2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交通流动态扰动下的区域交通信号协调控制

魏永涛 高原 孙文义 王秀蒙

连峰, 吕宁, 韩崇昭. 群目标联合检测与估计误差界的递推形式. 自动化学报, 2015, 41(12): 2026-2035. doi: 10.16383/j.aas.2015.c140794
引用本文: 魏永涛, 高原, 孙文义, 王秀蒙. 交通流动态扰动下的区域交通信号协调控制. 自动化学报, 2019, 45(10): 1983-1994. doi: 10.16383/j.aas.2018.c180403
LIAN Feng, LV Ning, HAN Chong-Zhao. The Recursive Form of Error Bound for Joint Detection and Estimation of Groups. ACTA AUTOMATICA SINICA, 2015, 41(12): 2026-2035. doi: 10.16383/j.aas.2015.c140794
Citation: WEI Yong-Tao, GAO Yuan, SUN Wen-Yi, WANG Xiu-Meng. Regional Traffic Signal Control Considering the Dynamic Characteristics of Traffic Flow. ACTA AUTOMATICA SINICA, 2019, 45(10): 1983-1994. doi: 10.16383/j.aas.2018.c180403

交通流动态扰动下的区域交通信号协调控制

doi: 10.16383/j.aas.2018.c180403
基金项目: 

国家自然科学基金 61573077

详细信息
    作者简介:

    高原   东北大学秦皇岛分校控制工程学院讲师.2002年获得东北大学硕士学位.主要研究方向为智能控制与智能交通.E-mail:gaoyuan@neuq.edu.cn

    孙文义  东北大学博士研究生.2009年获得燕山大学硕士学位.主要研究方向为智能控制与智能交通.E-mail:sunwenyi@neuq.edu.cn

    王秀蒙   2018年获得大连海事大学控制科学与工程专业硕士学位.主要研究方向为智能交通, 车辆协同控制.E-mail:public-class@163.com

    通讯作者:

    魏永涛   东北大学秦皇岛分校控制工程学院讲师.2012年获得东北大学信息学院博士学位.主要研究方向为智慧城市与智能交通.本文通信作者.E-mail:weiyt@neuq.edu.cn

Regional Traffic Signal Control Considering the Dynamic Characteristics of Traffic Flow

Funds: 

National Natural Science Foundation of China 61573077

More Information
    Author Bio:

       Lecturer at the School of Control Engineering, Northeastern University at Qinhuangdao. He received his master degree from Northeastern University in 2002. His research interest covers intelligent control and intelligent transportation system

       Ph.D. candidate at Northeastern University. He received his master degree from Yanshan University in 2009. His research interest covers intelligent control and intelligent transportation system

       She received her master degree in control science and engineering from Dalian Maritime University in 2018. Her research interest covers intelligent transportation system and vehicle collaborative control

    Corresponding author: WEI Yong-Tao    Lecturer at the School of Control Engineering, Northeastern University at Qinhuangdao. He received his Ph.D. from School of Information, Northeastern University in 2012. His research interest covers smart city and intelligent transportation system. Corresponding author of this paper
  • 摘要: 针对区域交通信号,考虑智能交通系统中交通流的动态特性,提出了区域交通系统改进的存储-转发模型.考虑大型区域的复杂性和协调性,将区域交通划分成N个子区域,分别建立了对应的子区域模型.针对子区域模型,提出了基于分层模型预测控制的过饱和区域交通信号控制优化目标.通过引入拉格朗日对偶原理解决约束条件问题的方法,对子区域的车辆排队数量进行了预测,并对有效绿灯时间进行优化控制.为了验证所提区域交通控制算法的有效性,给出了本文改进的模型与存储-转发模型的对比仿真.实验结果表明,在达到相同的控制效果时,本文改进模型的控制算法所需的计算时间较短,计算成本较低.

  • 本文责任编委 赵勇
  • 图  1  交通流$r$的交通动态图

    ((a)交通流无外界输入; (b)交通流有外界输入(虚线))

    Fig.  1  Traffic dynamics

    ((a) Traffic without input; (b) Traffic with inputdotted lines)

    图  2  区域分解的例子

    ((a)实验区域; (b)实验区域的分解情况)

    Fig.  2  Example of network decomposition

    ((a) A test network; (b) The decomposition of (a))

    图  3  相邻区域之间的影响

    Fig.  3  Influence between adjacent subnetworks

    图  4  所提出方法的方案图

    Fig.  4  Scheme of the proposed method

    图  5  外界输入交通流

    Fig.  5  Input traffic flow from outside

    图  6  不同预测窗的运行时间

    Fig.  6  Running time under different prediction window

    图  7  $N_{p}=1$时不同状态下两种模型的TTS

    Fig.  7  TTS of each model under ${N_p} = 1$

    图  8  $N_{p}=2$时不同状态下两种方法的TTS

    Fig.  8  TTS of each model under ${N_p} = 2$

    图  9  $N_{p}=3$时不同状态下两种方法的TTS

    Fig.  9  TTS of each model under ${N_p} = 3$

    图  10  $N_{p}=4$时不同状态下两种方法的TTS

    Fig.  10  TTS of each model under ${N_p} = 4$

    图  11  本文改进模型控制的交通流$x_{3}$的变化

    Fig.  11  The changing of traffic $x_{3}$ under proposed model

    图  12  存储转发模型控制的交通流$x_{3}$的变化

    Fig.  12  The changing of traffic $x_{3}$ under store and forward model

    图  13  本文改进模型控制的交通流$x_{7}$的变化

    Fig.  13  The changing of traffic $x_{7}$ under proposed model

    图  14  存储转发模型控制的交通流$x_{7}$的变化

    Fig.  14  The changing of traffic $x_{7}$ under store and forward model

    表  1  基本参数的定义

    Table  1  Definitions of basic parameters

    参数 变量 仿真值
    周期时长 $C$ 120 s
    损失时间 $L$ 20 s
    控制间隔 $T$ 120 s
    车辆平均长度 $l$ 5 m
    下载: 导出CSV

    2(a)  测试网中的转弯率

    2(a)  Turning rates of the test network

    ${\tau _{w, r}}$ $x_1$ $x_2$ $x_3$ $x_4$ $x_5$ $x_6$
    $x_1$ 0 0 0 0.2 0 0.5
    $x_2$ 0 0 0 0.15 0 0.35
    $x_3$ 0 0 0 0.5 0 0.15
    $x_4$ 0 0 0 0 0 0
    $x_5$ 0 0 0 0 0 0
    $x_6$ 0 0 0 0 0.3 0
    $x_7$ 0 0 0 0 0.6 0
    $x_8$ 0 0 0 0 0 0
    $x_9$ 0 0 0 0 0 0
    $x_{10}$ 0 0 0 0 0 0
    $x_{11}$ 0 0 0 0 0 0
    下载: 导出CSV

    2(b)  测试网中的转弯率

    2(b)  Turning rates of the test network

    ${\tau _{w, r}}$ $x_7$ $x_8$ $x_9$ $x_{10}$ $x_{11}$ $x_{12}$ $x_{13}$
    $x_1$ 0 0 0 0 0.15 0 0.5
    $x_2$ 0 0 0 0 0.35 0 0.15
    $x_3$ 0 0 0 0 0.2 0 0.15
    $x_4$ 0 0 0 0 0 0 0
    $x_5$ 0 0 0 0 0 0 0
    $x_6$ 0 0 0 0 0 0 0
    $x_7$ 0 0 0 0 0 0 0
    $x_8$ 0.4 0 0 0.6 0 0 0
    $x_9$ 0.6 0 0 0.4 0 0 0
    $x_{10}$ 0 0 0 0 0 0.7 0
    $x_{11}$ 0 0 0 0 0 0.3 0
    下载: 导出CSV

    表  3  初始状态和扰动

    Table  3  initial states and disturbances

    $\text{定义}$ $\text{描述}$ $\text{范围}$
    $I_{L}$ $\text{低初态}$ $x_{i}^{6, 11}\in[25, 50), x_{i}^{4, 13}\in[20, 40), x_{i}^{\rm other}\in[10, 20)$
    $I_{M}$ $\text{中初态}$ $x_{i}^{6, 11}\in[45, 80), x_{i}^{4, 13}\in[35, 60), x_{i}^{\rm other}\in[15, 30)$
    $I_{H}$ $\text{高初态}$ $x_{i}^{6, 11}\in[60, 100), x_{i}^{4, 13}\in[50, 80), x_{i}^{\rm other}\in[20, 40)$
    $e_{L}$ $\text{低扰动}$ $e_{i}^{6, 11}\in[5, 10), e_{i}^{4, 13}\in[4, 8), e_{i}^{\rm other}\in[2, 4)$
    $e_{H}$ $\text{高扰动}$ $e_{i}^{6, 11}\in[8, 15), e_{i}^{4, 13}\in[6, 10), e_{i}^{\rm other}\in[4, 6)$
    注: $x_i^{6, 11}$表示交通流$\{{x_6}, {x_{11}}\} $现有的排队长度, $x_i^{4, 13}$表示交通流$\{{x_4}, {x_{13}}\} $现有的排队长度, ${x^{\rm other}}$表示其他交通流现有的排队长度.同理$x_i^{6, 11}$, $x_i^{4, 13}$, ${x^{\rm other}}$表示相应交通流的扰动.
    下载: 导出CSV
  • [1] Jang K, Kim H, Jang I G. Traffic signal optimization for oversaturated urban networks:queue growth equalization. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):2121-2128 doi: 10.1109/TITS.2015.2398896
    [2] Meng X, Tang S H, Liu X M, Zhang L. Oversaturated traffic signal optimization based on active control. In: Proceedings of the 2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE). Singapore: IEEE, 2016. 91-95
    [3] 刘小明, 唐少虎, 朱凤华, 陈兆盟.基于MFD的城市区域过饱和交通信号优化控制.自动化学报, 2017, 43(7):1220-1233 http://www.aas.net.cn/CN/abstract/abstract19095.shtml

    Liu Xiao-Ming, Tang Shao-Hu, Zhu Feng-Hua, Chen Zhao-Meng. Urban area oversaturated traffic signal optimization control based on MFD. Acta Automatica Sinica, 2017, 43(7):1220-1233 http://www.aas.net.cn/CN/abstract/abstract19095.shtml
    [4] 朱宇轩, 李少远.双层模型预测控制系统的多包镇定域分析与系统设计.自动化学报, 2018, 44(2):262-269 http://www.aas.net.cn/CN/abstract/abstract19221.shtml

    Zhu Yu-Xuan, Li Shao-Yuan. Analysis and system design of multi-convex hull stabilization domain for double-layered model predictive control system. Acta Automatica Sinica, 2018, 44(2):262-269 http://www.aas.net.cn/CN/abstract/abstract19221.shtml
    [5] Aboudolas K, Papageorgiou M, Kosmatopoulos E. Store-and-forward based methods for the signal control problem in large-scale congested urban road networks. Transportation Research Part C:Emerging Technologies, 2009, 17(2):163-174 doi: 10.1016/j.trc.2008.10.002
    [6] Lin S, De Schutter B, Xi Y G, Hellendoorn H. Efficient network-wide model-based predictive control for urban traffic networks. Transportation Research Part C:Emerging Technologies, 2012, 24:122-140 doi: 10.1016/j.trc.2012.02.003
    [7] Lin S, De Schutter B, Xi Y G, Hellendoorn H. Fast model predictive control for urban road networks via MILP. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3):846-856 doi: 10.1109/TITS.2011.2114652
    [8] Zhou X H, Ye B L, Lu Y Z, Xiong R. A novel MPC with chance constraints for signal splits control in urban traffic network. IFAC Proceedings Volumes, 2014, 47(3):11311-11317 doi: 10.3182/20140824-6-ZA-1003.01187
    [9] Tettamanti T, Varga I. Distributed traffic control system based on model predictive control. Periodica Polytechnica Civil Engineering, 2010, 54(1):3-9 doi: 10.3311/pp.ci.2010-1.01
    [10] Negenborn R R, De Schutter B, Hellendoorn J. Multi-agent model predictive control for transportation networks:serial versus parallel schemes. Engineering Applications of Artificial Intelligence, 2008, 21(3):353-366 doi: 10.1016/j.engappai.2007.08.005
    [11] De Oliveira L B, Camponogara E. Multi-agent model predictive control of signaling split in urban traffic networks. Transportation Research Part C:Emerging Technologies, 2010, 18(1):120-139 doi: 10.1016/j.trc.2009.04.022
    [12] Camponogara E, Scherer H F. Distributed optimization for model predictive control of linear dynamic networks with control-input and output constraints. IEEE Transactions on Automation Science and Engineering, 2011, 8(1):233-242 doi: 10.1109/TASE.2010.2061842
    [13] Sirmatel I I, Geroliminis N. Economic model predictive control of large-scale urban road networks via perimeter control and regional route guidance. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4):1112-1121 doi: 10.1109/TITS.2017.2716541
    [14] Ye B L, Wu W M, Mao W J. Distributed model predictive control method for optimal coordination of signal splits in urban traffic networks. Asian Journal of Control, 2015, 17(3):775-790 doi: 10.1002/asjc.1011
    [15] Ye B L, Wu W M, Li L X, Mao W J. A hierarchical model predictive control approach for signal splits optimization in large-scale urban road networks. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8):2182-2192 doi: 10.1109/TITS.2016.2517079
    [16] Gazis D C, Potts, R B. The oversaturated intersection. In: Proceedings of the 2nd International Symposium on the Theory of Traffic Flow. London, UK: ARRB Group Ltd., 1963. 221-237
    [17] Xing T, Zhou X S. Finding the most reliable path with and without link travel time correlation:a Lagrangian substitution based approach. Transportation Research Part B:Methodological, 2011, 45(10):1660-1679 doi: 10.1016/j.trb.2011.06.004
  • 期刊类型引用(29)

    1. 李倩,聂简,黄鸿殿,孔庆宇,奔粤阳. 基于大脑海马认知机理的主从式AUV协同定位方法. 中国惯性技术学报. 2024(01): 27-33 . 百度学术
    2. 游雄,李科,田江鹏,杨剑,余岸竹,贾奋励. 机器地图信息加工模型. 武汉大学学报(信息科学版). 2024(04): 516-526 . 百度学术
    3. 高昊,王仁茂. 基于类脑仿生的环境感知技术. 舰船电子对抗. 2024(05): 42-46+55 . 百度学术
    4. 陈荟慧,钟委钊. 基于人机协作的高质量城市图像采集方法. 应用科学学报. 2023(05): 801-814 . 百度学术
    5. 朱祥维,沈丹,肖凯,马岳鑫,廖祥,古富强,余芳文,高柯夫,刘经南. 类脑导航的机理、算法、实现与展望. 航空学报. 2023(19): 6-38 . 百度学术
    6. 于乃功,廖诣深. 基于鼠脑内嗅—海马认知机制的移动机器人空间定位模型. 生物医学工程学杂志. 2022(02): 217-227 . 百度学术
    7. 刘溢,阳加远,张驰. 一种基于RTX的移动机器人实时控制平台. 电子技术与软件工程. 2022(08): 169-172 . 百度学术
    8. 于子航,王改云. 基于路径积分强化的机器人目标导向运动控制. 计算机仿真. 2022(07): 412-415+516 . 百度学术
    9. 董卫华,刘毅龙,黑巧松,杨天宇. 泛地图空间认知理论与方法研究框架. 武汉大学学报(信息科学版). 2022(12): 2007-2014 . 百度学术
    10. 阮晓钢,李鹏,朱晓庆,刘鹏飞. 基于目标导向行为和空间拓扑记忆的视觉导航方法. 计算机学报. 2021(03): 594-608 . 百度学术
    11. 赵辰豪,吴德伟,韩昆,代传金. 无环境信息下多尺度网格细胞群空间表征模型. 系统工程与电子技术. 2021(03): 814-822 . 百度学术
    12. 阮晓钢,柴洁,武悦,张晓平,黄静. 基于海马体位置细胞的认知地图构建与导航. 自动化学报. 2021(03): 666-677 . 本站查看
    13. 冀俊忠,刘金铎,邹爱笑,杨翠翠. 一种融合多源信息的脑效应连接网络蚁群学习算法. 自动化学报. 2021(04): 864-881 . 本站查看
    14. 万刚,武易天. 地图空间认知的数学基础. 测绘学报. 2021(06): 726-738 . 百度学术
    15. 洪涛,史涛,任红格. 一种改进型RatSLAM算法构建认知地图的研究. 现代计算机. 2021(21): 47-52 . 百度学术
    16. 韩昆,吴德伟,来磊. 类脑导航中基于差分Hebbian学习的网格细胞构建模型. 系统工程与电子技术. 2020(03): 674-679 . 百度学术
    17. 黄宜庆,王正刚,王徽,葛愿. 基于边缘梯度算法的多移动机器人协作地图构建. 信息与控制. 2020(01): 62-68 . 百度学术
    18. 于乃功,廖诣深,郑相国. 一种基于海马位置细胞选择机制的空间认知模型. 生物医学工程学杂志. 2020(01): 27-37 . 百度学术
    19. 胡小平,毛军,范晨,张礼廉,何晓峰,韩国良,范颖. 仿生导航技术综述. 导航定位与授时. 2020(04): 1-10 . 百度学术
    20. 于乃功,冯慧,廖诣深,郑相国. 一种基于感知速度与感知角度的网格野计算模型. 生物医学工程学杂志. 2020(05): 863-874 . 百度学术
    21. 晁丽君,熊智,杨闯,华冰,王雅婷,刘建业. 无人飞行器三维类脑SLAM自主导航方法. 飞控与探测. 2020(05): 35-43 . 百度学术
    22. 张孝伍. 图上的概率分布及位置方向信息的表征方法. 青岛理工大学学报. 2019(01): 113-121 . 百度学术
    23. 方略,何洪军. 基于鼠脑海马位置细胞与Q学习面向目标导航. 生物信息学. 2019(01): 31-38 . 百度学术
    24. 王均,凌有铸,王静. 基于特征融合的仿生SLAM算法研究. 安徽工程大学学报. 2019(02): 26-33 . 百度学术
    25. 刘建业,杨闯,熊智,赖际舟,熊骏. 无人机类脑吸引子神经网络导航技术. 导航定位与授时. 2019(05): 52-60 . 百度学术
    26. 韩昆,吴德伟,来磊,杨林. 自主导航条件下网格细胞放电模型. 电子科技大学学报. 2019(05): 711-716 . 百度学术
    27. 丛明,邹强,刘冬,杜宇. 定位细胞认知机理启发的机器人导航研究综述. 机械工程学报. 2019(23): 1-12 . 百度学术
    28. 邹强,丛明,刘冬,杜宇. 仿鼠脑海马的机器人地图构建与路径规划方法. 华中科技大学学报(自然科学版). 2018(12): 83-88 . 百度学术
    29. 吴德伟,何晶,韩昆,李卉. 无人作战平台认知导航及其类脑实现思想. 空军工程大学学报(自然科学版). 2018(06): 33-38 . 百度学术

    其他类型引用(29)

  • 加载中
  • 图(14) / 表(4)
    计量
    • 文章访问数:  1826
    • HTML全文浏览量:  315
    • PDF下载量:  176
    • 被引次数: 58
    出版历程
    • 收稿日期:  2018-06-07
    • 录用日期:  2018-09-12
    • 刊出日期:  2019-10-20

    目录

      /

      返回文章
      返回