[1]
|
Wang Z W. China's wastewater treatment goals. Science, 2012, 338(2):604 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228538092/
|
[2]
|
Loosdrecht M C M Van, Brdjanovic D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6):1452-1453 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18ea732cfbb1dd85c2959b83ab0e3e10
|
[3]
|
李激, 郑凯凯, 王燕, 施汉昌.智能化城市污水处理厂运行专家系统的研究.中国给水排水, 2016, 32(11):1-5 http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201611004.htmLi Ji, Zheng Kai-Kai, Wang Yan, Shi Han-Chang. Intelligent operation expert system for municipal wastewater treatment plant. China Water & Wastewater, 2016, 32(11):1-5 http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201611004.htm
|
[4]
|
Gustaf O. ICA and me-a subjective review. Water Research, 2012, 46(1):7-15 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226525066/
|
[5]
|
徐天凯, 彭党聪, 徐涛, 李惠娟, 姚倩, 金虎.城市污水处理厂A2/O工艺污泥膨胀与上浮的诊断.中国给水排水, 2016, 32(23):31-35 http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201623009.htmXu Tian-Kai, Peng Dang-Cong, Xu Tao, Li Hui-Juan, Yao Qian, Jin Hu. Diagnosis of sludge bulking and floating in A2/O process in municipal wastewater treatment plant. China Water & Wastewater, 2016, 32(23):31-35 http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201623009.htm
|
[6]
|
Breach P A, Simonovic S P. Wastewater treatment energy recovery potential for adaptation to global change:an integrated assessment. Environmental Management, 2018, 61(4):1-13 http://europepmc.org/abstract/MED/29423714
|
[7]
|
Tian W D, Li W Gg, Zhang H, Kang X R, Mark C M L. Limited filamentous bulking in order to enhance integrated nutrient removal and effluent quality. Water Research, 2011, 45(16):4877-4884 doi: 10.1016/j.watres.2011.06.034
|
[8]
|
Khalida M, Azmi A, Mohd R S, Zaharah I, Adibah Y, Mark C M L, et al. Development of granular sludge for textile wastewater treatment. Water Research, 2010, 44(15):4341-4350 doi: 10.1016/j.watres.2010.05.023
|
[9]
|
Antonio M P M, Krishna P, Joseph J H, Mark C M L. Filamentous bulking sludge-a critical review. Water Research, 2004, 38(4):793-817 doi: 10.1016/j.watres.2003.11.005
|
[10]
|
Ni B J, Yu H Q. Mathematical modeling of aerobic granular sludge:a review. Biotechnology Advances, 2010, 28(6):895-909 doi: 10.1016/j.biotechadv.2010.08.004
|
[11]
|
Wang J, Li Q, Qi R, Tan V, Yang M. Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant. Process Biochemistry, 2014, 49(12):2258-2265 doi: 10.1016/j.procbio.2014.08.005
|
[12]
|
谢冰, 徐亚同.活性污泥污水处理厂生物泡沫产生机理及控制.净水技术, 2006, 25(1):1-6 doi: 10.3969/j.issn.1009-0177.2006.01.001Xie Bing, Xu Ya-Tong. Review of the mechanism and control of scum and foaming for sewage treatment plant. Water Purification Technology, 2006, 25(1):1-6 doi: 10.3969/j.issn.1009-0177.2006.01.001
|
[13]
|
李宗仁, 张新颖, 林琳琳, 张莉敏, 杜朝丹, 陈美香.污泥膨胀和生物泡沫的形成机理和控制方法.净水技术, 2018, 37(4):28-33 http://d.old.wanfangdata.com.cn/Periodical/jsjs201804005Li Zong-Ren, Zhang Xin-Ying, Lin Lin-Lin, Zhang Li-Min, Du Chao-Dan, Chen Mei-Xiang. Mechanism and control solutions for formation of sludge bulking and biological foaming. Water Purification Technology, 2018, 37(4):28-33 http://d.old.wanfangdata.com.cn/Periodical/jsjs201804005
|
[14]
|
Wang J B, Chai L. H, Zhang Y, Chen L M. Microbial ecological model of filamentous bulking and mechanisms. World Microbiol Biotechnol, 2006, 22(10):1313-1320 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8026add19fec2c0c713c6d9d9e82a2e2
|
[15]
|
Guo J H, Peng Y Z, Peng C Y, Wang S Y, Chen Y, Huang H J, et al. Energy saving achieved by limited filamentous bulking under low dissolved oxygen. Bioresource Technology, 2008, 29(12):3342-3347 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4fd1a5e34b6abee082064fde055ded91
|
[16]
|
Amaral A L, Ferreira E C. Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression. Analytica Chimica Acta, 2005, 544(1):246-253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff37adbddba05307243e1ea3d2dd82ea
|
[17]
|
Reyes D L, Raskin L. Role of filamentous microorganisms in activated sludge foaming:relationship of mycolata levels to foaming initiation and stability. Water Research, 2002, 36(2):445-459 doi: 10.1016/S0043-1354(01)00227-5
|
[18]
|
Fryer M, Gray N F. Foaming scum index (FSI)-a new tool for the assessment and characterization of biological mediated activated sludge foams. Journal of Environmental Management, 2012, 110(18):8-19 http://www.sciencedirect.com/science/article/pii/S0301479712002678
|
[19]
|
Frigon D, Guthrie R M, Bachman G T, Royer J, Bailey B, Raskin L. Long-term analysis of a full-scale activated sludge wastewater treatment system exhibiting seasonal biological foaming. Water Research, 2006, 40(5):990-1008 doi: 10.1016/j.watres.2005.12.015
|
[20]
|
Di B G, Torregrossa M. Foaming in membrane bioreactors:Identification of the causes. Journal of Environmental Management, 2013, 128(20):453-461
|
[21]
|
Rika J, Ephraim N B, Jeron D, Nele R J, Jan F V I. Detection of filamentous bulking problems:developing an image analysis system for sludge composition monitoring. Microsc. Microanal, 2007, 13(1):36-41 doi: 10.1017/S1431927607070092
|
[22]
|
Fujihira T, Seo S, Yamaguchi T, Hatamoto M, Tanikawa D. High-rate anaerobic treatment system for solid/lipid-rich wastewater using anaerobic baffled reactor with scum recovery. Bioresource Technology, 2018, 263(1):145-152 http://europepmc.org/abstract/MED/29738977
|
[23]
|
Tsang Y F, Chua H, Sin S N, Tam C Y. A novel technology for bulking control in biological wastewater treatment plant for pulp and paper making industry. Biochemical Engineering Journal, 2006, 32(3):127-134 doi: 10.1016/j.bej.2006.08.014
|
[24]
|
Han H G, Liu Z, Guo Y N, Qiao J F. An intelligent detection method for bulking sludge of wastewater treatment process. Journal of Process Control. Journal of Process Control, 2018, 68(8):118-128 http://www.sciencedirect.com/science/article/pii/S095915241830074X
|
[25]
|
Brault J M, Labib R, Perrier M, Stuart P. Prediction of activated sludge filamentous bulking using ATP DATA and neural networks. The Canadian Journal of Chemical Engineering, 2011, 89(4):901-913 doi: 10.1002/cjce.v89.4
|
[26]
|
Han H G, Qiao J F. Prediction of activated sludge bulking based on a self-organizing RBF neural network. Joural of Process Control, 2012, 22(6):1103-1112 doi: 10.1016/j.jprocont.2012.04.002
|
[27]
|
崔和平, 钟艳萍.丝状菌污泥膨胀的原因及其控制方法.中国给水排水, 2004, 20(6):99-101 doi: 10.3321/j.issn:1000-4602.2004.06.032Cui He-Ping, Zhong Yan-Ping. Causes and control of filamentous sludge bulking. China Water & Wastewater, 2004, 20(6):99-101 doi: 10.3321/j.issn:1000-4602.2004.06.032
|
[28]
|
Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 2006, 24(1):115-127 doi: 10.1016/j.biotechadv.2005.08.001
|
[29]
|
Han H G, Li Y, Qiao J F. A fuzzy neural network approach for online fault detection in waste water treatment process. Computers & Electrical Engineering, 2014, 40(7):2216-2226 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fcb51960a970d369cf416a8346e77b5
|
[30]
|
Guo F, Zhang T. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing. Water Research, 2012, 46(8):2772-2782 doi: 10.1016/j.watres.2012.02.039
|
[31]
|
Zhou L, Peng Y Z, Li L Y, Ma T. Study on the recovery of settleability of low DO filamentous bulking sludge. Industrial Water Treatment, 2006, 26(10):49-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyscl200610015
|
[32]
|
Han H G, Li M, Qiao J F. Design of dynamic RBF neural network based on the sensitivity analysis of model output. Acta Electronica Sinica, 2010, 38(3):731-736 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxykz200903021
|
[33]
|
Jose R V P, Anuska M C, Jose L C, Ramon M, Julian C, Julio P. Modeling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration. Biochemical Engineering Journal, 2012, 49(2):173-184
|
[34]
|
Mogens H, Willi G, Takahashi M, Mark C M V L. Actived Sludge Models ASM1, ASM2, ASM2d, ASM3. IWA Pulishing, 2000
|
[35]
|
David A M, Oscar F M, Nadia K, Farah D H D. A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochemical Engineering Journal, 2004, 17(1):15-26 doi: 10.1016/S1369-703X(03)00120-7
|
[36]
|
Irene J, Julian C, Javier L, Juan A B. Start-up of a nitrification system with automatic control to treat highly concentrated ammonium wastewater:Experimental results and modeling. Chemical Engineering Journal, 2008, 144(3):407-419 doi: 10.1016/j.cej.2008.02.010
|
[37]
|
Ng W J, Ong S L, Faisal H. An algorithmic approach for system-specific modeling of activated sludge bulking in an SBR. Environmental Modelling & Software, 2000, 15(2):199-210 doi: 10.1016-S1364-8152(99)00035-3/
|
[38]
|
Vaiopoulou E, Melidis P, Aivasidis A. Growth of filamentous bacteria in an enhanced biological phosphorus removal system. Desalination, 2007, 213(1):288-296 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce8a93e8ff9c4a9d3064b07a24ba77f4
|
[39]
|
Guo J, Peng Y, Wang S. Stable limited filamentous bulking through keeping the competition between floc-formers and filaments in balance. Bioresource Technology, 2012, 103(1):7-15 doi: 10.1016/j.biortech.2011.08.114
|
[40]
|
Yu Y, Qiao J F. Modeling and simulation technology of activated sludge method on wastewater treatment process. Information and Control, 2004, 9(6):22-34 http://en.cnki.com.cn/Article_en/CJFDTOTAL-XXYK200406014.htm
|
[41]
|
Kiser M A, Westerhoff P, Benn T. Titanium nanomaterial removal and release from wastewater treatment plants. Environmental Science & Technology, 2009, 43(17):6757-6763 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211268444/
|
[42]
|
Bagheri M, Mirbagheri S A, Bagheri Z. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Safety & Environmental Protection, 2015, 95(1):12-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=75e9c999ba938bf69edd80db06a8d94d
|
[43]
|
Martins A M P, Karahan O, Loosdrecht M C M. Effect of polymeric substrate on sludge settleability. Water Research, 2011, 45(1):263-273 doi: 10.1016/j.watres.2010.07.055
|
[44]
|
Kim H, Gellner J W, Boltz J P. Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Research, 2010, 44(5):1553-1561 doi: 10.1016/j.watres.2009.11.001
|
[45]
|
Hu B, Qi R, An W. Dynamics of the microfauna community in a full-scale municipal wastewater treatment plant experiencing sludge bulking. European Journal of Protistology, 2013, 49(4):491-499 doi: 10.1016/j.ejop.2013.03.001
|
[46]
|
Tixier N, Guibaud G, Baudu M. Towards a rheological parameter for activated sludge bulking characterisation. Enzyme & Microbial Technology, 2003, 33(2):292-298 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81cac6ef40c73acb45ce2fb20399ebf4
|
[47]
|
Motta M, Pons M N, Roche N. Automated monitoring of activated sludge in a pilot plant using image analysis. Water Science & Technology, 2001, 47(7):91-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d9435854f43dea60fd474c039147e9c
|
[48]
|
Mamais D, Andreadakis A, Noutsopoulous C, Kalergis C. Causes of, and control strategies for, microthrix parvicella bulking and foaming in nutrient removal activated sludge systems. Water Science & Technology, 1998, 37(4-5):9-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=569896202df0d8781765f0593ea5c335
|
[49]
|
Banadda E N, Smets I Y, Jenne R, Van I J F. Predicting the onset of filamentous bulking in biological wastewater treatment systems by exploiting image analysis information. Bioprocess & Biosystems Engineering, 2005, 27(5):339-348 http://lirias.kuleuven.be/handle/123456789/212720
|
[50]
|
Boztoprak H, Ozbay Y, Guclu D, Kucukhemek M. Prediction of sludge volume index bulking using image analysis and neural network at a full-scale activated sludge plant. Desalination & Water Treatment, 2015, 57(37):1-11 doi: 10.1080/19443994.2015.1085909
|
[51]
|
Nilsson F, Hagman M, Mielczarek A T, Nielsen P H, Nsson K. Application of ozone in full-scale to reduce filamentous bulking sludge at Aresundsverket WWTP. Ozone Science & Engineering, 2014, 36(3):238-243 http://www.mendeley.com/research/application-ozone-fullscale-reduce-filamentous-bulking-sludge-%E6%9E%9Aresundsverket-wwtp/
|
[52]
|
Wang P, Yu Z, Qi R, Zhang H. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant. Water Research, 2016, 105(1):157-163 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=508147f060dfc9b9524249785274fed1
|
[53]
|
Mesquita D P, Dias O, Dias A M, Amaral A L, Ferreira E C. Correlation between sludge settling ability and image analysis information using partial least squares. Analytica Chimica Acta, 2009, 642(1):94-101 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215214381/
|
[54]
|
Liu Y, Wang Z W, Liu Y Q. A generalized model for settling velocity of aerobic granular sludge. Biotechnology Progress, 2005, 21(2):621-626 http://www.ncbi.nlm.nih.gov/pubmed/15801809
|
[55]
|
Ratkovich N, Horn W, Helmus F P. Activated sludge rheology:a critical review on data collection and modelling. Water Research, 2013, 47(2):463-482 doi: 10.1016/j.watres.2012.11.021
|
[56]
|
Heine W, Sekoulov I, Burkhardt H. Early warning-system for operation-failures in biological stages of WWTPs by on-line image analysis. Water Science & Technology, 2002, 46(4-5):117-124 http://www.ncbi.nlm.nih.gov/pubmed/12360998
|
[57]
|
Haimi H, Mulas M, Corona F, Vahala R. Data-derived soft-sensors for biological wastewater treatment plants:an overview. Environmental Modelling & Software, 2013, 47(3):88-107 http://www.sciencedirect.com/science/article/pii/S1364815213001308
|
[58]
|
Makinia J, Rosenwinkel K H, Phan L C. Modification of ASM3 for the determination of biomass adsorption/storage capacity in bulking sludge control. Water Science & Technology, 2006, 53(3):91-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df51a3891cef0c4f16d9ae9bbb4a0d36
|
[59]
|
Bansal N K, Feng X, Zhang W, Wei W, Zhao Y. Modeling temporal pattern and event detection using hidden Markov model with application to a sludge bulking data. Procedia Computer Science, 2012, 12(1):218-223 http://www.sciencedirect.com/science/article/pii/S1877050912006503
|
[60]
|
Xavier F A, Joaquim C, Ignasi R R, Krist V G, Christian R. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model. Water Research, 2009, 43(18):4527-4538 doi: 10.1016/j.watres.2009.07.033
|
[61]
|
Mesquita D P, Amaral A L, Ferreira E C. Activated sludge characterization through microscopy:a review on quantitative image analysis and chemometric techniques. Analytica Chimica Acta, 2013, 802(1):14-28 http://www.ncbi.nlm.nih.gov/pubmed/24176501
|
[62]
|
Smets I, Banadda E, Deurinck J, Renders N, Jenne R, Van I J. Dynamic modeling of filamentous bulking in lab-scale activated sludge processes. Journal of Process Control, 2006, 16(3):313-319 doi: 10.1016/j.jprocont.2005.06.011
|
[63]
|
韩红桂, 伍小龙, 王丽丹, 王思.丝状菌污泥膨胀简化机理模型研究.化工学报, 2013, 64(12):4641-4648 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201312055.htmHan Hong-Gui, Wu Xiao-Long, Wang Li-Dan, Wang Si. The analysis of the mechanistic model of filamentous bulking. Chinese Journal of Chemical Engineering, 2013, 64(12):4641-4648 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201312055.htm
|
[64]
|
Zhang C, Zhang H. Analysis of aerobic granular sludge formation based on grey system theory. Journal of Environmental Sciences, 2013, 25(4):710-716 doi: 10.1016/S1001-0742(12)60080-1
|
[65]
|
Ng W J, Ong S L, Hossain F. An algorithmic approach for system-specific modelling of activated sludge bulking in an SBR. Environmental Modelling & Software, 2000, 15(2):199-210 https://www.sciencedirect.com/science/article/pii/S1364815299000353
|
[66]
|
Comas J, Rodríguez-Roda I, Gernaey K V, Rosen C, Jeppsson U. Risk assessment modelling of microbiology-related solids separation problems in activated sludge systems. Environmental Modelling & Software, 2008, 32(10):1250-1261
|
[67]
|
Capodaglio A G, Jones H V, Novotny V, Feng X. Sludge bulking analysis and forecasting:application of system identification and artificial neural computing technologies. Water Research, 1991, 25(10):1217-1224 doi: 10.1016/0043-1354(91)90060-4
|
[68]
|
Lou I, Zhao Y. Sludge bulking prediction using principle component regression and artificial neural network. Mathematical Problems in Engineering, 2012, 25(10):295-308 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230611658/
|
[69]
|
Barnett M W. Knowledge-based expert system applications in waste treatment operation and control. ISA Transactions, 1992, 31(1):53-60 doi: 10.1016/0019-0578(92)90009-8
|
[70]
|
Traore A, Grieu S, Thiery F. Control of sludge height in a secondary settler using fuzzy algorithms. Computers & Chemical Engineering, 2006, 30(8):1235-1242 http://www.sciencedirect.com/science/article/pii/S0098135406000421
|
[71]
|
Fialkowska E, Pajdakstos A. The role of Lecane rotifers in activated sludge bulking control. Water Research, 2008, 42(10-11):2483-2490 doi: 10.1016/j.watres.2008.02.001
|
[72]
|
Ni B J, Yu H Q, Sun Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Research, 2008, 42(6):1583-1594 doi: 10.1016-j.watres.2007.11.010/
|
[73]
|
Vazquez P J R, Mosquera C A, Campos J L. Modelling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration. Biochemical Engineering Journal, 2010, 49(2):173-184 doi: 10.1016/j.bej.2009.12.009
|
[74]
|
Rossle W H, Pretorius W A. Batch and automated SVI measurements based on short-term temperature variations. Water SA, 2008, 34(2):237-243
|
[75]
|
Kotay S M, Datta T, Choi J, Goel R. Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water Research, 2011, 45(2):694-704 doi: 10.1016/j.watres.2010.08.038
|
[76]
|
Seka A M, Wiele T V D, Verstraete W. Feasibility of a multi-component additive for efficient control of activated sludge filamentous bulking. Water Research, 2001, 35(12):2995-3003 doi: 10.1016/S0043-1354(00)00589-3
|
[77]
|
Dierdonck J V, Broeck R V D, Vervoort E. The effect of alternating influent carbon source composition on activated sludge bioflocculation. Journal of Biotechnology, 2013, 167(3):225-234 doi: 10.1016/j.jbiotec.2013.07.012
|
[78]
|
Lyko S, Teichgraber B, Kraft A. Bulking control by low-dose ozonation of returned activated sludge in a full-scale wastewater treatment plant. Water Science & Technology, 2012, 65(9):1654-1659 http://www.ncbi.nlm.nih.gov/pubmed/22508129
|
[79]
|
Barrington D J, Ghadouani A. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environmental Science & Technology, 2008, 42(23):8916-8921 doi: 10.1021/es801717y
|
[80]
|
Hartley K J. Controlling sludge settleability in the oxidation ditch process. Water Research, 2008, 42(6-7):1459-1466 doi: 10.1016/j.watres.2007.10.017
|
[81]
|
Nilsson F, Davidsson A, Falas P, Bengtsson S, Kai B, Karin J. Impact of activated sludge ozonation on filamentous bacteria viability and possible added benefits. Environmental Technology, 2018, 4:1-7 doi: 10.1080/09593330.2018.1447023
|
[82]
|
Pitman A R. Bulking and foaming in bnr plants in Johannesburg:Problems and solution. Water Science & Technology, 1996, 34(3-4):291-298 http://www.sciencedirect.com/science/article/pii/0273122396005859
|
[83]
|
李宝新, 金波.污水处理厂生物泡沫的预防和控制方法.工业水处理, 2010, 30(2):81-83 doi: 10.3969/j.issn.1005-829X.2010.02.025Li Bao-Xin, Jin Bo. Prevention and control measures of biobubbles in wastewater treatment plants. Industrial Water Treatment, 2010, 30(2):81-83 doi: 10.3969/j.issn.1005-829X.2010.02.025
|
[84]
|
Levacn L, Wijnbladh E, Tuvesson M, Kragelund C, Hallin S. Control of Microthrix parvicella and sludge bulking by ozone in a full-scale WWTP. Water Science & Technology, 2016, 73(4):866-872 http://www.ncbi.nlm.nih.gov/pubmed/26901730
|
[85]
|
Parker D, Appleton R, Bratby J. North American performance experience with anoxic and anaerobic selectors for activated sludge bulking control. Water Science & Technology, 2004, 50(7):221-228 http://test.europepmc.org/abstract/MED/15553479
|
[86]
|
Jiang M, Zhang Y, Zhou X. Simultaneous carbon and nutrient removal in an airlift loop reactor under a limited filamentous bulking state. Bioresource Technology, 2013, 130(1):406-411 http://www.ncbi.nlm.nih.gov/pubmed/23313686
|
[87]
|
赵霞, 赵阳丽, 陈忠林.好氧颗粒污泥发生丝状菌污泥膨胀的控制措施.中国给水排水, 2012, 28(3):15-19 doi: 10.3969/j.issn.1000-4602.2012.03.004Zhao Xia, Zhao Yang-Li, Chen Zhong-Lin. Control of filamentous sludge bulking in aerobic granular sludge SBR process. China Water & Wastewater, 2012, 28(3):15-19 doi: 10.3969/j.issn.1000-4602.2012.03.004
|
[88]
|
Meunier C, Henriet O, Schoonbroodt B. Influence of feeding pattern and hydraulic selection pressure to control filamentous bulking in biological treatment of dairy wastewaters. Bioresource Technology, 2016, 221(9):300-309 http://www.ncbi.nlm.nih.gov/pubmed/27643739
|
[89]
|
Schuler A J, Jassby D. Filament content threshold for activated sludge bulking:Artifact or reality? Water Research, 2007, 41(19):4349-4356 doi: 10.1016/j.watres.2007.06.021
|
[90]
|
周利, 彭永臻, 高春娣, 丁峰. SBR工艺中污泥负荷对丝状菌污泥膨胀的影响.中国给水排水, 1999, 15(6):11-13 doi: 10.3321/j.issn:1000-4602.1999.06.004Zhou Li, Peng Yong-Zhen, Gao Chun-Di, Ding Feng. Influence of sludge load on filamentous sludge in SBR process. China Water & Wastewater, 1999, 15(6):11-13 doi: 10.3321/j.issn:1000-4602.1999.06.004
|
[91]
|
Song X L, Zhao Y B, Song Z Y. Dissolved oxygen control in wastewater treatment based on robust PID controller. International Journal of Modelling Identification & Control, 2012, 15(4):297-303 http://www.ingentaconnect.com/content/rsoc/17466172/2012/00000015/00000004/art00009
|
[92]
|
Cristea M V, Agachi S P. Nonlinear model predictive control of the wastewater treatment plant. Computer Aided Chemical Engineering, 2006, 21(1):1365-1370 http://www.sciencedirect.com/science/article/pii/S1570794606802373
|
[93]
|
Corriou J P, Pons M N. Model predictive control of wastewater treatment plants:Application to the BSM1. Computer Aided Chemical Engineering, 2004, 32(4):625-630 doi: 10.1016-S1570-7946(04)80170-6/
|
[94]
|
Han H G, Qiao J F. Nonlinear model-predictive control for industrial processes:an application to wastewater treatment process. IEEE Transactions on Industrial Electronics, 2014, 61(4):1970-1982 doi: 10.1109/TIE.2013.2266086
|
[95]
|
Francisco M, Skogestad S, Vega P. Model predictive control for the self-optimized operation in wastewater treatment plants:Analysis of dynamic issues. Computers & Chemical Engineering, 2015, 82(3):259-272 http://europepmc.org/articles/PMC4344236/
|
[96]
|
Guo J H, Peng Y Z, Peng C Y. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen. Bioresource Technology, 2010, 101(4):1120-1126 doi: 10.1016/j.biortech.2009.09.051
|
[97]
|
Amanatidou E, Samiotis G, Trikoilidou E. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time. Water Research, 2015, 69(1):20-29 http://www.ncbi.nlm.nih.gov/pubmed/25463928
|
[98]
|
栗三一, 乔俊飞, 李文静, 顾锞.污水处理决策优化控制.自动化学报, 2018, 44(12):2198-2209 http://youxian.cnki.com.cn/yxdetail.aspx?filename=MOTO2017121102J&dbname=CAPJ2015Li San-Yi, Qiao Jun-Fei, Li Wen-Jing, Gu Ke. Advanced decision and optimization control system for wastewater treatment plants. Acta Automatica Sinica, 2018, 44(12):2198-2209 http://youxian.cnki.com.cn/yxdetail.aspx?filename=MOTO2017121102J&dbname=CAPJ2015
|
[99]
|
Krzeminski P, Iglesias-Obelleiro A, Madebo G. Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment. Journal of Membrane Science, 2012, 423(1):348-361 http://dl.acm.org/citation.cfm?id=2455338
|
[100]
|
Han H G, Wu X L, Liu Z, Qiao J F. Design of self-organizing intelligent controller using fuzzy neural network. IEEE Transactions on Fuzzy Systems, 2018, 26(5):3097-3111 doi: 10.1109/TFUZZ.2017.2785812
|
[101]
|
Zeng G, Jiang R, Huang G, Xu M, Li J. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis. IEEE Transactions on Fuzzy Systems, 2018, 26(5):3097-3111 http://www.sciencedirect.com/science/article/pii/S0301479706000594
|
[102]
|
Ruan J, Chao Z, Li Y. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor. Journal of Environmental Management, 2017, 187(1):550-559 http://www.sciencedirect.com/science/article/pii/S0301479716308581
|
[103]
|
Ramin E, Sin G, Mikkelsen P S. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions. Water Research, 2014, 63(1):209-221 http://europepmc.org/abstract/med/25003213
|
[104]
|
Avella A C, Gorner T, Yvon J. A combined approach for a better understanding of wastewater treatment plants operation:Statistical analysis of monitoring database and sludge physico-chemical characterization. Water Research, 2011, 45(3):981-992 doi: 10.1016/j.watres.2010.09.028
|
[105]
|
Ding D, Feng C, Jin Y. Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 2011, 276(1):260-265 http://www.sciencedirect.com/science/article/pii/S0011916411002773
|
[106]
|
Belchior C A C, Rui A M A, Landeck J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Computers & Chemical Engineering, 2012, 37(4):152-162 http://www.sciencedirect.com/science/article/pii/S0098135411002821
|
[107]
|
Leng G, McGinnity T M, Prasad G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Transactions on Fuzzy Systems, 2006, 14(6):755-766 doi: 10.1109/TFUZZ.2006.877361
|
[108]
|
Juang C F, Chiu S H, Chang S W. A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems. IEEE Transactions on Fuzzy Systems, 2007, 15(5):998-1008 doi: 10.1109/TFUZZ.2007.894980
|
[109]
|
Han H G, Qiao J F. A self-organizing fuzzy neural network based on a growing-and-pruning algorithm. IEEE Transactions on Fuzzy Systems, 2010, 18(6):1129-1143 doi: 10.1109/TFUZZ.2010.2070841
|
[110]
|
Pocha M, Comasa J, Porroa J. Where are we in wastewater treatment plants data management? A review and a proposal. International Environmental Modelling & Software Society, 2014, 12(3):221-234
|
[111]
|
Rieger L, Takács I, Villez K. Data reconciliation for wastewater treatment plant simulation studies-planning for high-quality data and typical sources of errors. Water Environment Research, 2010, 82(5):426-433 doi: 10.2175/106143009X12529484815511
|
[112]
|
Puig S, Loosdrecht M C M, Colprim J. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Research, 2008, 42(18):4645-4655 doi: 10.1016/j.watres.2008.08.009
|
[113]
|
Amaral A L, Mesquita D P, Ferreira E C. Automatic identification of activated sludge disturbances and assessment of operational parameters. Chemosphere, 2013, 91(5):705-710 doi: 10.1016/j.chemosphere.2012.12.066
|
[114]
|
Castillo A, Cheali P, Gomez V, Comas J, Poch M, Sin G. An integrated knowledge-based and optimization tool for the sustainable selection of wastewater treatment process concepts. Environmental Modelling & Software, 2016, 84:177-192 http://www.sciencedirect.com/science/article/pii/S1364815216302596
|
[115]
|
Thiebault T, Fougere L, Destandau E, Réty M, Jacob J. Temporal dynamics of human-excreted pollutants in wastewater treatment plant influents:Toward a better knowledge of mass load fluctuations. Science of the Total Environment, 2017, 596:246-255 http://europepmc.org/abstract/MED/28433767
|
[116]
|
Huang X Q, Han H G, Qiao J F. Energy consumption model for wastewater treatment process control. Water Science & Technology, 2013, 67(3):667-671 http://www.ncbi.nlm.nih.gov/pubmed/23202574
|
[117]
|
Han H G, Wu X L, Qiao J F. A self-organizing sliding-mode controller for wastewater treatment processes. IEEE Transactions on Control Systems Technology, 2018, PP(99):1-12 http://ieeexplore.ieee.org/document/8365103/
|
[118]
|
Zhu S G, Han H G, Guo M, Qiao J F. A data-derived soft-sensor method for monitoring effluent total phosphorus. Chinese Journal of Chemical Engineering, 2017, 25(12):1791-1797 doi: 10.1016/j.cjche.2017.06.008
|
[119]
|
Han H G, Zhang S, Qiao J F. An adaptive growing and pruning algorithm for designing recurrent neural network. Neurocomputing, 2017, 242(14):51-62 http://www.sciencedirect.com/science/article/pii/S0925231217303296
|
[120]
|
Han H G, Liu Z, Ge L M, Qiao J F. Prediction of sludge bulking using the knowledge-leverage-based fuzzy neural network. Water Science & Technology, 2018, 77(3):617-627 http://europepmc.org/abstract/MED/29431706
|