2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向电力信息物理系统的虚假数据注入攻击研究综述

王琦 邰伟 汤奕 倪明

董滔, 李小丽, 赵大端. 基于事件触发的三阶离散多智能体系统一致性分析. 自动化学报, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
引用本文: 王琦, 邰伟, 汤奕, 倪明. 面向电力信息物理系统的虚假数据注入攻击研究综述. 自动化学报, 2019, 45(1): 72-83. doi: 10.16383/j.aas.2018.c180369
DONG Tao, LI Xiao-Li, ZHAO Da-Duan. Event-triggered Consensus of Third-order Discrete-time Multi-agent Systems. ACTA AUTOMATICA SINICA, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
Citation: WANG Qi, TAI Wei, TANG Yi, NI Ming. A Review on False Data Injection Attack Toward Cyber-physical Power System. ACTA AUTOMATICA SINICA, 2019, 45(1): 72-83. doi: 10.16383/j.aas.2018.c180369

面向电力信息物理系统的虚假数据注入攻击研究综述

doi: 10.16383/j.aas.2018.c180369
基金项目: 

国家自然科学基金 51577030

国家重点研究发展计划 2017YFB0903000

国家自然科学基金 51707032

详细信息
    作者简介:

    邰伟 东南大学电气工程学硕士研究生.主要研究方向为电力信息物理系统网络攻击.E-mail:taiwei@seu.edu.cn

    汤奕 博士, 东南大学电气工程学院副教授.主要研究方向为电力系统稳定分析与控制和电力信息物理融合系统.E-mail:tangyi@seu.edu.cn

    倪明 博士, 南瑞集团有限公司研究员级高级工程师.主要研究方向为电力系统规划, 分析与控制.E-mail:ni-ming@sgepri.sgcc.com.cn

    通讯作者:

    王琦 博士, 东南大学电气工程学院讲师.主要研究方向为电力信息物理系统和电力系统稳定分析与控制.本文通信作者.E-mail:wangqi@seu.edu.cn

A Review on False Data Injection Attack Toward Cyber-physical Power System

Funds: 

National Natural Science Foundation of China 51577030

National Key Research and Development Program of China 2017YFB0903000

National Natural Science Foundation of China 51707032

More Information
    Author Bio:

    Master student at the School of Electrical Engineering,Southeast University.His research interest covers cyber-attacks against cyber physical power systems

    Ph.D.,associate professor at the School of Electrical Engineering,Southeast University.His research interest covers power system stability analysis and control,and cyber physical power systems

    Ph.D.,professor status high level engineer at NARI Group Corporation.His research interest covers planning,analysis and control of power system

    Corresponding author: WANG Qi Ph.D.,lecturer at the School of Electrical Engineering,Southeast University.His research interest covers cyber physical power systems,and power system stability analysis and control.Corresponding author of this paper
  • 摘要: 随着电力信息通信技术的发展与应用,电力流与信息流深度融合,共同实现对系统的全景状态感知与控制决策,电力系统转变成典型的信息物理系统(Cyber physical system,CPS).开放的通信环境与复杂的信息物理耦合交互过程,使得信息安全风险成为影响电力系统安全稳定运行的重要因素.其中,虚假数据注入攻击(False data injection attack,FDIA)通过破坏网络数据完整性以干扰控制决策,是一种典型的网络攻击方式.本文针对面向电力CPS的虚假数据注入的攻击过程和防御手段进行了分析与总结.从攻击者视角分析了FDIA的攻击目标、策略及后果;从防御者视角总结了保护与检测环节中的各类方法;最后基于联合仿真技术,提出了针对虚假数据攻防过程建模和评估的电力CPS联合攻防平台.
  • 近些年来, 由于多智能体协同控制在编队控制[1]、机器人网络[2]、群集行为[3]、移动传感器[4-5]等方面的广泛应用, 多智能体系统的协同控制问题受到了众多研究者的广泛关注.一致性问题是多智能体系统协同控制领域的一个关键问题, 其目的是通过与邻居之间的信息交换, 使所有智能体的状态达成一致.迄今为止, 对多智能体一致性的研究也已取得了丰硕的成果, 根据多智能体的动力学模型分类, 主要可以将其分为以下4种情形:一阶[6-9]、二阶[10-13]、三阶[14-15]、高阶[16-18].

    在实际应用中, 由于CPU处理速度和内存容量的限制, 智能体不能频繁地进行控制以及与其邻居交换信息.因此, 事件触发控制策略作为减少控制次数和通信负载的有效途径, 受到了越来越多的关注.到目前为止, 对事件触发控制机制的研究也取得了很多成果[19-23].Xiao等[19]基于事件触发控制策略, 解决了带有领航者的离散多智能体系统的跟踪问题.通过利用状态测量误差并且基于二阶离散多智能体系统动力学模型, Zhu等[20]提出了一种自触发的控制策略, 该策略使得所有智能体的状态均达到一致. Huang等[21]研究了基于事件触发策略的Lur$'$e网络的跟踪问题.针对不同的领航者-跟随者系统, Xu等[22]提出了3种不同类型的事件触发控制器, 包含分簇式控制器、集中式控制器和分布式控制器, 以此来解决对应的一致性问题.然而, 大多数现有的事件触发一致性成果集中于考虑一阶多智能体系统和二阶多智能体系统, 很少有成果研究三阶多智能体系统的事件触发控制问题, 特别是对于三阶离散多智能体系统, 成果更是少之又少.所以, 设计相应的事件触发控制协议来解决三阶离散多智能体系统的一致性问题已变得尤为重要.

    本文研究了基于事件触发控制机制的三阶离散多智能体系统的一致性问题, 文章主要有以下三点贡献:

    1) 利用位置、速度和加速度三者的测量误差, 设计了一种新颖的事件触发控制机制.

    2) 利用不等式技巧, 分析得到了保证智能体渐近收敛到一致状态的充分条件.与现有的事件触发文献[19-22]不同的是, 所得的一致性条件与通信拓扑的Laplacian矩阵特征值和系统的耦合强度有关.

    3) 给出了排除类Zeno行为的参数条件, 进而使得事件触发控制器不会每个迭代时刻都更新.

    智能体间的通信拓扑结构用一个有向加权图来表示, 记为.其中, $\vartheta = \left\{ {1, 2, \cdots, n} \right\}$表示顶点集, $\varsigma\subseteq\vartheta\times\vartheta$表示边集, 称作邻接矩阵, ${a_{ij}}$表示边$\left({j, i} \right) \in \varsigma $的权值.当$\left({j, i} \right) \in \varsigma $时, 有${a_{ij}} > 0$; 否则, 有${a_{ij}} = 0$. ${a_{ij}} > 0$表示智能体$i$能收到来自智能体$j$的信息, 反之则不成立.对任意一条边$j$, 节点$j$称为父节点, 节点$i$则称为子节点, 节点$i$是节点$j$的邻居节点.假设通信拓扑中不存在自环, 即对任意$i\in \vartheta $, 有${a_{ii}} = 0$.

    定义$L = \left({{l_{ij}}}\right)\in{\bf R}^{n\times n}$为图${\cal G}$的Laplacian矩阵, 其中元素满足${l_{ij}} = - {a_{ij}} \le 0, i \ne j$; ${l_{ii}} = \sum\nolimits_{j = 1, j \ne i}^n {{a_{ij}} \ge 0} $.智能体$i$的入度定义为${d_i} = \sum\nolimits_{j = 1}^n {{a_{ij}}} $, 因此可得到$L = D - \Delta $, 其中, .如果有向图中存在一个始于节点$i$, 止于节点$j$的形如的边序列, 那么称存在一条从$i$到$j$的有向路径.特别地, 如果图中存在一个根节点, 并且该节点到其他所有节点都有有向路径, 那么称此有向图存在一个有向生成树.另外, 如果有向图${\cal G}$存在一个有向生成树, 则Laplacian矩阵$L$有一个0特征值并且其他特征值均含有正实部.

    考虑多智能体系统由$n$个智能体组成, 其通信拓扑结构由有向加权图${\cal G}$表示, 其中每个智能体可看作图${\cal G}$中的一个节点, 每个智能体满足如下动力学方程:

    $ \begin{equation} \left\{ \begin{array}{l} {x_i}\left( {k + 1} \right) = {x_i}\left( k \right) + {v_i}\left( k \right)\\ {v_i}\left( {k + 1} \right) = {v_i}\left( k \right) + {z_i}\left( k \right)\\ {z_i}\left( {k + 1} \right) = {z_i}\left( k \right) + {u_i}\left( k \right) \end{array} \right. \end{equation} $

    (1)

    其中, ${x_i}\left(k \right) \in \bf R$表示位置状态, ${v_i}\left(k \right) \in \bf R$表示速度状态, ${z_i}\left(k \right) \in \bf R$表示加速度状态, ${u_i}\left(k \right) \in \bf R$表示控制输入.

    基于事件触发控制机制的控制器协议设计如下:

    $ \begin{equation} {u_i}\left( k \right) = \lambda {b_i}\left( {k_p^i} \right) + \eta {c_i}\left( {k_p^i} \right) + \gamma {g_i}\left( {k_p^i} \right), k \in \left[ {k_p^i, k_{p + 1}^i} \right) \end{equation} $

    (2)

    其中, $\lambda> 0$, $\eta> 0$, $\gamma> 0$表示耦合强度,

    $ \begin{align*}&{b_i}\left( k \right)= \sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{x_j}\left( k \right) - {x_i}\left( k \right)} \right)} , \nonumber\\ &{c_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{v_j}\left( k \right) - {v_i}\left( k \right)} \right)}, \nonumber\\ & {g_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{z_j}\left( k \right) - {z_i}\left( k \right)} \right)} .\end{align*} $

    触发时刻序列定义为:

    $ \begin{equation} k_{p + 1}^i = \inf \left\{ {k:k > k_p^i, {E_i}\left( k \right) > 0} \right\} \end{equation} $

    (3)

    ${E_i}\left(k \right)$为触发函数, 具有以下形式:

    $ \begin{align} {E_i}\left( k \right)= & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|- {\delta _2}{\beta ^k} - \nonumber\nonumber\\ &{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| \end{align} $

    (4)

    其中, ${\delta _1} > 0$, ${\delta _2} > 0$, $\beta > 0$, , ${e_{ci}}\left(k \right) = {c_i}\left({k_p^i} \right) - {c_i}\left(k \right)$, ${e_{gi}}\left(k \right) = {g_i}\left({k_p^i} \right) - {g_i}\left(k \right)$.

    令$\varepsilon _i\left(k\right)={x_i}\left(k\right)-{x_1}\left(k\right)$, ${\varphi _i}\left(k\right)={v_i}\left(k \right)-$ ${v_1}\left(k\right)$, ${\phi _i}(k) = {z_i}(k) - {z_1}\left(k \right)$, $i = 2, \cdots, n$. , $\cdots, {\varphi _n}\left(k \right)]^{\rm T}$, $\phi \left(k \right) = {\left[{{\phi _2}\left(k \right), \cdots, {\phi _n}\left(k \right)} \right]^{\rm T}}$. $\psi \left(k \right) = {\left[{{\varepsilon ^{\rm T}}\left(k \right), {\varphi ^{\rm T}}\left(k \right), {\phi ^{\rm T}}\left(k \right)} \right]^{\rm T}}$, , ${\bar e_b} = {\left[{{e_{b1}}\left(k \right), \cdots, {e_{b1}}\left(k \right)} \right]^{\rm T}}$, , ${e_{c1}}\left(k \right)]^{\rm T}$, , ${\bar e_g} = $ ${\left[{{e_{g1}}\left(k \right), \cdots, {e_{g1}}\left(k \right)} \right]^{\rm T}}$, $\tilde e\left(k \right) = [\tilde e_b^{\rm T}\left(k \right), \tilde e_c^{\rm T}\left(k \right), $ $\tilde e_g^{\rm T}\left(k \right)]^{\rm T}$, $\bar e\left(k \right) = [\bar e_b^{\rm T}\left(k \right), \bar e_c^T\left(k \right), \bar e_g^{\rm T}\left(k \right)]^{\rm T}$,

    $ \hat L = \left[ {\begin{array}{*{20}{c}} {{d_2} + {a_{12}}}&{{a_{13}} - {a_{23}}}& \cdots &{{a_{1n}} - {a_{2n}}}\\ {{a_{12}} - {a_{32}}}&{{d_3} + {a_{13}}}& \cdots &{{a_{1n}} - {a_{3n}}}\\ \vdots & \vdots & \ddots & \vdots \\ {{a_{12}} - {a_{n2}}}&{{a_{13}} - {a_{n3}}}& \cdots &{{d_n} + {a_{1n}}} \end{array}} \right] $

    再结合式(1)和式(2)可得到:

    $ \begin{equation} \psi \left( {k + 1} \right) = {Q_1}\psi \left( k \right) + {Q_2}\left( {\tilde e\left( k \right) - \bar e\left( k \right)} \right) \end{equation} $

    (5)

    其中, , .

    定义1.对于三阶离散时间多智能体系统(1), 当且仅当所有智能体的位置变量、速度变量、加速度变量满足以下条件时, 称系统(1)能够达到一致.

    $ \begin{align*} &{\lim _{k \to \infty }}\left\| {{x_j}\left( k \right) - {x_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{v_j}\left( k \right) - {v_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{z_j}\left( k \right) - {z_i}\left( k \right)} \right\| = 0 \\&\quad\qquad \forall i, j = 1, 2, \cdots , n \end{align*} $

    定义2.如果$k_{p + 1}^i - k_p^i > 1$, 则称触发时刻序列$\left\{ {k_p^i} \right\}$不存在类Zeno行为.

    假设1.假设有向图中存在一个有向生成树.

    假设$\kappa$是矩阵${Q_1}$的特征值, ${\mu _i}$是$L$的特征值, 则有如下等式成立:

    $ {\rm{det}}\left( {\kappa {I_{3n - 3}} - {Q_1}} \right)=\nonumber\\ \det \left(\! \!{\begin{array}{*{20}{c}} {\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\!&\!{{0_{n - 1}}}\\ {{0_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\\ {\lambda {{\hat L}_{n - 1}}}\!&\!{\eta {{\hat L}_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}} + \gamma {{\hat L}_{n - 1}}} \end{array}} \!\!\right)=\nonumber\\ \prod\limits_{i = 2}^n {\left[ {{{\left( {\kappa - 1} \right)}^3} + \left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i}} \right]} $

    $ \begin{align} {m_i}\left( \kappa \right)= &{\left( {\kappa - 1} \right)^3} + \nonumber\\&\left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i} = 0, \nonumber\\& \qquad\qquad\qquad\qquad\qquad i = 2, \cdots , n \end{align} $

    (6)

    则有如下引理:

    引理1[15].   如果矩阵$L$有一个0特征值且其他所有特征值均有正实部, 并且参数$\lambda $, $\eta $, $\gamma $满足下列条件:

    $ \left\{ \begin{array}{l} 3\lambda - 2\eta < 0\\ \left( {\gamma - \eta + \lambda } \right)\left( {\lambda - \eta } \right) < - \dfrac{{\lambda \Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}}\\ \left( {4\gamma + \lambda - 2\eta } \right)<\dfrac{{8\Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}} \end{array} \right. $

    那么, 方程(6)的所有根都在单位圆内, 这也就意味着矩阵${Q_1}$的谱半径小于1, 即$\rho \left({{Q_1}} \right) < 1$.其中, 表示特征值${\mu _i}$的实部.

    引理2[23].  如果, 那么存在$M \ge 1$和$0 < \alpha < 1$使得下式成立

    $ {\left\| {{Q_1}} \right\|^k} \le M{\alpha ^k}, \quad k \ge 0 $

    定理1.  对于三阶离散多智能体系统(1), 基于假设1, 如果式(2)中的耦合强度满足引理1中的条件, 触发函数(4)中的参数满足$0 < {\delta _1} < 1$, , $0 < \alpha < \beta < 1$, 则称系统(1)能够实现渐近一致.

    证明.令$\omega \left(k \right) = \tilde e\left(k \right) - \bar e\left(k \right)$, 式(5)能够被重新写成如下形式:

    $ \begin{equation} \psi \left( k \right) = Q_1^k\psi \left( 0 \right) + {Q_2}\sum\limits_{s = 0}^{k - 1} {Q_1^{k - 1 - s}\omega \left( s \right)} \end{equation} $

    (7)

    根据引理1和引理2可知, 存在$M \ge 1$和$0 < \alpha < 1$使得下式成立.

    $ \begin{align} \left\| {\psi \left( k \right)} \right\|\le & {\left\| {{Q_1}} \right\|^k}\left\| {\psi \left( 0 \right)} \right\| + \nonumber\\ & \left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{{\left\| {{Q_1}} \right\|}^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|}\le \nonumber\\ & M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+\nonumber\\ & M\left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{\alpha ^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|} \end{align} $

    (8)

    由触发条件可得:

    $ \begin{align} & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ & \qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^k}\le\nonumber\\ &\qquad {\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\| + {\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\| + \nonumber\\ &\qquad{\delta _1}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\|+ {\delta _1}\left| {{e_{bi}} \left( k \right)} \right| + \nonumber\\ &\qquad{\delta _1}\left| {{e_{ci}} \left( k \right)} \right|+ {\delta _1}\left| {{e_{gi}}\left( k \right)} \right| + {\delta _2}{\beta ^k} \end{align} $

    (9)

    对上式移项可求解得:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le \nonumber\\ &\qquad\frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\|}}{{1 - {\delta _1}}} + \frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\|}}{{1 - {\delta _1}}}{\rm{ + }}\nonumber\\ &\qquad\frac{{{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (10)

    又因为, 和, 可得出下列不等式:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ &\qquad \frac{{{\delta _1}\left\| L \right\|}}{{1 - {\delta _1}}} \cdot \left( {\left\| {\varepsilon \left( k \right)} \right\|{\rm{ + }}\left\| {\varphi \left( k \right)} \right\|{\rm{ + }}\left\| {\phi \left( k \right)} \right\|} \right) +\nonumber\\ &\qquad \frac{{{\delta _2}{\beta ^k}}}{{1 - {\delta _1}}}\le \frac{{3{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (11)

    接着有如下不等式成立:

    $ \begin{align} \left\| {e\left( k \right)} \right\|\le \frac{{3\sqrt n {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{\sqrt n {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (12)

    其中, , ${e_b}(k) = \left[{{e_{b1}}(k), \cdots, {e_{bn}}(k)} \right]$, ${e_c}(k) = \left[{{e_{c1}}(k), \cdots, {e_{cn}}(k)} \right]$,

    注意到

    $ \begin{equation} \left\| {\tilde e( k )} \right\| + \left\| {\bar e( k )} \right\| \le \sqrt {6( {n - 1} )} \left\| {e( k )} \right\| \end{equation} $

    (13)

    于是有

    $ \begin{align} \left\| {\omega ( k )} \right\| &= \left\| {\tilde e( k ) - \bar e\left( k \right)} \right\| \le\nonumber\\ & \left\| {\tilde e\left( k \right)} \right\| + \left\| {\bar e\left( k \right)} \right\|\le\nonumber\\ & \frac{{3\sqrt {6n( {n - 1} )} {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| +\nonumber\\ & \frac{{\sqrt {6n( {n - 1} )} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (14)

    把式(14)代入式(8)可得

    $ \begin{align} \left\| {\psi \left( k \right)} \right\| &\le M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+ \nonumber\\ &\frac{{M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}} {\delta _1}3\sqrt {6n\left( {n - 1} \right)} \left\| L \right\|}}{{1 - {\delta _1}}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}}\left\| {\psi \left( s \right)} \right\|} + M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}} \frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}} {{1 - {\delta _1}}}{\beta ^s}} \end{align} $

    (15)

    接下来的部分, 将证明下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| \le W{\beta ^k}.\end{equation} $

    (16)

    其中, $W = \max \left\{ {{\Theta _1}, {\Theta _2}} \right\}$,

    首先, 证明对任意的$\rho > 1$, 下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| < \rho W{\beta ^k} \end{equation} $

    (17)

    利用反证法, 先假设式(17)不成立, 则必将存在${k^ * } > 0$使得并且当$k \in \left({0, {k^ * }} \right)$时$\left\| {\psi \left(k \right)} \right\| < \rho W{\beta ^k}$成立.因此, 根据式(17)可得:

    $ \begin{align*} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le\\ &\qquad M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} +\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}M\times \end{align*} $

    $ \begin{align*} &\qquad\sum\limits_{s = 0}^{{k^ * } - 1} {\alpha ^{ - s}}\left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot \left\| {\psi \left( s \right)} \right\|}}{{1 - {\delta _1}}}} \right]+ \\ &\qquad M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^s}} \right]} < \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} + \rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}\times\\ &\qquad \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot W{\beta ^s}}} {{1 - {\delta _1}}}} \right]} +\\ &\qquad\rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}{\beta ^s}}}{{1 - {\delta _1}}}} \right]=} \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}}- \nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\alpha ^{{k^ * }}}+\nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\beta ^{{k^ * }}} \end{align*} $

    1) 当$W = M\left\| {\psi \left(0 \right)} \right\|$时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\| - \nonumber\\ &\qquad \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} \ge 0 \end{aligned} \end{equation*} $

    所以可得到

    $ \begin{equation} \rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le \rho M\left\| {\psi \left( 0 \right)} \right\|{\beta ^{{k^ * }}}=\rho W{\beta ^{{k^ * }}} \end{equation} $

    (18)

    2) 当时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\|- \nonumber\\ &\qquad\frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} < 0 \end{aligned} \end{equation*} $

    所以有

    $ \begin{align} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\|\le\nonumber\\ & \frac{{\rho {\delta _2}M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} {\beta ^{{k^ * }}}}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right) - 3{\delta _1}M\left\| {{Q_2}} \right\|\left\| L \right\|\sqrt {6n\left( {n - 1} \right)} }}=\nonumber\\ &\rho W{\beta ^{{k^ * }}} \end{align} $

    (19)

    根据以上结果, 式(18)和式(19)都与假设相矛盾.这说明原命题成立, 即对任意的$\rho > 1$, 式(17)成立.易知, 如果$\rho \to 1$, 则式(16)成立.根据式(16)可知, 当$k \to + \infty $时, 有, 则系统(5)是收敛的.由$\psi \left(k \right)$的定义可知, 系统(1)能够实现渐近一致.

    定理2.  对于系统(1), 如果定理1中的条件成立, 并且控制器(2)中的设计参数满足如下条件,

    $ {\delta _1} \in \left( {\frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}}, 1} \right)\\ {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } $

    那么触发序列中的类Zeno行为将被排除.

    证明.  易知排除类Zeno行为的关键是要证明不等式$k_{p + 1}^i - k_p^i > 1$成立.根据事件触发机制可知, 下一个触发时刻将会发生在触发函数(4)大于0时.进而可得到如下不等式

    $ \begin{align} &\left| {{e_{bi}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{ci}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{gi}}\left( {k_{p + 1}^i} \right)} \right|\ge\nonumber\\ &\qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{align} $

    (20)

    定义, .结合式(20), 可得到下式

    $ \begin{equation} {G_i}\left( {k_{p + 1}^i} \right) \ge {\delta _1}{H_i}\left( {k_p^i} \right) + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{equation} $

    (21)

    结合式(16)和式(21)可得

    $ \begin{align} {\delta _2}{\beta ^{k_{p + 1}^i}} &\le {G_i}\left( {k_{p + 1}^i} \right) - {\delta _1}{H_i}\left( {k_p^i} \right)\le\nonumber\\ & \left\| L \right\|\left( {\left\| {\psi \left( {k_p^i} \right)} \right\| + \left\| {\psi \left( {k_{p + 1}^i} \right)} \right\|} \right)\le\nonumber\\ & W\left\| L \right\|\left( {{\beta ^{k_p^i}} + {\beta ^{k_{p + 1}^i}}} \right) \end{align} $

    (22)

    求解上式得

    $ \begin{equation} \left( {{\delta _2} - \left\| L \right\|W} \right){\beta ^{k_{p + 1}^i}} \le \left\| L \right\|W{\beta ^{k_p^i}} \end{equation} $

    (23)

    根据式(23)可得

    $ \begin{equation} k_{p + 1}^i - k_p^i > \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}} } {\ln \beta } \end{equation} $

    (24)

    基于(24)易知当时, 有如下不等式成立

    $ \begin{equation} \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}}} {\ln \beta } > 1 \end{equation} $

    (25)

    此外, 因为$W = M\left\| {\psi \left(0 \right)} \right\|$以及

    $ \begin{equation} {\delta _1} > \frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}} \end{equation} $

    (26)

    又可以得出

    $ \begin{equation} {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } = \frac{{\left\| L \right\|W\left( {1 + \beta } \right)}}{\beta } \end{equation} $

    (27)

    该式意味着式(25)成立, 又结合式(24)易知$k_{p + 1}^i - k_p^i > 1$, 即排除类Zeno行为的条件得已满足.

    注2.类Zeno行为广泛存在于基于事件触发控制机制的离散系统中.然而, 当前极少有文献研究如何排除类Zeno行为, 尤其是对于三阶多智能体动态模型.定理2给出了排除三阶离散多智能体系统的类Zeno行为的参数条件.

    本部分将利用一个仿真实验来验证本文所提算法及理论的正确性和有效性.假设三阶离散多智能体系统(1)包含6个智能体, 且有向加权通信拓扑结构如图 1所示, 权重取值为0或1, 可以明显地看出该图包含有向生成树(满足假设1).

    图 1  6个智能体通信拓扑结构图
    Fig. 1  The communication topology with six agents

    通过简单的计算可得, ${\mu _1} = 0$, ${\mu _2} = 0.6852$, ${\mu _3} = 1.5825 + 0.3865$i, ${\mu _4} = 1.5825 - 0.3865$i, ${\mu _5} = 3.2138$, ${\mu _6} = 3.9360$.令$M = 1$, 结合定理1和定理2可得到$0.035 < {\delta _1} < 1$, ${\delta _2} > 44.0025$, $0 < \alpha < \beta < 1$.令${\delta _1} = 0.2$, ${\delta _2} = 200$, $\alpha = 0.6$, $\beta = 0.9$, $\lambda = 0.02$, $\eta = 0.3$, $\gamma = 0.5$, 不难验证满足引理1的条件并且计算可知$\rho \left({{Q_1}} \right) = 0.9958 < 1$.三阶离散多智能体系统(1)的一致性结果如图 2~图 6所示.根据定理1可知, 基于控制器(2)和事件触发函数(4)的系统(1)能实现一致.从图 2~图 6可以看出, 仿真结果与理论分析符合.

    图 2  三阶离散多智能体系统的位置轨迹图
    Fig. 2  The trajectories of position in third-order discrete-time multi-agent systems
    图 3  三阶离散多智能体系统的速度轨迹图
    Fig. 3  The trajectories of speed in third-order discrete-time multi-agent systems
    图 4  三阶离散多智能体系统的加速度轨迹图
    Fig. 4  The trajectories of acceleration in third-order discrete-time multi-agent systems
    图 5  三阶离散多智能体系统的控制轨迹图
    Fig. 5  The trajectories of control in third-order discrete-time multi-agent systems
    图 6  100次迭代内所有智能体的触发时刻
    Fig. 6  Triggering instants of all agents within 100 iterations

    图 2~图 4分别表征了系统(1)中所有智能体的位置、速度和加速度的轨迹, 从图中可以看出以上3个变量确实达到了一致.图 5展示了控制输入的轨迹.为了更清楚地体现事件触发机制的优点, 图 6给出了0$ \sim $100次迭代内的各智能体的触发时刻轨迹.从图 6可以看出, 本文设计的事件触发协议确实达到了减少更新次数, 节省资源的目的.

    针对三阶离散多智能体系统的一致性问题, 构造了一个新颖的事件触发一致性协议, 分析得到了在通信拓扑为有向加权图且包含生成树的条件下, 系统中所有智能体的位置状态、速度状态和加速度状态渐近收敛到一致状态的充分条件.同时, 该条件指出了通信拓扑的Laplacian矩阵特征值和系统的耦合强度对系统一致性的影响.另外, 给出了排除类Zeno行为的参数条件.仿真实验结果也验证了上述结论的正确性.将文中获得的结论扩展到拓扑结构随时间变化的更高阶多智能体网络是极有意义的.这将是未来研究的一个具有挑战性的课题.


  • 本文责任编委 孙秋野
  • 图  1  电力CPS结构图

    Fig.  1  The framework of cyber physical power systems

    图  2  电力CPS安全监控架构

    Fig.  2  The security supervisory and control architecture of CPPS

    图  3  FDIA最优攻击区域选取

    Fig.  3  The optimal attack area of the FDIA

    图  4  电力CPS数据流中的FDIA攻防手段概括

    Fig.  4  The attack-defense means of FDIA aimed at the data flow in CPPS

    图  5  电力CPS网络联合攻防平台框架

    Fig.  5  The framework of the CPPS associated attack-defense platform

    图  6  FDIA协同攻防框架

    Fig.  6  The synergetic attack-defense framework of FDIA

    表  1  电力CPS网络安全攻防平台研究现状

    Table  1  Researches of CPPS associated attack-defense platforms

    组成结构 攻击场景 防御方法 验证效果
    MATLAB, OPNET[60] 信息传输故障 基于多维尺度和局部异常因子的检测方法 实现CPS各区域故障的统一识别与定位
    Digsilent, OMNET++, MATLAB[61] 针对EMS的FDIA 检测和事后恢复方法 构建了脆弱性和攻击影响的综合评估框架
    PSLF, NS2[62] 针对PMU状态估计器的FDIA 基于状态变量时效性的检测方法 验证了状态估计器对单链路和路由器故障、拥塞的鲁棒性
    MATLAB, OPNET, C++[63] 针对广域阻尼控制系统的拒绝服务、中间人等攻击 分析归纳了延迟、无序、错误数据的端到端信息特征
    Simulink, OPNET[64] 目的为延迟和污染通信数据的分布式拒绝服务攻击 观察了网络攻击对故障附近发电机响应的影响
    RTDS, Python, AutoIt[65] 面向广域监控系统应用的电力CPS突发事件和网络攻击行为 基于数据挖掘的入侵异常检测方法 验证了电力系统应对攻击的脆弱性评估、异常检测与故障检测能力
    下载: 导出CSV
  • [1] 赵俊华, 文福拴, 薛禹胜, 李雪, 董朝阳.电力CPS的架构及其实现技术与挑战.电力系统自动化, 2010, 34(16):1-7 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201016001

    Zhao Jun-Hua, Wen Fu-Shuan, Xue Yu-Sheng, Li Xue, Dong Zhao-Yang.Cyber physical power systems:architecture, implementation techniques and challenges.Automation of Electric Power Systems, 2010, 34(16):1-7 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201016001
    [2] 马钊, 周孝信, 尚宇炜, 盛万兴.能源互联网概念、关键技术及发展模式探索.电网技术, 2015, 39(11):3014-3022 http://d.old.wanfangdata.com.cn/Periodical/dwjs201511003

    Ma Zhao, Zhou Xiao-Xin, Shang Yu-Wei, Sheng Wan-Xing.Exploring the concept, key technologies and development model of energy internet.Power System Technology, 2015, 39(11):3014-3022 http://d.old.wanfangdata.com.cn/Periodical/dwjs201511003
    [3] Mo Y L, Kim T H J, Brancik K, Dickinson D, Lee H, Perrig A, et al.Cyber-physical security of a smart grid infrastructure.Proceedings of the IEEE, 2012, 100(1):195-209 doi: 10.1109/JPROC.2011.2161428
    [4] He H B, Yan J.Cyber-physical attacks and defences in the smart grid:a survey.IET Cyber-Physical Systems:Theory and Applications, 2016, 1(1):13-27 doi: 10.1049/iet-cps.2016.0019
    [5] 刘东, 盛万兴, 王云, 陆一鸣, 孙辰.电网信息物理系统的关键技术及其进展.中国电机工程学报, 2015, 35(14):3522-3531 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201514007

    Liu Dong, Sheng Wan-Xing, Wang Yun, Lu Yi-Ming, Sun Chen.Key technologies and trends of cyber physical system for power grid.Proceedings of the CSEE, 2015, 35(14):3522-3531 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201514007
    [6] Vellaithurai C, Srivastava A, Zonouz S, Berthier R.CPIndex:cyber-physical vulnerability assessment for power-grid infrastructures.IEEE Transactions on Smart Grid, 2015, 6(2):566-575 doi: 10.1109/TSG.2014.2372315
    [7] Wang W Y, Lu Z.Cyber security in the smart grid:survey and challenges.Computer Networks, 2013, 57(5):13441371 doi: 10.1016/j.comnet.2012.12.017
    [8] 苗新, 张恺, 田世明, 李建歧, 殷树刚, 赵子岩.支撑智能电网的信息通信体系.电网技术, 2009, 33(17):8-13 http://d.old.wanfangdata.com.cn/Periodical/zgsjtx201516019

    Miao Xin, Zhang Kai, Tian Shi-Ming, Li Jian-Qi, Yin Shu-Gang, Zhao Zi-Yan.Information communication system supporting smart grid.Power System Technology, 2009, 33(17):8-13 http://d.old.wanfangdata.com.cn/Periodical/zgsjtx201516019
    [9] Liu S, Mashayekh S, Kundur D, Zourntos T, Butler-Purry K.A framework for modeling cyber-physical switching attacks in smart grid.IEEE Transactions on Emerging Topics in Computing, 2013, 1(2):273-285 doi: 10.1109/TETC.2013.2296440
    [10] 叶夏明, 文福拴, 尚金成, 何洋.电力系统中信息物理安全风险传播机制.电网技术, 2015, 39(11):3072-3079 http://d.old.wanfangdata.com.cn/Periodical/dwjs201511012

    Ye Xia-Ming, Wen Fu-Shuan, Shang Jin-Cheng, He Yang.Propagation mechanism of cyber physical security risks in power systems.Power System Technology, 2015, 39(11):3072-3079 http://d.old.wanfangdata.com.cn/Periodical/dwjs201511012
    [11] Hahn A, Govindarasu M.Cyber attack exposure evaluation framework for the smart grid.IEEE Transactions on Smart Grid, 2011, 2(4):835-843 doi: 10.1109/TSG.2011.2163829
    [12] 田继伟, 王布宏, 李夏.智能电网状态维持拓扑攻击及其对经济运行的影响.电力系统保护与控制, 2018, 46(1):50-56 http://d.old.wanfangdata.com.cn/Periodical/jdq201801008

    Tian Ji-Wei, Wang Bu-Hong, Li Xia.State-preserving topology attacks and its impact on economic operation of smart grid.Power System Protection and Control, 2018, 46(1):50-56 http://d.old.wanfangdata.com.cn/Periodical/jdq201801008
    [13] 汤奕, 陈倩, 李梦雅, 王琦, 倪明, 梁云.电力信息物理融合系统环境中的网络攻击研究综述.电力系统自动化, 2016, 40(17):59-69 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201617009

    Tang Yi, Chen Qian, Li Meng-Ya, Wang Qi, Ni Ming, Liang Yun.Overview on cyber-attacks against cyber physical power system.Automation of Electric Power Systems, 2016, 40(17):59-69 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201617009
    [14] Liang G Q, Weller S R, Zhao J H, Luo F J, Dong Z Y.The 2015 Ukraine blackout:implications for false data injection attacks.IEEE Transactions on Power Systems, 2017, 32(4):3317-3318 doi: 10.1109/TPWRS.2016.2631891
    [15] 李中伟, 佟为明, 金显吉.智能电网信息安全防御体系与信息安全测试系统构建:乌克兰和以色列国家电网遭受网络攻击事件的思考与启示.电力系统自动化, 2016, 40(8):147-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201608022

    Li Zhong-Wei, Tong Wei-Ming, Jin Xian-Ji.Construction of cyber security defense hierarchy and cyber security testing system of smart grid:thinking and enlightenment for network attack events to national power grid of Ukraine and Israel.Automation of Electric Power Systems, 2016, 40(8):147-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201608022
    [16] 赵俊华, 梁高琪, 文福拴, 董朝阳.乌克兰事件的启示:防范针对电网的虚假数据注入攻击.电力系统自动化, 2016, 40(7):149-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201607022

    Zhao Jun-Hua, Liang Gao-Qi, Wen Fu-Shuan, Dong Zhao-Yang.Lessons learnt from Ukrainian blackout:protecting power grids against false data injection attacks.Automation of Electric Power Systems, 2016, 40(7):149-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201607022
    [17] 倪明, 颜诘, 柏瑞, 汤奕.电力系统防恶意信息攻击的思考.电力系统自动化, 2016, 40(5):148-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201605023

    Ni Ming, Yan Jie, Bo Rui, Tang Yi.Power system cyber attack and its defense.Automation of Electric Power Systems, 2016, 40(5):148-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201605023
    [18] 卫志农, 陈和升, 倪明, 孙国强, 孙永辉, 厉超.电力信息物理系统中恶性数据定义、构建与防御挑战.电力系统自动化, 2016, 40(17):70-78 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201617010

    Wei Zhi-Nong, Chen He-Sheng, Ni Ming, Sun Guo-Qiang, Sun Yong-Hui, Li Chao.Definition, construction and defense of false data in cyber physical system.Automation of Electric Power Systems, 2016, 40(17):70-78 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201617010
    [19] 汤奕, 王琦, 倪明, 梁云.电力信息物理融合系统中的网络攻击分析.电力系统自动化, 2016, 40(6):148-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201606024

    Tang Yi, Wang Qi, Ni Ming, Liang Yun.Analysis of cyber attacks in cyber physical power system.Automation of Electric Power Systems, 2016, 40(6):148-151 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201606024
    [20] 朱杰, 张葛祥, 王涛, 赵俊博.电力系统状态估计欺诈性数据攻击及防御综述.电网技术, 2016, 40(8):2406-2415 http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201608026.htm

    Zhu Jie, Zhang Ge-Xiang, Wang Tao, Zhao Jun-Bo.Overview of fraudulent data attack on power system state estimation and defense mechanism.Power System Technology, 2016, 40(8):2406-2415 http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201608026.htm
    [21] Fan Y W, Zhang Z H, Trinkle M, Dimitrovski A D, Song J B, Li H S.A cross-layer defense mechanism against GPS spoofing attacks on PMUs in smart Grids.IEEE Transactions on Smart Grid, 2015, 6(6):2659-2668 doi: 10.1109/TSG.2014.2346088
    [22] Liu X X, Zhu P D, Zhang Y, Chen K.A collaborative intrusion detection mechanism against false data injection attack in advanced metering infrastructure.IEEE Transactions on Smart Grid, 2015, 6(5):2435-2443 doi: 10.1109/TSG.2015.2418280
    [23] Bishop A N, Savkin A V.On false-data attacks in robust multi-sensor-based estimation.In:Proceedings of the 9th IEEE International Conference on Control and Automation.Santiago, Chile:IEEE, 2011.10-17
    [24] Pal S, Sikdar B, Chow J H.An online mechanism for detection of gray-hole attacks on PMU data.IEEE Transactions on Smart Grid, 2018, 9(4):2498-2507 doi: 10.1109/TSG.2016.2614327
    [25] 冀星沛, 王波, 董朝阳, 陈果, 刘涤尘, 魏大千, 等.电力信息-物理相互依存网络脆弱性评估及加边保护策略.电网技术, 2016, 40(6):1867-1873 http://www.cnki.com.cn/Article/CJFDTotal-DWJS201606042.htm

    Ji Xing-Pei, Wang Bo, Dong Zhao-Yang, Chen Guo, Liu Di-Chen, Wei Da-Qian, et al.Vulnerability evaluation and link addition protection strategy research of electrical cyber-physical interdependent networks.Power System Technology, 2016, 40(6):1867-1873 http://www.cnki.com.cn/Article/CJFDTotal-DWJS201606042.htm
    [26] 李强, 周京阳, 于尔铿, 刘树春, 王磊.基于混合量测的电力系统状态估计混合算法.电力系统自动化, 2005, 29(19):31-35 doi: 10.3321/j.issn:1000-1026.2005.19.006

    Li Qiang, Zhou Jing-Yang, Yu Er-Keng, Liu Shu-Chun, Wang Lei.Hybrid algorithm for power system state estimation based on PMU measurement and SCADA measurement.Automation of Electric Power Systems, 2005, 29(19):31-35 doi: 10.3321/j.issn:1000-1026.2005.19.006
    [27] Mo Y L, Sinopoli B.False data injection attacks in control systems.In:Proceedings of the 1st Workshop on Secure Control Systems.Stockholm, Sweden:Springer, 2010.
    [28] 王宇飞, 高昆仑, 赵婷, 邱健.基于改进攻击图的电力信息物理系统跨空间连锁故障危害评估.中国电机工程学报, 2016, 36(6):1490-1499 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201606005.htm

    Wang Yu-Fei, Gao Kun-Lun, Zhao Ting, Qiu Jian.Assessing the harmfulness of cascading failures across space in electric cyber-physical system based on improved attack graph.Proceedings of the CSEE, 2016, 36(6):1490-1499 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201606005.htm
    [29] 田猛, 王先培, 董政呈, 朱国威, 代荡荡, 赵乐.基于拉格朗日乘子法的虚假数据攻击策略.电力系统自动化, 2017, 41(11):26-32 doi: 10.7500/AEPS20161225004

    Tian Meng, Wang Xian-Pei, Dong Zheng-Cheng, Zhu Guo-Wei, Dai Dang-Dang, Zhao Le.Injected attack strategy for false data based on Lagrange multipliers method.Automation of Electric Power Systems, 2017, 41(11):26-32 doi: 10.7500/AEPS20161225004
    [30] 苏盛, 吴长江, 马钧, 曾祥君.基于攻击方视角的电力CPS网络攻击模式分析.电网技术, 2014, 38(11):3115-3120 http://d.old.wanfangdata.com.cn/Periodical/dwjs201411026

    Su Sheng, Wu Chang-Jiang, Ma Jun, Zeng Xiang-Jun.Attacker's perspective based analysis on cyber attack mode to cyber-physical system.Power System Technology, 2014, 38(11):3115-3120 http://d.old.wanfangdata.com.cn/Periodical/dwjs201411026
    [31] 朱泽磊, 周京阳, 潘毅, 闫翠会, 崔晖, 李伟刚.考虑电力电量平衡的安全约束经济调度.中国电机工程学报, 2013, 33(10):168-176 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201310022

    Zhu Ze-Lei, Zhou Jing-Yang, Pan Yi, Yan Cui-Hui, Cui Hui, Li Wei-Gang.Security constrained economic dispatch considering balance of electric power and energy.Proceedings of the CSEE, 2013, 33(10):168-176 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201310022
    [32] Xie L, Mo Y L, Sinopoli B.Integrity data attacks in power market operations.IEEE Transactions on Smart Grid, 2011, 2(4):659-666 doi: 10.1109/TSG.2011.2161892
    [33] Jia L Y, Kim J, Thomas R J, Tong L.Impact of data quality on real-time locational marginal price.IEEE Transactions on Power Systems, 2014, 29(2):627-636 doi: 10.1109/TPWRS.59
    [34] Mousavian S, Valenzuela J, Wang J H.A probabilistic risk mitigation model for cyber-attacks to PMU networks.IEEE Transactions on Power Systems, 2015, 30(1):156-165 doi: 10.1109/TPWRS.2014.2320230
    [35] Zhao J B, Zhang G X, La Scala M, Wang Z Y.Enhanced robustness of state estimator to bad data processing through multi-innovation analysis.IEEE Transactions on Industrial Informatics, 2017, 13(4):1610-1619 doi: 10.1109/TII.2016.2626782
    [36] 王先培, 朱国威, 贺瑞娟, 田猛, 董政呈, 代荡荡, 等.复杂网络理论在电力CPS连锁故障研究中的应用综述.电网技术, 2017, 41(9):2947-2956 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017091300081478

    Wang Xian-Pei, Zhu Guo-Wei, He Rui-Juan, Tian Meng, Dong Zheng-Cheng, Dai Dang-Dang, et al.Survey of cascading failures in cyber physical power system based on complex network theory.Power System Technology, 2017, 41(9):2947-2956 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017091300081478
    [37] Liu R, Vellaithurai C, Biswas S S, Gamage T T, Srivastava A K.Analyzing the cyber-physical impact of cyber events on the power grid.IEEE Transactions on Smart Grid, 2015, 6(5):2444-2453 doi: 10.1109/TSG.2015.2432013
    [38] Deng R L, Zhuang P, Liang H.CCPA:coordinated cyber-physical attacks and countermeasures in smart grid.IEEE Transactions on Smart Grid, 2017, 8(5):2420-2430 doi: 10.1109/TSG.2017.2702125
    [39] Bo Z Q, Lin X N, Wang Q P, Yi Y H, Zhou F Q.Developments of power system protection and control.Protection and Control of Modern Power Systems, 2016, 1:Article No.7 doi: 10.1186/s41601-016-0012-2
    [40] Smart Grid Interoperability Panel Cyber Security Working Group.Introduction to NISTIR 7628 Guidelines for Smart Grid Cyber Security.Technical Standard, NIST Special Publication, 2010, 154
    [41] Hu Z S, Wang Y, Tian X X, Yang X L, Meng D J, Fan R S.False data injection attacks identification for smart grids.In:Proceedings of the 3rd International Conference on Technological Advances in Electrical, Electronics and Computer Engineering.Beirut, Lebanon:IEEE, 2015.139-143
    [42] Bobba R B, Rogers K M, Wang Q Y, Khurana H, Nahrstedt K, Overbye T J.Detecting false data injection attacks on DC state estimation.In:Proceedings of the 1st Workshop on Secure Control Systems.Urbana-Champaign, USA, 2010.1-9
    [43] Chakhchoukh Y, Ishii H.Enhancing robustness to cyber-attacks in power systems through multiple least trimmed squares state estimations.IEEE Transactions on Power Systems, 2016, 31(6):4395-4405 doi: 10.1109/TPWRS.2015.2503736
    [44] Gu Y, Liu T, Wang D, Guan X H, Xu Z B.Bad data detection method for smart grids based on distributed state estimation.In:Proceedings of the 2013 IEEE International Conference on Communications.Budapest, Hungary:IEEE, 2013.4483-4487
    [45] Wang D, Guan X H, Liu T, Gu Y, Shen C, Xu Z B.Extended distributed state estimation:a detection method against tolerable false data injection attacks in smart grids.Energies, 2014, 7(3):1517-1538 doi: 10.3390/en7031517
    [46] Zhao J B, Zhang G X, La Scala M, Dong Z Y, Chen C, Wang J H.Short-term state forecasting-aided method for detection of smart grid general false data injection attacks.IEEE Transactions on Smart Grid, 2017, 8(4):1580-1590 doi: 10.1109/TSG.2015.2492827
    [47] Li S, Yilmaz Y, Wang X D.Quickest detection of false data injection attack in wide-area smart grids.IEEE Transactions on Smart Grid, 2015, 6(6):2725-2735 doi: 10.1109/TSG.2014.2374577
    [48] Khalid H M, Peng J C H.Immunity toward data-injection attacks using multisensor track fusion-based model prediction.IEEE Transactions on Smart Grid, 2017, 8(2):697707 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08222785e4546cb340e870dcf1295755
    [49] He Y B, Mendis G J, Wei J.Real-time detection of false data injection attacks in smart grid:a deep learning-based intelligent mechanism.IEEE Transactions on Smart Grid, 2017, 8(5):2505-2516 doi: 10.1109/TSG.2017.2703842
    [50] Ozay M, Esnaola I, Tunay F, Vural Y, Kulkarni S R, Poor H V.Machine learning methods for attack detection in the smart grid.IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8):1773-1786 doi: 10.1109/TNNLS.2015.2404803
    [51] Liu X, Li Z, Member S, Li Z, Member S.Optimal protection strategy against false data injection attacks in power systems.IEEE Transactions on Smart Grid, 2017, 8(4):18021810 doi: 10.1109/TSG.2015.2508449
    [52] Mishra S, Li X, Pan T Y, Kuhnle A, Thai M T, Seo J.Price modification attack and protection scheme in smart grid.IEEE Transactions on Smart Grid, 2017, 8(4):1864-1875 doi: 10.1109/TSG.2015.2509945
    [53] Sanjab A, Saad W.Data injection attacks on smart grids with multiple adversaries:a game-theoretic perspective.IEEE Transactions on Smart Grid, 2016, 7(4):2038-2049 doi: 10.1109/TSG.2016.2550218
    [54] Wei L F, Sarwat A I, Saad W, Biswas S.Stochastic games for power grid protection against coordinated cyber-physical attacks.IEEE Transactions on Smart Grid, 2018, 9(2):684694 doi: 10.1109/TSG.2016.2561266
    [55] Ma C Y T, Yau D K Y, Lou X, Rao N S V.Markov game analysis for attack-defense of power networks under possible misinformation.IEEE Transactions on Power Systems, 2013, 28(2):1676-1686 doi: 10.1109/TPWRS.2012.2226480
    [56] Wang C, Hou Y H, Ten C W.Determination of Nash Equilibrium based on plausible attack-defense dynamics.IEEE Transactions on Power Systems, 2017, 32(5):3670-3680 doi: 10.1109/TPWRS.2016.2635156
    [57] 汤奕, 王琦, 邰伟, 陈彬, 倪明.基于OPAL-RT和OPNET的电力信息物理系统实时仿真.电力系统自动化, 2016, 40(23):1521, 92 doi: 10.7500/AEPS20160515020

    Tang Yi, Wang Qi, Tai Wei, Chen Bin, Ni Ming.Real-time simulation of cyber-physical power system based on OPAL-RT and OPNET.Automation of Electric Power Systems, 2016, 40(23):15-21, 92 doi: 10.7500/AEPS20160515020
    [58] 王云, 刘东, 翁嘉明, 严光升, 雍军, 戴晖.电网信息物理系统建模与仿真验证平台研究.中国电机工程学报, 2018, 38(1):130-136 http://epub.cnki.net/grid2008/detail.aspx?filename=ZGDC201801012&dbname=DKFX2018

    Wang Yun, Liu Dong, Weng Jia-Ming, Yan Guang-Sheng, Yong Jun, Dai Hui.The research of power CPS modeling and simulation verification platform.Proceedings of the CSEE, 2018, 38(1):130-136 http://epub.cnki.net/grid2008/detail.aspx?filename=ZGDC201801012&dbname=DKFX2018
    [59] 李霞, 李勇, 曹一家, 施星宇.基于信息物理系统融合的广域互联电网阻尼控制策略.电力系统保护与控制, 2017, 45(21):35-42 doi: 10.7667/PSPC161610

    Li Xia, Li Yong, Cao Yi-Jia, Shi Xing-Yu.Wide-area damping control strategy of interconnected power grid based on cyber physical system.Power System Protection and Control, 2017, 45(21):35-42 doi: 10.7667/PSPC161610
    [60] 张志鹏, 李勇, 曹一家, 施星宇, 胡伟, 赵庆周.通信和电网联合仿真的配电网局部异常因子故障辨识算法.电力系统自动化, 2016, 40(17):44-50 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201617007

    Zhang Zhi-Peng, Li Yong, Cao Yi-Jia, Shi Xing-Yu, Hu Wei, Zhao Qing-Zhou.A local outlier factor fault identification algorithm based on the co-simulation between cyber and power system for distribution network.Automation of Electric Power Systems, 2016, 40(17):44-50 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201617007
    [61] Pan K K, Teixeira A, López C D, Palensky P.Co-simulation for cyber security analysis:data attacks against energy management system.In:Proceedings of the 2007 IEEE International Conference on Smart Grid Communications.Dresden, Germany:IEEE, 2017.253-258
    [62] Lin H, Deng Y, Shukla S, Thorp J, Mili L.Cyber security impacts on all-PMU state estimator-a case study on co-simulation platform GECO.In:Proceedings of the 3rd IEEE International Conference on Smart Grid Communications.Tainan, China:IEEE, 2012.587-592
    [63] Cao Y J, Shi X Y, Li Y, Tan Y, Shahidehpour M, Shi S L.A simplified co-simulation model for investigating impacts of cyber-contingency on power system operations.IEEE Transactions on Smart Grid, 2018, 9(5):4893-4905 doi: 10.1109/TSG.2017.2675362
    [64] Sadi M A H, Ali M H, Dasgupta D, Abercrombie R K, Kher S.Co-simulation platform for characterizing cyber attacks in cyber physical systems.In:Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence.Cape Town, South Africa:IEEE, 2015.1244-1251
    [65] Adhikari U, Morris T, Pan S Y.WAMS cyber-physical test bed for power system, cybersecurity study, and data mining.IEEE Transactions on Smart Grid, 2017, 8(6):2744-2753 doi: 10.1109/TSG.2016.2537210
    [66] Tang Y, Tai W, Liu Z J, Li M Y, Wang Q, Liang Y, et al.A hardware-in-the-loop based co-simulation platform of cyber-physical power systems for wide area protection applications.Applied Sciences, 2017, 7(12):Article No.1279 doi: 10.3390/app7121279
    [67] 贾驰千, 冯冬芹.基于多目标决策的工控系统设备安全评估方法研究.自动化学报, 2016, 42(5):706-714 http://www.aas.net.cn/CN/abstract/abstract18860.shtml

    Jia Chi-Qian, Feng Dong-Qin.Industrial control system devices security assessment with multi-objective decision.Acta Automatica Sinica, 2016, 42(5):706-714 http://www.aas.net.cn/CN/abstract/abstract18860.shtml
  • 期刊类型引用(3)

    1. 岳振宇,范大昭,董杨,纪松,李东子. 一种星载平台轻量化快速影像匹配方法. 地球信息科学学报. 2022(05): 925-939 . 百度学术
    2. 王若兰,潘万彬,曹伟娟. 图像局部区域匹配驱动的导航式拼图方法. 计算机辅助设计与图形学学报. 2020(03): 452-461 . 百度学术
    3. 胡敬双,聂洪玉. 灰度序模式的局部特征描述算法. 中国图象图形学报. 2017(06): 824-832 . 百度学术

    其他类型引用(9)

  • 加载中
  • 图(6) / 表(1)
    计量
    • 文章访问数:  2913
    • HTML全文浏览量:  1368
    • PDF下载量:  1611
    • 被引次数: 12
    出版历程
    • 收稿日期:  2018-05-30
    • 录用日期:  2018-09-05
    • 刊出日期:  2019-01-20

    目录

    /

    返回文章
    返回