{\bar{g}, k-\tau }})^{\rm T}}]\times\nonumber\\ \hat{X}_{r, k+1-m, k+1-m}^{i, j}(\prod\limits_{t=1}^{m-1}{\bar{p}_{L, n, k+1-t}^{j}{{A}_{\bar{g}, k-t}}{{)}^{{\rm T}}}} +\nonumber\\ \bar{X}_{r, k+1-m, k}^{i, j}, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~m>1\nonumber\\ \end{array}} \right. $
(42) $ Y_{r, k, k}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}\hat{X}_{r, k, k}^{j} $
(43) $ R_{y, k, k+1}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}R{{_{x, k, k+1}^{j}}^{{\rm T}}} $
(44) $ \bar{X}_{r, m, n}^{i, j}=\sum\limits_{s=0}^{L}{[p_{s, n}^{i}\Gamma _{m, n-s}^{i, j}(\prod\limits_{\tau=1}^{s}{{{A}_{\bar{g}, n-\tau }}{{)}^{{\rm T}}}]}} $
(45) 由于引理2证明过程较繁琐, 为增加文章可读性, 具体证明过程见附录B.
定义 $\tilde{\pmb{\textbf{x}}}_{r, k+1}^{i}:={{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{r, k+1}^{i}$ , 重组估计交叉误差协方差矩阵为 $P_{r, k+1}^{i, j}:={\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k+1}^{j}}^{{\rm T}}}\}$ , 根据引理1和引理2的结论, 以下定理给出 $P_{r, k+1}^{i, j}$ 的计算方法.
定理3.基于式(36)所定义的变量, $P_{r, k+1}^{i, j}$ 递推公式为:
$ P_{r, k+1}^{i, j}=\nonumber\\ \left\{ {\begin{array}{l} ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+R_{k+1, k+1}^{i, j}-\nonumber\\ \quad R_{x, k+1, k}^{i}{{A}_{\bar{g}, k}}^{{\rm T}}+\hat{R}_{x, k+1, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, n, k+1}^{j}\hat{R}_{x, k+1, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}\hat{R}{{_{x, k+1, k}^{j, i}}^{{\rm T}}} +\nonumber\\ \quad {{A}_{\bar{g}, k}}P_{r, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}+p_{L, n, k+1}^{j}{{A}_{\bar{g}, k}}\hat{X}_{r, k, k}^{j}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, n, k+1}^{j}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}} \times\nonumber\\ \quad \hat{R}{{_{x, k+1, k}^{j, i}}^{{\rm T}}}+p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{X}{{_{r, k, k}^{i}}^{{\rm T}}}{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\ \quad p_{L, m, k+1}^{i}p_{L, n, k+1}^{j}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, j}{{A}_{\bar{g}, k}}^{{\rm T}}, ~~~~~~~~i\ne j\nonumber\\[4mm] ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+R_{k+1, k+1}^{i, i}-\nonumber\\ \quad R_{x, k+1, k}^{i}{{A}_{\bar{g}, k}}^{{\rm T}}+\hat{R}_{x, k+1, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, m, k+1}^{i}\hat{R}_{x, k+1, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}\hat{R}{{_{x, k+1, k}^{i, i}}^{{\rm T}}} +\nonumber\\ \quad {{A}_{\bar{g}, k}}P_{r, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}+p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{X}_{r, k, k}^{i}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{R}{{_{x, k+1, k}^{i, i}}^{{\rm T}}}-\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{X}{{_{r, k, k}^{i}}^{{\rm T}}}{{A}_{\bar{g}, k}}^{{\rm T}} +\nonumber\\ \quad p_{L, m, k+1}^{i}{{A}_{\bar{g}, k}}X_{r, k, k}^{i, i}{{A}_{\bar{g}, k}}^{{\rm T}}, ~~~~~~~~~~~~~~~~~~~~~~i=j \end{array}} \right. $
(46) 证明.由式(1)和式(8)可得:
$ \tilde{{\pmb{\textbf{x}}}}_{r, k+1}^{i}={{\pmb{\textbf{x}}}_{k+1}}-\hat{\pmb{\textbf{x}}}_{r, k+1}^{i}=\nonumber\\ {{A}_{g, k}}{{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}}-\pmb{\textbf{r}}_{k+1}^{i}-{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}+\Phi _{m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}=\nonumber\\ ({{A}_{g, k}}-{{A}_{\bar{g}, k}}){{\pmb{\textbf{x}}}_{k}}-\pmb{\textbf{r}}_{k+1}^{i}+{{A}_{\bar{g}, k}}\tilde{\pmb{\textbf{x}}}_{r, k}^{i} +\nonumber\\ \Phi _{m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}+{{\pmb{\textbf{w}}}_{k}} $
(47) 则可得:
1) 当 $i\ne j$ 时,
$ P_{r, k+1}^{i, j}=\nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{\pmb{\textbf{r}}, k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k+1}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{[({{A}_{g, k}}-{{A}_{\bar{g}, k}}){{\pmb{\textbf{x}}}_{k}}-\pmb{\textbf{r}}_{k+1}^{i}+{{A}_{\bar{g}, k}}\tilde{\pmb{\textbf{x}}}_{r, k}^{i} +\nonumber\\ \Phi _{m, k+1}^{i}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{i}+{{\pmb{\textbf{w}}}_{k}}][({{A}_{g, k}}-{{A}_{\bar{g}, k}}){{\pmb{\textbf{x}}}_{k}}-\nonumber\\ {\textbf{r}}_{k+1}^{j}+{{A}_{\bar{g}, k}}\tilde{\pmb{\textbf{x}}}_{r, k}^{j}+\Phi _{n, k+1}^{j}{{A}_{\bar{g}, k}}\hat{\pmb{\textbf{x}}}_{r, k}^{j}+{{\pmb{\textbf{w}}}_{k}}{{]}^{{\rm T}}}\}=\nonumber\\ ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\}-\nonumber\\ {\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\}-\nonumber\\ {\rm E}\{\Phi _{n, k+1}^{j}\}{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}\times\nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{n, k+1}^{j}\} \times\nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\} \times \nonumber\\ {\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\}\times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\Phi _{n, k+1}^{j}\} \times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}\nonumber\\ $
(48) 2) 当 $i=j$ 时,
$ P_{r, k+1}^{i, j}=\nonumber\\ ({{{\tilde{g}}}_{k}}-\bar{g}_{k}^{2}){{{\hat{A}}}_{k}}{{X}_{k, k}}{{{\hat{A}}}_{k}}^{{\rm T}}+{{W}_{k}}+{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\pmb{\textbf{r}}{{_{k+1}^{i}}^{{\rm T}}}\}-\nonumber\\ {\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-{\rm E}\{\Phi _{m, k+1}^{i}\}{\rm E}\{\pmb{\textbf{r}}_{k+1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\} \times \nonumber\\ {{A}_{\bar{g}, k}}^{{\rm T}}-{{A}_{\bar{g}, k}}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{i}}^{{\rm T}}}\}+{{A}_{\bar{g}, k}}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\} \times\nonumber\\ {{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}-\nonumber\\ {{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\}{\rm E}\{\tilde{\pmb{\textbf{x}}}_{r, k}^{i}\pmb{\textbf{r}}{{_{k+1}^{i}}^{{\rm T}}}\}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\} \times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\tilde{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}}+{{A}_{\bar{g}, k}}{\rm E}\{\Phi _{m, k+1}^{i}\} \times \nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k}}^{{\rm T}} $
(49) 利用式(36)对式(48)和式(49)中各量进行变量代换, 即得到式(46).
设 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ 为分布式融合估计值, 融合估计误差协方差为 $P_{r, k}^{o}={\rm E}\{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{r, k}^{o}){{({{\pmb{\textbf{x}}}_{k}}-\hat{\pmb{\textbf{x}}}_{r, k}^{o})}^{{\rm T}}}\}$ .
根据最优线性无偏估计方法, 基于所设计的局部滤波增益(10)及相应融合中心端的 $N$ 个局部重组状态估计 $\hat{\pmb{\textbf{x}}}_{r, k}^{i}$ , 由式(5)和式(6), 可得到分布式融合估计器的形式如下:
$ \hat{\pmb{\textbf{x}}}_{r, k}^{o}={{(I_{o}^{{\rm T}}P_{r, k}^{-1}{{I}_{o}})}^{-1}}{{I}_{o}^{{\rm T}}}P_{r, k}^{-1}{{\pmb{\textbf{z}}}_{r, k}} $
(50) $ P_{r, k}^{o}={{(I_{o}^{{\rm T}}P_{r, k}^{-1}{{I}_{o}})}^{-1}} $
(51) 其中, ${{\pmb{\textbf{z}}}_{r, k}}:=col_i(\hat{\pmb{\textbf{x}}}_{r, k}^{i})$ , , $P_{r, k}^{i, j}$ 和 $P_{r, k}^{i, i}$ 按照式(46)计算.
4. 算例仿真
考虑如下由2个传感器组成的线性时变离散随机系统:
$ {{\pmb{\textbf{x}}}_{k+1}}=({{A}_{k}}+{{g}_{k}}{{\hat{A}}_{k}}){{\pmb{\textbf{x}}}_{k}}+{{\pmb{\textbf{w}}}_{k}} $
$ \pmb{\textbf{y}}_{k}^{i}=f_{k}^{i}C_{k}^{i}{{\pmb{\textbf{x}}}_{k}}+\pmb{\textbf{v}}_{k}^{i}, ~i=1, 2 $
其中, , , , , ${{q}_{k}}$ 、 $\pmb{\textbf{v}}_{k}^{1}$ 和 $\pmb{\textbf{v}}_{k}^{2}$ 为互不相关的零均值白噪声, 其协方差分别为1、0.25和0.25.设最大时延为 $L=3$ , $p_{0, k}^{i}=0.4$ , $p_{1, k}^{i}=0.3$ , $p_{2, k}^{i}=0.2$ , $p_{3, k}^{i}=0.05$ $(i=1, 2)$ .乘性噪声 ${{g}_{k}}$ 在区间 $[-0.1, 0.1]$ 上服从均匀分布, 系统初值 ${{\pmb{\textbf{x}}}_{0}}$ 的两个分量由在区间[-1, 1]上服从均匀分布, 且, $\hat{\pmb{\textbf{x}}}_{r, k}^{o}=\hat{\pmb{\textbf{x}}}_{k}^{1}=\hat{\pmb{\textbf{x}}}_{k}^{2}={{\hat{\pmb{\textbf{x}}}}_{0}}$ , .传感器增益退化系数 $f_{k}^{1}$ 和 $f_{k}^{2}$ 均在区间 $[0.6, 0.8]$ 上服从均匀分布. , .根据式(46)和(50)求得分布式融合估计值 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ .
分布式融合估计值 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ 的仿真结果如图 2所示, 四条曲线分别表示真实状态 ${{\pmb{\textbf{x}}}_{k}}$ 、通道1的局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{1}$ 、通道2的局部最优估计 $\hat{\pmb{\textbf{x}}}_{k}^{2}$ 和分布式融合估计 $\hat{\pmb{\textbf{x}}}_{r, k}^{o}$ .图 3表示各时刻随机时延依概率的取值情况, 其中, $m=0$ 、 $m=1$ 、 $m=2$ 和 $m=3$ 依次表示时延为0、1、2、3, $m=4$ 表示数据丢包.图 4表示, 当传感器增益退化系数 $f_{k}^{i}$ 分别在区间 $Df=[0.6, 0.8]$ 、 $Df=[0.3, 0.5]$ 和 $Df=[0.1, 0.3]$ 上服从均匀分布时, 分布式融合估计误差协方差矩阵 $P_{r, k}^{o}$ 的迹 $\text{tr}(P_{r, k}^{o})$ 的计算结果, 由图 4可知, 在达到平稳时, $\text{tr}(P_{r, k}^{o})$ 随着增益退化系数 $f_{k}^{i}$ 取值的减小而增大, 这说明传感器增益退化越严重, 分布式融合估计误差越大.图 5表示, 当乘性噪声 ${{g}_{k}}$ 分别在 $Dg=[-0.1, 0.1]$ 、 $Dg=[-0.3, 0.3]$ 和 $Dg=[-0.5, 0.5]$ 上服从均匀分布时, $\text{tr}(P_{r, k}^{o})$ 的计算结果, 由图 5可知, 随着 ${{g}_{k}}$ 绝对值的增大, $\text{tr}(P_{r, k}^{o})$ 趋于稳定所用的时间越久, 在达到平稳时, $\text{tr}(P_{r, k}^{o})$ 则随着 ${{g}_{k}}$ 绝对值的增大而增大, 这说明模型不确定性越大, 分布式融合估计误差越大.
为比较本文所提出的分布式融合估计方法与文献[13]所提出的集中式融合方法下的估计性能, 设传感器增益退化系数 $f_{k}^{i}$ 在区间 $Df=[0.6, 0.8]$ 上服从均匀分布, 乘性噪声 ${{g}_{k}}$ 在区间 $Dg=[-0.1, 0.1]$ 上服从均匀分布, 分别计算出两种融合估计方法下的融合估计误差协方差矩阵的迹, 其仿真结果如图 6所示.由图 6可看出, 文献[13]中所提出的集中式融合估计方法的融合估计误差小于本文所提的分布式融合方法, 这是因为前者采用集中式框架, 在融合中心直接利用所有传感器的原始测量数据进行融合估计, 测量数据信息损失量最小, 后者首先利用各传感器测量数据进行局部最优估计, 然后再将局部最优估计发送到融合中心, 测量数据信息损失量大于集中式融合方法, 从而增大融合估计误差; 从图 5又可以看出, 两种方法的融合估计误差相差不大, 说明本文提出分布式融合结构相比于集中式融合估计, 虽然融合精度并不是最优, 但融合精度损失不大, 同时, 采用分布式计算方法, 能够避免高维矩阵计算, 降低了计算量.
5. 结论
本文考虑了具有传感器增益退化、模型不确定性、数据传输时延和丢包的多传感器分布式融合估计问题, 对模型的不确定性、传感器增益退化现象、随机时延和丢包现象依次进行建模.针对传感器增益退化和模型的不确定性, 设计了一种局部最优无偏估计器, 并在融合中心端建立符合存储规则的时延-丢包模型, 利用最优线性无偏估计方法, 推导出最小方差意义下的分布式融合估计器的递推形式.最后仿真结果表明, 传感器增益退化程度和模型不确定性越大, 系统融合估计精度越差.因此, 可通过改善传感器抗退化性能和减小模型不确定性, 来提高系统融合估计精度.相比于集中式融合估计, 本文所提方法能够有效降低计算量, 提高了系统容错能力和抗干扰性, 且工程上易于实现.
附录A 引理1的证明过程
证明.首先依次对第3节中式(27)~(31)进行推导, 即分5种情况进行讨论:
1) 当 $m=n$ 时, 有
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\Gamma _{m, m}^{i, j} $
(A1) 2) 当 $m-n=1$ 时, 有
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(L_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+A_{\bar{g}, \bar{f}, m-1}^{i}\hat{\pmb{\textbf{x}}}_{m-1}^{i})\hat{\pmb{\textbf{x}}}{{_{m-1}^{j}}^{{\rm T}}}\}=\nonumber\\ L_{m-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{m-1}^{i}\hat{\pmb{\textbf{x}}}{{_{m-1}^{j}}^{{\rm T}}}\}+A_{\bar{g}, \bar{f}, m-1}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{m-1}^{i}\hat{\pmb{\textbf{x}}}{{_{m-1}^{j}}^{{\rm T}}}\}=\nonumber\\ A_{\bar{g}, \bar{f}, m-1}^{i}\Gamma _{m-1, m-1}^{i, j}+\bar{f}_{m-1}^{i}L_{m-1}^{i}C_{m-1}^{i}\Lambda _{m-1, m-1}^{j} $
(A2) 3) 当 $m-n\ge 2$ 时, 令
$ \left\{ {\begin{array}{l} a_{m-1}^{i}:=L_{m-1}^{i} \\ b_{m-1}^{i}:=A_{\bar{g}, \bar{f}, m-1}^{i} \\ \end{array}} \right. $
(A3) 结合式(3)、(A3)得
$ \hat{\pmb{\textbf{x}}}_{m}^{i}=a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+b_{m-1}^{i}\hat{\pmb{\textbf{x}}}_{m-1}^{i}=\nonumber\\ a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+b_{m-1}^{i}(a_{m-2}^{i}\pmb{\textbf{y}}_{m-2}^{i}+b_{m-2}^{i}\hat{\pmb{\textbf{x}}}_{m-2}^{i})=\nonumber\\ a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+b_{m-1}^{i}a_{m-2}^{i}\pmb{\textbf{y}}_{m-2}^{i}+b_{m-1}^{i}b_{m-2}^{i}\times \nonumber\\ (a_{m-3}^{i}\pmb{\textbf{y}}_{m-2}^{i}+b_{m-3}^{i}\hat{\pmb{\textbf{x}}}_{m-3}^{i})=\nonumber\\ \begin{matrix} {} \begin{matrix} {} \begin{matrix} {} \vdots {} \end{matrix} {} \end{matrix} {} \end{matrix} \nonumber\\ a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+\sum\limits_{c=2}^{m-n}{[(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})a_{m-c}^{i}\pmb{\textbf{y}}_{m-c}^{i}}]}+\nonumber\\ (\prod\limits_{f=1}^{m-n}{b_{m-f}^{i})\hat{\pmb{\textbf{x}}}_{n}^{i}} $
(A4) 此时, 由式(A4)可得
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(a_{m-1}^{i}\pmb{\textbf{y}}_{m-1}^{i}+\sum\limits_{c=2}^{m-n}{[(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})a_{m-c}^{i}\pmb{\textbf{y}}_{m-c}^{i}}]} +\nonumber\\ (\prod\limits_{f=1}^{m-n}{b_{m-f}^{i})\hat{\pmb{\textbf{x}}}_{n}^{i}})\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ a_{m-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{m-1}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}+{\rm E}\{(\prod\limits_{f=1}^{m-n}{b_{m-f}^{i})\hat{\pmb{\textbf{x}}}_{n}^{i}}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\} +\nonumber\\ {\rm E}\{\sum\limits_{c=2}^{m-n}{[(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})a_{m-c}^{i}\pmb{\textbf{y}}_{m-c}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}}]}\}=\nonumber\\ a_{m-1}^{i}\bar{f}_{m-1}^{i}C_{m-1}^{i}(\prod\limits_{e=1}^{m-n-1}{{{A}_{\bar{g}, m-1-e}}})\Lambda _{n, n}^{j} +\nonumber\\ \sum\limits_{c=2}^{m-n}{[\bar{f}_{m-c}^{i}(\prod\limits_{d=1}^{c-1}{b_{m-d}^{i})}a_{m-c}^{i}C_{m-c}^{i}} \times \nonumber\\ (\prod\limits_{h=1}^{m-n-c}{{{A}_{\bar{g}, m-c-h}})\Lambda _{n, n}^{j}]}+(\prod\limits_{f=1}^{m-n}{b_{m-f}^{i}})\Gamma _{n, n}^{i, j} $
(A5) 4) 当 $n-m=1$ 时, 与式(28)推导过程同理, 可得
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\bar{f}_{n-1}^{j}\Lambda {{_{n-1, n-1}^{i}}^{{\rm T}}}L{{_{n-1}^{j}}^{{\rm T}}}C{{_{n-1}^{j}}^{{\rm T}}} +\nonumber\\ \Gamma _{n-1, n-1}^{i, j}A{{_{\bar{g}, \bar{f}, n-1}^{j}}^{{\rm T}}} $
(A6) 5) 当 $n-m\ge 2$ 时, 与式(29)推导过程同理, 可得
$ {\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ \bar{f}_{n-1}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}{(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}})^{{\rm T}}}C{{_{n-1}^{j}}^{{\rm T}}}a{{_{n-1}^{j}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}[\bar{f}_{n-c}^{j}\Lambda {{_{m, m}^{i}}^{{\rm T}}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}})^{{\rm T}}C{{_{n-c}^{j}}^{{\rm T}}}a{{_{n-c}^{j}}^{{\rm T}}} \times \nonumber\\ {(\prod\limits_{d=1}^{c-1}{b_{n-d}^{j}})^{{\rm T}}}]+\Gamma _{m, m}^{i, j}(\prod\limits_{f=1}^{n-m}{b_{n-f}^{j}{{)}^{{\rm T}}}} $
(A7) 利用式(A3)对式(A5)和式(A7)进行变量代换, 并综合上述5种情况下讨论结果, 得到式(27)~(31).
下面对正文中式(32)~(35)进行推导, 即分4种情况进行讨论:
1) 当 $m=n$ 时, 有
$ {\rm E}\{\pmb{\textbf{x}}_{m}^{{}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=\Lambda _{m, m}^{i} $
(A8) 2) 当 $m-n\ge 1$ 时, 有
$ {\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=(\prod\limits_{\tau=1}^{m-n}{{{A}_{\bar{g}, m-1}}}){\rm E}\{{{\pmb{\textbf{x}}}_{n}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=\nonumber\\ (\prod\limits_{\tau=1}^{m-n}{{{A}_{\bar{g}, m-1}}})\Lambda _{n, n}^{i} $
(A9) 3) 当 $n-m=1$ 时, 有
$ {\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{i}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{{{\pmb{\textbf{x}}}_{n-1}}\pmb{\textbf{y}}{{_{n-1}^{i}}^{{\rm T}}}\}L{{_{n-1}^{i}}^{{\rm T}}}+{\rm E}\{{{\pmb{\textbf{x}}}_{n-1}}\pmb{\textbf{x}}{{_{n-1}^{i}}^{{\rm T}}}\}A{{_{\bar{g}, \bar{f}, n-1}^{i}}^{{\rm T}}}=\nonumber\\ H_{n-1, n-1}^{i}L{{_{n-1}^{i}}^{{\rm T}}}+\Lambda _{n-1, n-1}^{i}A{{_{\bar{g}, \bar{f}, n-1}^{i}}^{{\rm T}}} $
(A10) 4) 当 $n-m\ge 2$ 时, 令
$ \left\{ \begin{array}{*{35}{l}} a_{n-f}^{i}:=L_{n-f}^{i}\text{ } \\ b_{n-f}^{i}:=A_{\bar{g}, \bar{f}, n-f}^{i} \\ \end{array} \right. $
(A11) 则由式(A4)推导过程可得
$ {\rm E}\{{{\pmb{\textbf{x}}}_{m}}\hat{\pmb{\textbf{x}}}{{_{n}^{j}}^{{\rm T}}}\}=\nonumber\\ \bar{f}_{n-1}^{i}{{X}_{m, m}}(\prod\limits_{e=1}^{n-m-1}{{{A}_{\bar{g}, n-1-e}}})^{\rm T}C{{_{n-1}^{i}}^{{\rm T}}}a{{_{n-1}^{i}}^{{\rm T}}} +\nonumber\\ \sum\limits_{c=2}^{n-m}{[\bar{f}_{n-c}^{i}{{X}_{m, m}}(\prod\limits_{h=1}^{n-m-c}{{{A}_{\bar{g}, n-c-h}}{{)}}^{{\rm T}}C{{_{n-c}^{i}}^{{\rm T}}}a{{_{n-c}^{i}}^{{\rm T}}}}} \times \nonumber\\ (\prod\limits_{d=1}^{c-1}{b_{n-d}^{i}})^{\rm T}]+\Lambda _{m, m}^{i}(\prod\limits_{f=1}^{n-m}{b_{n-f}^{i}{{)}^{{\rm T}}}} $
(A12) 利用式(A11)对式(A12)进行变量代换, 并综上4种情况所述, 得到式(32)~(35).
附录B 引理2的证明过程
证明.下面分别对第3节中式(37)~(45)依次进行推导.由式(36)中各变量定义可得到
$ R_{k+1, k+1}^{i, j}=\nonumber\\ {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}}}) \times \nonumber\\ \hat{\pmb{\textbf{x}}}_{k+1-m}^{i}]\sum\limits_{n=0}^{L}{[\delta (\tau _{k+1}^{j}, n)(}\prod\limits_{s=1}^{n}{{{A}_{\bar{g}, k+1-s}}})\hat{\pmb{\textbf{x}}}_{k+1-n}^{j}{{]}^{{\rm T}}}\}=\nonumber\\[-10mm] \left\{ {\begin{array}{l} {\rm E}\{\sum\limits_{m=0}^{L}{\sum\limits_{n=0}^{L}{[\delta (\tau _{k+1}^{i}, m)\delta (\tau _{k+1}^{j}, n)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})}}} \times\nonumber\\ \hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{k+1-n}^{j}}^{{\rm T}}}(\prod\limits_{s=1}^{n}{{{A}_{\bar{g}, k+1-s}}})^{\rm T}]\}, ~~~~~~~~~~~~~~i\ne j \nonumber\\[4mm] {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }})\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}}} \times\nonumber\\ \hat{\pmb{\textbf{x}}}{{_{k+1-m}^{i}}^{{\rm T}}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}{{)}^{{\rm T}}}}]\}, ~~~~~~~~~~~~~~~~~~~~~~~~~i=j \end{array}} \right. $
(B1) $ \hat{R}_{\pmb{\textbf{x}}, k+1, k}^{i, j}=\nonumber\\ {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}})\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}]}\}=\nonumber\\ \sum\limits_{m=0}^{L}{[p_{m, k+1}^{j}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}){\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}]}% \nonumber\\ $
(B2) $ R_{x, k+1, k}^{i}=\nonumber\\ {\rm E}\{\sum\limits_{m=0}^{L}{[\delta (\tau _{k+1}^{i}, m)(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}})\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}{{\pmb{\textbf{x}}}_{k}}^{{\rm T}}]}\}=\nonumber\\ \sum\limits_{m=0}^{L}{[p_{m, k+1}^{j}}(\prod\limits_{\tau=1}^{m}{{{A}_{\bar{g}, k+1-\tau }}){\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}{{\pmb{\textbf{x}}}_{k}}^{{\rm T}}\}}] $
(B3) $ X_{r, k, k}^{i, j}={\rm E}\{(\pmb{\textbf{r}}_{k}^{i}+\bar{\Phi }_{m, k}^{i}{{A}_{\bar{g}, k-1}}\hat{\pmb{\textbf{x}}}_{r, k-1}^{i})(\pmb{\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}} \times\nonumber\\\hat{\pmb{\textbf{x}}}_{r, k-1}^{j}{{)}^{{\rm T}}}\}=\nonumber \\ \left\{ {\begin{array}{l} {\rm E}\{\pmb{\textbf{r}}_{k}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\} +\nonumber\\ \bar{p}_{L, n, k}^{j}{\rm E}\{\pmb{\textbf{r}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i}\times\nonumber\\ \bar{p}_{L, n, k}^{j}{{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{\rm T}, ~~~~~~~~~~~~~i\ne j \nonumber\\[4mm] {\rm E}\{\pmb{\textbf{r}}_{k}^{i}\pmb{\textbf{r}}{{_{k}^{i}}^{{\rm T}}}\}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\pmb{\textbf{r}}{{_{k}^{i}}^{{\rm T}}}\} +\nonumber\\ \bar{p}_{L, m, k}^{i}{\rm E}\{\pmb{\textbf{r}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}+\bar{p}_{L, m, k}^{i} \times\nonumber\\ {{A}_{\bar{g}, k-1}}{\rm E}\{\hat{\pmb{\textbf{x}}}_{r, k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}, ~~~~~~~~~~~~~~~~~~~~~~~i=j \end{array}} \right. $
(B4) $ \hat{X}_{r, k, k}^{i}={\rm E}\{({{A}_{\bar{g}, k-1}}{{\pmb{\textbf{x}}}_{k-1}}+{{\pmb{\textbf{w}}}_{k-1}})(\pmb{\textbf{r}}_{k}^{i}+\bar{\Phi }_{m, k}^{i}{{A}_{\bar{g}, k-1}} \times \nonumber\\ \hat{\pmb{\textbf{x}}}_{r, k-1}^{i}{{)}^{{\rm T}}}\}=\nonumber\\ {{A}_{\bar{g}, k-1}}{\rm E}\{{{\pmb{\textbf{x}}}_{k-1}}\pmb{\textbf{r}}{{_{k}^{i}}^{{\rm T}}}\}+\bar{p}_{L, m, k}^{i}{{A}_{\bar{g}, k-1}} \times \nonumber\\ {\rm E}\{{{\pmb{\textbf{x}}}_{k-1}}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{i}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}} $
(B5) 对于式(42)中 $\hat{X}_{r, k+1-m, k}^{i, j}$ , 分3种情况讨论:
1) 当 $m=0$ 时, 有
$ \hat{X}_{r, k+1-m, k}^{i, j}=\hat{X}_{r, k+1, k}^{i, j}=\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(L_{k}^{i}\pmb{\textbf{y}}_{k}^{i}+A_{\bar{g}, \bar{f}, k}^{i}\hat{\pmb{\textbf{x}}}_{k}^{i})\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ L_{k}^{i}{\rm E}\{\pmb{\textbf{y}}_{k}^{i}\pmb{\textbf{x}}{{_{r, k}^{j}}^{{\rm T}}}\}+A_{\bar{g}, \bar{f}, k}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\} $
(B6) 2) 当 $m=1$ 时, 有
$ \hat{X}_{r, k+1-m, k}^{i, j}=\hat{X}_{r, k, k}^{i, j}=\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ {\rm E}\{(L_{k-1}^{i}\pmb{\textbf{y}}_{k-1}^{i}+A_{\bar{g}, \bar{f}, k-1}^{i}\hat{\pmb{\textbf{x}}}_{k-1}^{i})\times \nonumber\\ {{(\pmb{\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}}\hat{\pmb{\textbf{x}}}_{r, k-1}^{j})}^{{\rm T}}}\}=\nonumber\\ L_{k-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{k-1}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\}+A_{\bar{g}, \bar{f}, k-1}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{k-1}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\}+ \nonumber\\ \bar{p}_{L, n, k}^{j}L_{k-1}^{i}{\rm E}\{\pmb{\textbf{y}}_{k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}}+ \nonumber\\ \bar{p}_{L, n, k}^{j}A_{\bar{g}, \bar{f}, k-1}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{k-1}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k-1}^{j}}^{{\rm T}}}\}{{A}_{\bar{g}, k-1}}^{{\rm T}} $
(B7) 3) 当 $m>1$ 时, 由式(8)得
$ \hat{\pmb{\textbf{x}}}_{r, k}^{j}=\pmb{\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}}\hat{\pmb{\textbf{x}}}_{r, k-1}^{j}=\nonumber\\ {\textbf{r}}_{k}^{j}+\bar{\Phi }_{n, k}^{j}{{A}_{\bar{g}, k-1}}(\pmb{\textbf{r}}_{k-1}^{j} +\nonumber\\ \bar{\Phi }_{n, k-1}^{j}{{A}_{\bar{g}, k-2}}\hat{\pmb{\textbf{x}}}_{r, k-2}^{j})=\nonumber\\ \begin{matrix} {} \begin{matrix} {} {} {} \begin{matrix} \vdots {} {} {} \end{matrix} \end{matrix} {} \end{matrix} \nonumber\\ {\textbf{r}}_{k}^{j}+\sum\limits_{\tau=1}^{m-1}{[(\prod\limits_{s=1}^{\tau }{\bar{\Phi }_{n, k+1-s}^{j}{{A}_{\bar{g}, k-s}}})\pmb{\textbf{r}}_{k-\tau }^{j}]}+\nonumber\\ (\prod\limits_{t=1}^{m-1}{\bar{\Phi }_{n, k+1-t}^{j}{{A}_{\bar{g}, k-t}})}\hat{\pmb{\textbf{x}}}_{r, k+1-m}^{j} $
(B8) 则有
$ \hat{X}_{r, k+1-m, k}^{i, j}=\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\}=\nonumber\\ \sum\limits_{\tau=1}^{m-1}{[{\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\pmb{\textbf{r}}{{_{k-\tau }^{j}}^{{\rm T}}}\}{\rm E}\{(\prod\limits_{s=1}^{\tau }{\bar{\Phi }_{n, k+1-s}^{j}{{A}_{\bar{g}, k-s}}{{)}^{{\rm T}}}}\}} +\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\hat{\pmb{\textbf{x}}}{{_{r, k+1-m}^{j}}^{{\rm T}}}\}{\rm E}\{(\prod\limits_{t=1}^{m-1}{\bar{\Phi }_{n, k+1-t}^{j}{{A}_{\bar{g}, k-t}}{{)}^{{\rm T}}}}\} +\nonumber\\ {\rm E}\{\hat{\pmb{\textbf{x}}}_{k+1-m}^{i}\pmb{\textbf{r}}{{_{k}^{j}}^{{\rm T}}}\} $
(B9) $ Y_{r, k, k}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}{\rm E}\{{{\pmb{\textbf{x}}}_{k}}\hat{\pmb{\textbf{x}}}{{_{r, k}^{j}}^{{\rm T}}}\} $
(B10) $ R_{y, k, k+1}^{i, j}=\bar{f}_{k}^{i}C_{k}^{i}{\rm E}\{{{\pmb{\textbf{x}}}_{k}}\pmb{\textbf{r}}{{_{k+1}^{j}}^{{\rm T}}}\} $
(B11) $ \bar{X}_{r, m, n}^{i, j}={\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}{\{\sum\limits_{s=0}^{L}{[\delta (\tau _{n}^{j}, s)(\prod\limits_{\tau=1}^{s}{{{A}_{\bar{g}, n-\tau }}})\hat{\pmb{\textbf{x}}}_{n-s}^{j}]}\}^{{\rm T}}}\}=\nonumber\\ \sum\limits_{s=0}^{L}{[p_{s, n}^{i}{\rm E}\{\hat{\pmb{\textbf{x}}}_{m}^{i}\hat{\pmb{\textbf{x}}}{{_{n-s}^{j}}^{\rm T}}\}(\prod\limits_{\tau=1}^{s}{{{A}_{\bar{g}, n-\tau }}}}{{)}^{{\rm T}}}] $
(B12) 利用式(36)对式(B1)~(B7)、式(B9)~(B12)中各量进行变量代换, 即分别得到式(37)~(45).
-
计量
- 文章访问数: 1882
- HTML全文浏览量: 645
- PDF下载量: 1816
- 被引次数: 0