2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种鲁棒的离线笔迹鉴别方法

陈使明 王以松

陈使明, 王以松. 一种鲁棒的离线笔迹鉴别方法. 自动化学报, 2020, 46(1): 108-116. doi: 10.16383/j.aas.2018.c180441
引用本文: 陈使明, 王以松. 一种鲁棒的离线笔迹鉴别方法. 自动化学报, 2020, 46(1): 108-116. doi: 10.16383/j.aas.2018.c180441
CHEN Shi-Ming, WANG Yi-Song. A Robust Off-line Writer Identification Method. ACTA AUTOMATICA SINICA, 2020, 46(1): 108-116. doi: 10.16383/j.aas.2018.c180441
Citation: CHEN Shi-Ming, WANG Yi-Song. A Robust Off-line Writer Identification Method. ACTA AUTOMATICA SINICA, 2020, 46(1): 108-116. doi: 10.16383/j.aas.2018.c180441

一种鲁棒的离线笔迹鉴别方法

doi: 10.16383/j.aas.2018.c180441
基金项目: 

国家自然科学基金 61370161

国家自然科学基金 61562009

国家自然科学基金 61976065

贵州省优青年秀科技人才培养对象基金 2015(01)

详细信息
    作者简介:

    陈使明  贵州大学计算机科学与技术学院硕士研究生.主要研究方向为模式识别, 计算机视觉, 机器学习.E-mail:gchenshiming@gmail.com

    通讯作者:

    王以松  贵州大学计算机科学与技术学院教授.主要研究方向为知识表示与推理, 机器学习, 人工智能.本文通信作者.E-mail: yswang@gzu.edu.cn

A Robust Off-line Writer Identification Method

Funds: 

National Natural Science Foundation of China 61370161

National Natural Science Foundation of China 61562009

National Natural Science Foundation of China 61976065

Outstanding Young Talent Training Fund of Guizhou Province 2015(01)

More Information
    Author Bio:

    CHEN Shi-Ming    Master student at the College of Computer Science and Technology, Guizhou University. His research interest covers pattern recognition, computer vision, and machine learning

    Corresponding author: WANG Yi-Song    Professor at the College of Computer Science and Technology, Guizhou University. His research interest covers knowledge representation and reasoning, machine learning and artificial intelligence. Corresponding author of this paper
  • 摘要: 离线笔迹鉴别在司法鉴定与历史文档分析中有重要作用.当前的主要离线笔迹鉴别都是基于局部特征提取的方法, 其在笔迹检索中严重依赖于数据增强和全局编码, 在笔迹识别中需要较多的笔迹信息.针对这一问题, 本文提出一种基于统计的文档行分割与深度卷积神经网络相结合的离线笔迹鉴别方法(DLS-CNN).首先, 使用基于统计的文档行分割方法将笔迹材料分割成小的像素块; 然后, 用优化后的残差神经网络作为识别模型; 最后, 对局部特征使用取均值法进行编码.在ICDAR2013和CVL这两个标准数据集上的实验结果表明, 该方法能有效获得鲁棒的局部特征, 从而仅需要少量的笔迹信息就能取得较高的识别率, 而且不需依赖于数据增强和全局编码就能取得较好的检索效果.实验代码地址:https://github.com/shiming-chen/DLS-CNN.
    Recommended by Associate Editor JIN Lian-Wen
    1)  本文责任编委 金连文
  • 图  1  DLS-CNN框架图

    Fig.  1  The framework of DLS-CNN

    图  2  文档行分割样例

    Fig.  2  The example of document line segmentation

    图  3  分割好的像素块

    Fig.  3  The segmented patches

    图  4  256尺度大小的识别率

    Fig.  4  The identification rate of 256 patch size

    表  1  ResNet-50结构

    Table  1  The structure of ResNet-50

    Layer name Layers Output size
    Conv1 7 $\times$ 7, 64, Stride 2 112 $\times$ 112
    Conv2-x1 3 $\times$ 3 Max pool, Stride 2 56 $\times$ 56
    Conv2-x2 $\left[\begin{array}{c} 1 \times 1, 64\\ 3 \times 3, 64 \\ 1 \times 1, 256\end{array}\right] \times 3$ 56 $\times$ 56
    Conv3-x $\left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512\end{array}\right] \times 4$ 28 $\times$ 28
    Conv4-x $\left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1 024 \end{array}\right] \times 6$ 14 $\times$ 14
    Conv5-x $\left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2 048 \end{array}\right] \times 3$ 7 $\times$ 7
    Global average pool 1 $\times$ 1
    Fc, Relu, Dropout, Softmax 1 $\times$ 1
    下载: 导出CSV

    表  2  不同像素块大小的对比(%)

    Table  2  Comparison of different patch sizes (%)

    S-1 S-5 S-10 H-2 H-3 mAP
    64尺度 87.8 94.7 97.0 57.3 36.7 76.5
    256尺度 $\textbf{95.0}$ $\textbf{98.4}$ $\textbf{99.3}$ $\textbf{70.3}$ $\textbf{49.5}$ $\textbf{84.7}$
    下载: 导出CSV

    表  3  不同特征层的对比(%)

    Table  3  Comparison of different feature layers (%)

    S-1 S-5 S-10 H-2 H-3 mAP
    全局池化层 $\textbf{95.4}$ 97.9 98.5 63.1 41.2 79.7
    全连接层 95.0 $\textbf{98.4}$ $\textbf{99.3}$ $\textbf{70.3}$ $\textbf{49.5}$ $\textbf{84.7}$
    下载: 导出CSV

    表  4  特征数目的对比(%)

    Table  4  Comparison of feature numbers (%)

    S-1 S-5 S-10 H-2 H-3 mAP
    128 95.2 $\textbf{98.7}$ 99.0 70.1 48.6 84.3
    512 95.0 98.4 $\textbf{99.3}$ $\textbf{70.3}$ $\textbf{49.5}$ $\textbf{84.7}$
    1 024 95.0 98.4 99.0 70.0 48.8 84.1
    2 048 $\textbf{96.0}$ 98.4 98.6 67.1 45.8 83.0
    下载: 导出CSV

    表  5  PCA白化的评估(%)

    Table  5  Evaluation of PCA$\_$Whitening (%)

    S-1 S-5 S-10 H-2 H-3 mAP
    无PCA白化 88.9 97.1 98.0 63.9 47.6 82.1
    有PCA白化 $\textbf{95.0}$ $\textbf{98.4}$ $\textbf{99.3}$ $\textbf{70.3}$ $\textbf{49.5}$ $\textbf{84.7}$
    下载: 导出CSV

    表  6  与其他模型的对比(%)

    Table  6  Comparison with other models (%)

    S-1 S-5 S-10 H-2 H-3 mAP
    CS-UMD-a[3] 95.1 98.6 99.1 19.6 7.1 N/A
    CS-UMD-b[3] 95.0 98.6 99.2 20.2 8.4 N/A
    HIT-ICG[3] 94.8 98.0 98.3 63.2 36.5 N/A
    TEBESSA-a[3] 90.3 96.7 98.3 58.2 33.2 N/A
    TEBESSA-b[3] 93.4 97.8 98.5 62.6 36.5 N/A
    Christlein[11] 97.1 98.8 99.1 42.8 23.8 67.7
    Wu[9] 95.6 98.6 99.1 63.8 36.5 N/A
    Nicolaou[14] $\textbf{97.2}$ $\textbf{98.9}$ 99.2 52.9 29.2 N/A
    Fiel[8] 88.5 96.0 98.3 40.5 15.8 N/A
    Christlein[24] 86.8 N/A N/A N/A N/A 78.9
    DLS-CNN 95.0 98.4 $\textbf{99.3}$ $\textbf{70.3}$ $\textbf{49.5}$ $\textbf{84.7}$
    下载: 导出CSV

    表  7  与其他模型的对比(%)

    Table  7  Comparison with other models (%)

    输入笔迹材料 Top-1 Top-5
    TSINGHUA[26] 1页 97.7 99.0
    Fiel[8] 1页 98.9 99.3
    Wu[9] 1页 99.2 99.5
    Nicolaou[14] 1页 99.0 99.4
    Christlein[38] 1页 99.4 N/A
    Tang[13] 1页 $\textbf{99.7}$ 99.8
    DLS-CNN 256像素块 95.8 $\textbf{99.9}$
    下载: 导出CSV
  • [1] Fiel S, Kleber F, Diem M. ICDAR2017 Competition on Historical Document Writer Identification (Historical-WI). In: Proceedings of the 14th International Conference on Document Analysis and Recognition. Kyoto, Japan: IEEE, 2018. 1377-1382
    [2] Asi A, Abdalhaleem A, Fecker D. On writer identification for Arabic historical manuscripts. International Journal on Document Analysis and Recognition, 2017, 2017(3-4): 1-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2cace6f868ded2b41dc027e8943b487
    [3] Louloudis G, Gatos B, Stamatopoulos N. ICDAR 2013 Competition on Writer Identification. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington, DC, USA: IEEE, 2013. 1397-1401
    [4] Cloppet F, Eglin V, Kieu V C. ICFHR2016 Competition on the Classification of Medieval Handwritings in Latin Script. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition. Shenzhen, China: IEEE, 2017. 1371-1376
    [5] Chawki D, Somaya A M, Imran S, Abdeljalil G, He Sheng. ICFHR 2018 Competition on Multi-Script Writer Identification. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition. Niagara Falls, USA: IEEE, 2018. 506-510
    [6] Helli B, Moghaddam M E. A text-independent Persian writer identification based on feature relation graph (FRG). Pattern Recognition, 2010, 44(6): 229-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7409e0794b32b08068f2e2eda9e786c8
    [7] Bertolini D, Oliveira L S, Justino E. Texture-based descriptors for writer identification and verification. Expert Systems with Applications, 2013, 40(6): 2069-2080 doi: 10.1016/j.eswa.2012.10.016
    [8] Fiel S, Sablatnig R. Writer Identification and Retrieval Using a Convolutional Neural Network. In: Proceedings of the 16th International Conference on Computer Analysis of Images and Patterns. Springer International Publishing, 2015. 26-37
    [9] Wu Xiang-Qian, Tang You-Bao, Wei Bu. Offline Text-Independent Writer Identification Based on Scale Invariant Feature Transform. Information Forensics and Security, 2014, 9(3): 526-536 doi: 10.1109/TIFS.2014.2301274
    [10] Xing Lin-Jie, Qiao Yu. DeepWriter: A Multi-Stream Deep CNN for Text-independent Writer Identification. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition. Shenzhen, China: IEEE, 2017. 584-589
    [11] Christlein V, Bernecker D, Honig F. Writer Identification Using GMM Supervectors and Exemplar-SVMs. Pattern Recognition, 2017, 63: 258-267 doi: 10.1016/j.patcog.2016.10.005
    [12] Christlein V, Gropp M, Fiel S, Maier A. Unsupervised Feature Learning for Writer Identification and Writer Retrieval. arXiv preprint arXiv: 1705.09369, 2017
    [13] Tang You-Bao, Wu Xiang-Qian. Text-Independent Writer Identification via CNN Features and Joint Bayesian. In: Proceedings of the 15th International Conference on Frontiers in Handwriting Recognition. Shenzhen, China: IEEE, 2017. 556-571
    [14] Nicolaou A, Bagdanov A D, Liwicki M. Sparse radial sampling LBP for writer identification. In: Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis, Tunisia: IEEE, 2015. 716-720
    [15] Chen Shi-Ming, Wang Yi-Song, Lin Chin-Teng, Ding Wei-Ping, Cao Ze-Hong. Semi-supervised Feature Learning For Improving Writer Identification. arXiv preprint arXiv: 1807.05490, 2018
    [16] 李昕, 丁晓青, 彭良瑞.一种基于微结构特征的多文种文本无关笔迹鉴别方法.自动化学报, 2009, 35(9): 1199-1208 doi: 10.3724/SP.J.1004.2009.01199

    Li Xin, Ding Xiao-Qing, Peng Liang-Rui. Writer identification based on improved microstructure features. Acta Automatica Sinica, 2009, 35(9): 1199-1208 doi: 10.3724/SP.J.1004.2009.01199
    [17] 邹杰, 孙宝林, 於俊.基于笔画特征的在线笔迹匹配算法.自动化学报, 2016, 42(11): 1744-1757 doi: 10.16383/j.aas.2016.c150563

    Zou Jie, Sun Bao-Lin, Yu Jun. Online handwriting matching algorithm based on stroke features. Acta Automatica Sinica, 2016, 42(11): 1744-1757 doi: 10.16383/j.aas.2016.c150563
    [18] Khan F A, Tahir M A, Khelifi F. Novel geometric features for off-line writer identification. Pattern Analysis and Applications, 2016, 19(3): 699-708 doi: 10.1007/s10044-014-0438-y
    [19] Bertolini D, Oliveira L S, Sabourin R. DeepWriter: Multi-script writer identification using dissimilarity. In: Proceedings of the 23rd International Conference on Pattern Recognition. Cancun, Mexico: IEEE, 2017. 3025-3030
    [20] Shaus A, Turkel E. Writer Identification in Modern and Historical Documents via Binary Pixel Patterns, Kolmogorov-Smirnov Test and Fisher$'$s Method. Journal of Imaging Science and Technology, 2017, 61(1): 104041-104049 doi: 10.2352/J.ImagingSci.Technol.2017.61.1.010404
    [21] He S, Schomaker L. Writer identification using curvature-free features. Pattern Recognition, 2017, 63: 451-446 doi: 10.1016/j.patcog.2016.09.044
    [22] Khan F A, Tahir M A, Khelifi F. Robust off-line text independent writer identification using bagged discrete cosine transform features. Expert Systems with Applications, 2017, 71(C): 404-415 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bd769b41a47a54429c9a8335ef2476c
    [23] Bulacu M, Schomaker L. Text-Independent Writer Identification and Verification Using Textural and Allographic Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 1-17 doi: 10.1109/TPAMI.2007.1020
    [24] Christlein V, Maier A. Encoding CNN Activations for Writer Recognition. arXiv preprint arXiv: 1712.07923, 2017
    [25] Louloudis G, Stamatopoulos N, Gatos B. ICDAR 2011 Writer Identification Contest. In: Proceedings of the 11th International Conference on Document Analysis and Recognition. Beijing, China: IEEE, 2011. 1475-1479
    [26] Kleber F, Fiel S, Diem M, Sablatnig R. CVL-DataBase: An Off-Line Database for Writer Retrieval, Writer Identification and Word Spotting. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington DC, USA: IEEE, 2013. 560-564
    [27] Diem M, Kleber F, Sablatnig R. Text Line Detection for Heterogeneous Documents. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. In: Proceedings of International Conference on Document Analysis and Recognition. Washington DC, USA: IEEE, 2013. 743-747
    [28] Marti U V, Bunke H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 2002, 5(1): 39-46
    [29] Liu Cheng-Lin, Yin Fei, Wang Da-Han, Wang Qiu-Feng. CASIA online and offline Chinese handwriting databases. In: Proceedings of the 11th International Conference on Document Analysis and Recognition. Beijing, China: IEEE, 2011. 37-41
    [30] Arivazhagan M, Srinivasan H, Srihari S. A statistical approach to line segmentation in handwritten documents. Document Recognition and Retrieval XIV, 2007, 6500(T): 1-11
    [31] Liu Ji-Ming, Tang Yuan-yan. Adaptive Image Segmentation with Distributed Behavior-based Agents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(6): 544-551 doi: 10.1109/34.771323
    [32] You Xin-Ge, Peng Qin-Mu, Yuan Yuan, Cheung Yiu-Ming, Lei Jia-Jia. Segmentation of Retinal Blood Vessels Using the Radial Projection and Semi-supervised Approach. Pattern Recognition, 2011, 44(10-11): 2314-2324 doi: 10.1016/j.patcog.2011.01.007
    [33] He Kai-Ming, Zhang Xiang-Yu, Ren Shao-Qing, Sun Jian. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, United States: IEEE, 2016. 770-778
    [34] He Kai-Ming, Zhang Xiang-Yu, Ren Shao-Qing, Sun Jian. Identity mappings in deep residual networks. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: Springer International Publishing, 2016. 630-645
    [35] Christlein V, Bernecker D, Angelopoulou E. Writer identification using VLAD encoded contour-Zernike moments. In: Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis, Tunisia: IEEE, 2015. 906-910
    [36] Spyromitros-Xioufis E, Papadopoulos S, Kompatsiaris I Y. A Comprehensive Study Over VLAD and Product Quantization in Large-Scale Image Retrieval. IEEE Transactions on Multimedia, 2014, 16(6): 1713-1728 doi: 10.1109/TMM.2014.2329648
    [37] Fiel S, Sablatnig R. Writer Identification and Writer Retrieval Using the Fisher Vector on Visual Vocabularies. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington DC, USA: IEEE, 2013. 545-549
    [38] Christlein V, Bernecker D, Maier A. Offline Writer Identification Using Convolutional Neural Network Activation Features. In: Proceedings of the 37th German Conference on Pattern Recognition. Aachen, Germany: Springer International Publishing, 2015. 540-552
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  2113
  • HTML全文浏览量:  781
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-21
  • 录用日期:  2018-10-11
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回