2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信息物理融合的智慧能源系统多级对等协同优化

司方远 汪晋宽 韩英华 赵强

董滔, 李小丽, 赵大端. 基于事件触发的三阶离散多智能体系统一致性分析. 自动化学报, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
引用本文: 司方远, 汪晋宽, 韩英华, 赵强. 信息物理融合的智慧能源系统多级对等协同优化. 自动化学报, 2019, 45(1): 84-97. doi: 10.16383/j.aas.2018.c180368
DONG Tao, LI Xiao-Li, ZHAO Da-Duan. Event-triggered Consensus of Third-order Discrete-time Multi-agent Systems. ACTA AUTOMATICA SINICA, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
Citation: SI Fang-Yuan, WANG Jin-Kuan, HAN Ying-Hua, ZHAO Qiang. Multilevel Peer-to-Peer Co-optimization for Cyber-physical Intelligent Energy Systems. ACTA AUTOMATICA SINICA, 2019, 45(1): 84-97. doi: 10.16383/j.aas.2018.c180368

信息物理融合的智慧能源系统多级对等协同优化

doi: 10.16383/j.aas.2018.c180368
基金项目: 

河北省自然科学基金 F2017501107

东北大学秦皇岛分校校内基金 XNB201803

国家重点研究发展计划 2016YFB0901900

东北大学秦皇岛分校校内基金 XNK201603

东北大学轧制技术及连轧自动化国家重点实验室开放课题 2017RALKFKT003

详细信息
    作者简介:

    司方远 东北大学信息科学与工程学院博士研究生.主要研究方向为能源系统优化运行与控制.E-mail:fangyuan@stumail.neu.edu.cn

    韩英华 东北大学秦皇岛分校计算机与通信工程学院教授.主要研究方向为智能电网的优化运行与控制.E-mail:yhhan@126.com

    赵强 东北大学秦皇岛分校控制工程学院讲师.主要研究方向为智能电网的优化运行与控制.E-mail:learner_2003@163.com

    通讯作者:

    汪晋宽 东北大学信息科学与工程学院教授.主要研究方向为智能控制与自适应信号处理.本文通信作者.E-mail:wjk@mail.neuq.edu.cn

Multilevel Peer-to-Peer Co-optimization for Cyber-physical Intelligent Energy Systems

Funds: 

Natural Science Foundation of Hebei Province F2017501107

Foundation of Northeastern University at Qinhuangdao XNB201803

National Key Research and Development Program of China 2016YFB0901900

Foundation of Northeastern University at Qinhuangdao XNK201603

Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University 2017RALKFKT003

More Information
    Author Bio:

    Ph.D.candidate at the College of Information Science and Engineering,Northeastern University.His research interest covers optimal operation and control of energy systems

    Professor at the School of Computer and Communication Engineering,Northeastern University at Qinhuangdao.Her research interest covers optimal operation and control of the smart grid

    Lecturer at the School of Control Engineering,Northeastern University at Qinhuangdao.His research interest covers optimal operation and control of the smart grid.

    Corresponding author: WANG Jin-Kuan Professor at the College of Information Science and Engineering,Northeastern University.His research interest covers adaptive signal processing and intelligent control.Corresponding author of this paper
  • 摘要: 针对能源电力系统的优化管理与控制问题,提出了一种信息物理融合的智慧能源系统(Intelligent energy systems,IES)多级对等协同优化方法.在信息物理融合能源系统(Cyber-physical energy systems,CPES)的基础上,构建了智慧能源系统的局域和广域两级协同优化架构.综合考虑产消者能源实体对等交互过程中的社会福利、供求平衡和需求意愿等因素,基于Stone-Geary函数和双向拍卖机制构建了智慧能源系统能量优化模型,给出了通过收敛判定域引导的全局随机寻优与区域定向寻优策略,有效地提高了算法的局部搜索能力.此外,通过双向拍卖机制的理性定价以及智能合约的辅助服务,有效地实现了用户友好的对等交易模式.仿真实例表明,在社会福利最大化的前提下可获得产消者电力资源最优分配结果,进一步验证了本文方法的有效性和可行性.
  • 近些年来, 由于多智能体协同控制在编队控制[1]、机器人网络[2]、群集行为[3]、移动传感器[4-5]等方面的广泛应用, 多智能体系统的协同控制问题受到了众多研究者的广泛关注.一致性问题是多智能体系统协同控制领域的一个关键问题, 其目的是通过与邻居之间的信息交换, 使所有智能体的状态达成一致.迄今为止, 对多智能体一致性的研究也已取得了丰硕的成果, 根据多智能体的动力学模型分类, 主要可以将其分为以下4种情形:一阶[6-9]、二阶[10-13]、三阶[14-15]、高阶[16-18].

    在实际应用中, 由于CPU处理速度和内存容量的限制, 智能体不能频繁地进行控制以及与其邻居交换信息.因此, 事件触发控制策略作为减少控制次数和通信负载的有效途径, 受到了越来越多的关注.到目前为止, 对事件触发控制机制的研究也取得了很多成果[19-23].Xiao等[19]基于事件触发控制策略, 解决了带有领航者的离散多智能体系统的跟踪问题.通过利用状态测量误差并且基于二阶离散多智能体系统动力学模型, Zhu等[20]提出了一种自触发的控制策略, 该策略使得所有智能体的状态均达到一致. Huang等[21]研究了基于事件触发策略的Lur$'$e网络的跟踪问题.针对不同的领航者-跟随者系统, Xu等[22]提出了3种不同类型的事件触发控制器, 包含分簇式控制器、集中式控制器和分布式控制器, 以此来解决对应的一致性问题.然而, 大多数现有的事件触发一致性成果集中于考虑一阶多智能体系统和二阶多智能体系统, 很少有成果研究三阶多智能体系统的事件触发控制问题, 特别是对于三阶离散多智能体系统, 成果更是少之又少.所以, 设计相应的事件触发控制协议来解决三阶离散多智能体系统的一致性问题已变得尤为重要.

    本文研究了基于事件触发控制机制的三阶离散多智能体系统的一致性问题, 文章主要有以下三点贡献:

    1) 利用位置、速度和加速度三者的测量误差, 设计了一种新颖的事件触发控制机制.

    2) 利用不等式技巧, 分析得到了保证智能体渐近收敛到一致状态的充分条件.与现有的事件触发文献[19-22]不同的是, 所得的一致性条件与通信拓扑的Laplacian矩阵特征值和系统的耦合强度有关.

    3) 给出了排除类Zeno行为的参数条件, 进而使得事件触发控制器不会每个迭代时刻都更新.

    智能体间的通信拓扑结构用一个有向加权图来表示, 记为.其中, $\vartheta = \left\{ {1, 2, \cdots, n} \right\}$表示顶点集, $\varsigma\subseteq\vartheta\times\vartheta$表示边集, 称作邻接矩阵, ${a_{ij}}$表示边$\left({j, i} \right) \in \varsigma $的权值.当$\left({j, i} \right) \in \varsigma $时, 有${a_{ij}} > 0$; 否则, 有${a_{ij}} = 0$. ${a_{ij}} > 0$表示智能体$i$能收到来自智能体$j$的信息, 反之则不成立.对任意一条边$j$, 节点$j$称为父节点, 节点$i$则称为子节点, 节点$i$是节点$j$的邻居节点.假设通信拓扑中不存在自环, 即对任意$i\in \vartheta $, 有${a_{ii}} = 0$.

    定义$L = \left({{l_{ij}}}\right)\in{\bf R}^{n\times n}$为图${\cal G}$的Laplacian矩阵, 其中元素满足${l_{ij}} = - {a_{ij}} \le 0, i \ne j$; ${l_{ii}} = \sum\nolimits_{j = 1, j \ne i}^n {{a_{ij}} \ge 0} $.智能体$i$的入度定义为${d_i} = \sum\nolimits_{j = 1}^n {{a_{ij}}} $, 因此可得到$L = D - \Delta $, 其中, .如果有向图中存在一个始于节点$i$, 止于节点$j$的形如的边序列, 那么称存在一条从$i$到$j$的有向路径.特别地, 如果图中存在一个根节点, 并且该节点到其他所有节点都有有向路径, 那么称此有向图存在一个有向生成树.另外, 如果有向图${\cal G}$存在一个有向生成树, 则Laplacian矩阵$L$有一个0特征值并且其他特征值均含有正实部.

    考虑多智能体系统由$n$个智能体组成, 其通信拓扑结构由有向加权图${\cal G}$表示, 其中每个智能体可看作图${\cal G}$中的一个节点, 每个智能体满足如下动力学方程:

    $ \begin{equation} \left\{ \begin{array}{l} {x_i}\left( {k + 1} \right) = {x_i}\left( k \right) + {v_i}\left( k \right)\\ {v_i}\left( {k + 1} \right) = {v_i}\left( k \right) + {z_i}\left( k \right)\\ {z_i}\left( {k + 1} \right) = {z_i}\left( k \right) + {u_i}\left( k \right) \end{array} \right. \end{equation} $

    (1)

    其中, ${x_i}\left(k \right) \in \bf R$表示位置状态, ${v_i}\left(k \right) \in \bf R$表示速度状态, ${z_i}\left(k \right) \in \bf R$表示加速度状态, ${u_i}\left(k \right) \in \bf R$表示控制输入.

    基于事件触发控制机制的控制器协议设计如下:

    $ \begin{equation} {u_i}\left( k \right) = \lambda {b_i}\left( {k_p^i} \right) + \eta {c_i}\left( {k_p^i} \right) + \gamma {g_i}\left( {k_p^i} \right), k \in \left[ {k_p^i, k_{p + 1}^i} \right) \end{equation} $

    (2)

    其中, $\lambda> 0$, $\eta> 0$, $\gamma> 0$表示耦合强度,

    $ \begin{align*}&{b_i}\left( k \right)= \sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{x_j}\left( k \right) - {x_i}\left( k \right)} \right)} , \nonumber\\ &{c_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{v_j}\left( k \right) - {v_i}\left( k \right)} \right)}, \nonumber\\ & {g_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{z_j}\left( k \right) - {z_i}\left( k \right)} \right)} .\end{align*} $

    触发时刻序列定义为:

    $ \begin{equation} k_{p + 1}^i = \inf \left\{ {k:k > k_p^i, {E_i}\left( k \right) > 0} \right\} \end{equation} $

    (3)

    ${E_i}\left(k \right)$为触发函数, 具有以下形式:

    $ \begin{align} {E_i}\left( k \right)= & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|- {\delta _2}{\beta ^k} - \nonumber\nonumber\\ &{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| \end{align} $

    (4)

    其中, ${\delta _1} > 0$, ${\delta _2} > 0$, $\beta > 0$, , ${e_{ci}}\left(k \right) = {c_i}\left({k_p^i} \right) - {c_i}\left(k \right)$, ${e_{gi}}\left(k \right) = {g_i}\left({k_p^i} \right) - {g_i}\left(k \right)$.

    令$\varepsilon _i\left(k\right)={x_i}\left(k\right)-{x_1}\left(k\right)$, ${\varphi _i}\left(k\right)={v_i}\left(k \right)-$ ${v_1}\left(k\right)$, ${\phi _i}(k) = {z_i}(k) - {z_1}\left(k \right)$, $i = 2, \cdots, n$. , $\cdots, {\varphi _n}\left(k \right)]^{\rm T}$, $\phi \left(k \right) = {\left[{{\phi _2}\left(k \right), \cdots, {\phi _n}\left(k \right)} \right]^{\rm T}}$. $\psi \left(k \right) = {\left[{{\varepsilon ^{\rm T}}\left(k \right), {\varphi ^{\rm T}}\left(k \right), {\phi ^{\rm T}}\left(k \right)} \right]^{\rm T}}$, , ${\bar e_b} = {\left[{{e_{b1}}\left(k \right), \cdots, {e_{b1}}\left(k \right)} \right]^{\rm T}}$, , ${e_{c1}}\left(k \right)]^{\rm T}$, , ${\bar e_g} = $ ${\left[{{e_{g1}}\left(k \right), \cdots, {e_{g1}}\left(k \right)} \right]^{\rm T}}$, $\tilde e\left(k \right) = [\tilde e_b^{\rm T}\left(k \right), \tilde e_c^{\rm T}\left(k \right), $ $\tilde e_g^{\rm T}\left(k \right)]^{\rm T}$, $\bar e\left(k \right) = [\bar e_b^{\rm T}\left(k \right), \bar e_c^T\left(k \right), \bar e_g^{\rm T}\left(k \right)]^{\rm T}$,

    $ \hat L = \left[ {\begin{array}{*{20}{c}} {{d_2} + {a_{12}}}&{{a_{13}} - {a_{23}}}& \cdots &{{a_{1n}} - {a_{2n}}}\\ {{a_{12}} - {a_{32}}}&{{d_3} + {a_{13}}}& \cdots &{{a_{1n}} - {a_{3n}}}\\ \vdots & \vdots & \ddots & \vdots \\ {{a_{12}} - {a_{n2}}}&{{a_{13}} - {a_{n3}}}& \cdots &{{d_n} + {a_{1n}}} \end{array}} \right] $

    再结合式(1)和式(2)可得到:

    $ \begin{equation} \psi \left( {k + 1} \right) = {Q_1}\psi \left( k \right) + {Q_2}\left( {\tilde e\left( k \right) - \bar e\left( k \right)} \right) \end{equation} $

    (5)

    其中, , .

    定义1.对于三阶离散时间多智能体系统(1), 当且仅当所有智能体的位置变量、速度变量、加速度变量满足以下条件时, 称系统(1)能够达到一致.

    $ \begin{align*} &{\lim _{k \to \infty }}\left\| {{x_j}\left( k \right) - {x_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{v_j}\left( k \right) - {v_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{z_j}\left( k \right) - {z_i}\left( k \right)} \right\| = 0 \\&\quad\qquad \forall i, j = 1, 2, \cdots , n \end{align*} $

    定义2.如果$k_{p + 1}^i - k_p^i > 1$, 则称触发时刻序列$\left\{ {k_p^i} \right\}$不存在类Zeno行为.

    假设1.假设有向图中存在一个有向生成树.

    假设$\kappa$是矩阵${Q_1}$的特征值, ${\mu _i}$是$L$的特征值, 则有如下等式成立:

    $ {\rm{det}}\left( {\kappa {I_{3n - 3}} - {Q_1}} \right)=\nonumber\\ \det \left(\! \!{\begin{array}{*{20}{c}} {\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\!&\!{{0_{n - 1}}}\\ {{0_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\\ {\lambda {{\hat L}_{n - 1}}}\!&\!{\eta {{\hat L}_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}} + \gamma {{\hat L}_{n - 1}}} \end{array}} \!\!\right)=\nonumber\\ \prod\limits_{i = 2}^n {\left[ {{{\left( {\kappa - 1} \right)}^3} + \left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i}} \right]} $

    $ \begin{align} {m_i}\left( \kappa \right)= &{\left( {\kappa - 1} \right)^3} + \nonumber\\&\left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i} = 0, \nonumber\\& \qquad\qquad\qquad\qquad\qquad i = 2, \cdots , n \end{align} $

    (6)

    则有如下引理:

    引理1[15].   如果矩阵$L$有一个0特征值且其他所有特征值均有正实部, 并且参数$\lambda $, $\eta $, $\gamma $满足下列条件:

    $ \left\{ \begin{array}{l} 3\lambda - 2\eta < 0\\ \left( {\gamma - \eta + \lambda } \right)\left( {\lambda - \eta } \right) < - \dfrac{{\lambda \Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}}\\ \left( {4\gamma + \lambda - 2\eta } \right)<\dfrac{{8\Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}} \end{array} \right. $

    那么, 方程(6)的所有根都在单位圆内, 这也就意味着矩阵${Q_1}$的谱半径小于1, 即$\rho \left({{Q_1}} \right) < 1$.其中, 表示特征值${\mu _i}$的实部.

    引理2[23].  如果, 那么存在$M \ge 1$和$0 < \alpha < 1$使得下式成立

    $ {\left\| {{Q_1}} \right\|^k} \le M{\alpha ^k}, \quad k \ge 0 $

    定理1.  对于三阶离散多智能体系统(1), 基于假设1, 如果式(2)中的耦合强度满足引理1中的条件, 触发函数(4)中的参数满足$0 < {\delta _1} < 1$, , $0 < \alpha < \beta < 1$, 则称系统(1)能够实现渐近一致.

    证明.令$\omega \left(k \right) = \tilde e\left(k \right) - \bar e\left(k \right)$, 式(5)能够被重新写成如下形式:

    $ \begin{equation} \psi \left( k \right) = Q_1^k\psi \left( 0 \right) + {Q_2}\sum\limits_{s = 0}^{k - 1} {Q_1^{k - 1 - s}\omega \left( s \right)} \end{equation} $

    (7)

    根据引理1和引理2可知, 存在$M \ge 1$和$0 < \alpha < 1$使得下式成立.

    $ \begin{align} \left\| {\psi \left( k \right)} \right\|\le & {\left\| {{Q_1}} \right\|^k}\left\| {\psi \left( 0 \right)} \right\| + \nonumber\\ & \left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{{\left\| {{Q_1}} \right\|}^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|}\le \nonumber\\ & M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+\nonumber\\ & M\left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{\alpha ^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|} \end{align} $

    (8)

    由触发条件可得:

    $ \begin{align} & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ & \qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^k}\le\nonumber\\ &\qquad {\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\| + {\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\| + \nonumber\\ &\qquad{\delta _1}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\|+ {\delta _1}\left| {{e_{bi}} \left( k \right)} \right| + \nonumber\\ &\qquad{\delta _1}\left| {{e_{ci}} \left( k \right)} \right|+ {\delta _1}\left| {{e_{gi}}\left( k \right)} \right| + {\delta _2}{\beta ^k} \end{align} $

    (9)

    对上式移项可求解得:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le \nonumber\\ &\qquad\frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\|}}{{1 - {\delta _1}}} + \frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\|}}{{1 - {\delta _1}}}{\rm{ + }}\nonumber\\ &\qquad\frac{{{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (10)

    又因为, 和, 可得出下列不等式:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ &\qquad \frac{{{\delta _1}\left\| L \right\|}}{{1 - {\delta _1}}} \cdot \left( {\left\| {\varepsilon \left( k \right)} \right\|{\rm{ + }}\left\| {\varphi \left( k \right)} \right\|{\rm{ + }}\left\| {\phi \left( k \right)} \right\|} \right) +\nonumber\\ &\qquad \frac{{{\delta _2}{\beta ^k}}}{{1 - {\delta _1}}}\le \frac{{3{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (11)

    接着有如下不等式成立:

    $ \begin{align} \left\| {e\left( k \right)} \right\|\le \frac{{3\sqrt n {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{\sqrt n {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (12)

    其中, , ${e_b}(k) = \left[{{e_{b1}}(k), \cdots, {e_{bn}}(k)} \right]$, ${e_c}(k) = \left[{{e_{c1}}(k), \cdots, {e_{cn}}(k)} \right]$,

    注意到

    $ \begin{equation} \left\| {\tilde e( k )} \right\| + \left\| {\bar e( k )} \right\| \le \sqrt {6( {n - 1} )} \left\| {e( k )} \right\| \end{equation} $

    (13)

    于是有

    $ \begin{align} \left\| {\omega ( k )} \right\| &= \left\| {\tilde e( k ) - \bar e\left( k \right)} \right\| \le\nonumber\\ & \left\| {\tilde e\left( k \right)} \right\| + \left\| {\bar e\left( k \right)} \right\|\le\nonumber\\ & \frac{{3\sqrt {6n( {n - 1} )} {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| +\nonumber\\ & \frac{{\sqrt {6n( {n - 1} )} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (14)

    把式(14)代入式(8)可得

    $ \begin{align} \left\| {\psi \left( k \right)} \right\| &\le M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+ \nonumber\\ &\frac{{M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}} {\delta _1}3\sqrt {6n\left( {n - 1} \right)} \left\| L \right\|}}{{1 - {\delta _1}}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}}\left\| {\psi \left( s \right)} \right\|} + M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}} \frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}} {{1 - {\delta _1}}}{\beta ^s}} \end{align} $

    (15)

    接下来的部分, 将证明下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| \le W{\beta ^k}.\end{equation} $

    (16)

    其中, $W = \max \left\{ {{\Theta _1}, {\Theta _2}} \right\}$,

    首先, 证明对任意的$\rho > 1$, 下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| < \rho W{\beta ^k} \end{equation} $

    (17)

    利用反证法, 先假设式(17)不成立, 则必将存在${k^ * } > 0$使得并且当$k \in \left({0, {k^ * }} \right)$时$\left\| {\psi \left(k \right)} \right\| < \rho W{\beta ^k}$成立.因此, 根据式(17)可得:

    $ \begin{align*} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le\\ &\qquad M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} +\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}M\times \end{align*} $

    $ \begin{align*} &\qquad\sum\limits_{s = 0}^{{k^ * } - 1} {\alpha ^{ - s}}\left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot \left\| {\psi \left( s \right)} \right\|}}{{1 - {\delta _1}}}} \right]+ \\ &\qquad M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^s}} \right]} < \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} + \rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}\times\\ &\qquad \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot W{\beta ^s}}} {{1 - {\delta _1}}}} \right]} +\\ &\qquad\rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}{\beta ^s}}}{{1 - {\delta _1}}}} \right]=} \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}}- \nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\alpha ^{{k^ * }}}+\nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\beta ^{{k^ * }}} \end{align*} $

    1) 当$W = M\left\| {\psi \left(0 \right)} \right\|$时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\| - \nonumber\\ &\qquad \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} \ge 0 \end{aligned} \end{equation*} $

    所以可得到

    $ \begin{equation} \rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le \rho M\left\| {\psi \left( 0 \right)} \right\|{\beta ^{{k^ * }}}=\rho W{\beta ^{{k^ * }}} \end{equation} $

    (18)

    2) 当时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\|- \nonumber\\ &\qquad\frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} < 0 \end{aligned} \end{equation*} $

    所以有

    $ \begin{align} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\|\le\nonumber\\ & \frac{{\rho {\delta _2}M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} {\beta ^{{k^ * }}}}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right) - 3{\delta _1}M\left\| {{Q_2}} \right\|\left\| L \right\|\sqrt {6n\left( {n - 1} \right)} }}=\nonumber\\ &\rho W{\beta ^{{k^ * }}} \end{align} $

    (19)

    根据以上结果, 式(18)和式(19)都与假设相矛盾.这说明原命题成立, 即对任意的$\rho > 1$, 式(17)成立.易知, 如果$\rho \to 1$, 则式(16)成立.根据式(16)可知, 当$k \to + \infty $时, 有, 则系统(5)是收敛的.由$\psi \left(k \right)$的定义可知, 系统(1)能够实现渐近一致.

    定理2.  对于系统(1), 如果定理1中的条件成立, 并且控制器(2)中的设计参数满足如下条件,

    $ {\delta _1} \in \left( {\frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}}, 1} \right)\\ {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } $

    那么触发序列中的类Zeno行为将被排除.

    证明.  易知排除类Zeno行为的关键是要证明不等式$k_{p + 1}^i - k_p^i > 1$成立.根据事件触发机制可知, 下一个触发时刻将会发生在触发函数(4)大于0时.进而可得到如下不等式

    $ \begin{align} &\left| {{e_{bi}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{ci}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{gi}}\left( {k_{p + 1}^i} \right)} \right|\ge\nonumber\\ &\qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{align} $

    (20)

    定义, .结合式(20), 可得到下式

    $ \begin{equation} {G_i}\left( {k_{p + 1}^i} \right) \ge {\delta _1}{H_i}\left( {k_p^i} \right) + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{equation} $

    (21)

    结合式(16)和式(21)可得

    $ \begin{align} {\delta _2}{\beta ^{k_{p + 1}^i}} &\le {G_i}\left( {k_{p + 1}^i} \right) - {\delta _1}{H_i}\left( {k_p^i} \right)\le\nonumber\\ & \left\| L \right\|\left( {\left\| {\psi \left( {k_p^i} \right)} \right\| + \left\| {\psi \left( {k_{p + 1}^i} \right)} \right\|} \right)\le\nonumber\\ & W\left\| L \right\|\left( {{\beta ^{k_p^i}} + {\beta ^{k_{p + 1}^i}}} \right) \end{align} $

    (22)

    求解上式得

    $ \begin{equation} \left( {{\delta _2} - \left\| L \right\|W} \right){\beta ^{k_{p + 1}^i}} \le \left\| L \right\|W{\beta ^{k_p^i}} \end{equation} $

    (23)

    根据式(23)可得

    $ \begin{equation} k_{p + 1}^i - k_p^i > \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}} } {\ln \beta } \end{equation} $

    (24)

    基于(24)易知当时, 有如下不等式成立

    $ \begin{equation} \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}}} {\ln \beta } > 1 \end{equation} $

    (25)

    此外, 因为$W = M\left\| {\psi \left(0 \right)} \right\|$以及

    $ \begin{equation} {\delta _1} > \frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}} \end{equation} $

    (26)

    又可以得出

    $ \begin{equation} {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } = \frac{{\left\| L \right\|W\left( {1 + \beta } \right)}}{\beta } \end{equation} $

    (27)

    该式意味着式(25)成立, 又结合式(24)易知$k_{p + 1}^i - k_p^i > 1$, 即排除类Zeno行为的条件得已满足.

    注2.类Zeno行为广泛存在于基于事件触发控制机制的离散系统中.然而, 当前极少有文献研究如何排除类Zeno行为, 尤其是对于三阶多智能体动态模型.定理2给出了排除三阶离散多智能体系统的类Zeno行为的参数条件.

    本部分将利用一个仿真实验来验证本文所提算法及理论的正确性和有效性.假设三阶离散多智能体系统(1)包含6个智能体, 且有向加权通信拓扑结构如图 1所示, 权重取值为0或1, 可以明显地看出该图包含有向生成树(满足假设1).

    图 1  6个智能体通信拓扑结构图
    Fig. 1  The communication topology with six agents

    通过简单的计算可得, ${\mu _1} = 0$, ${\mu _2} = 0.6852$, ${\mu _3} = 1.5825 + 0.3865$i, ${\mu _4} = 1.5825 - 0.3865$i, ${\mu _5} = 3.2138$, ${\mu _6} = 3.9360$.令$M = 1$, 结合定理1和定理2可得到$0.035 < {\delta _1} < 1$, ${\delta _2} > 44.0025$, $0 < \alpha < \beta < 1$.令${\delta _1} = 0.2$, ${\delta _2} = 200$, $\alpha = 0.6$, $\beta = 0.9$, $\lambda = 0.02$, $\eta = 0.3$, $\gamma = 0.5$, 不难验证满足引理1的条件并且计算可知$\rho \left({{Q_1}} \right) = 0.9958 < 1$.三阶离散多智能体系统(1)的一致性结果如图 2~图 6所示.根据定理1可知, 基于控制器(2)和事件触发函数(4)的系统(1)能实现一致.从图 2~图 6可以看出, 仿真结果与理论分析符合.

    图 2  三阶离散多智能体系统的位置轨迹图
    Fig. 2  The trajectories of position in third-order discrete-time multi-agent systems
    图 3  三阶离散多智能体系统的速度轨迹图
    Fig. 3  The trajectories of speed in third-order discrete-time multi-agent systems
    图 4  三阶离散多智能体系统的加速度轨迹图
    Fig. 4  The trajectories of acceleration in third-order discrete-time multi-agent systems
    图 5  三阶离散多智能体系统的控制轨迹图
    Fig. 5  The trajectories of control in third-order discrete-time multi-agent systems
    图 6  100次迭代内所有智能体的触发时刻
    Fig. 6  Triggering instants of all agents within 100 iterations

    图 2~图 4分别表征了系统(1)中所有智能体的位置、速度和加速度的轨迹, 从图中可以看出以上3个变量确实达到了一致.图 5展示了控制输入的轨迹.为了更清楚地体现事件触发机制的优点, 图 6给出了0$ \sim $100次迭代内的各智能体的触发时刻轨迹.从图 6可以看出, 本文设计的事件触发协议确实达到了减少更新次数, 节省资源的目的.

    针对三阶离散多智能体系统的一致性问题, 构造了一个新颖的事件触发一致性协议, 分析得到了在通信拓扑为有向加权图且包含生成树的条件下, 系统中所有智能体的位置状态、速度状态和加速度状态渐近收敛到一致状态的充分条件.同时, 该条件指出了通信拓扑的Laplacian矩阵特征值和系统的耦合强度对系统一致性的影响.另外, 给出了排除类Zeno行为的参数条件.仿真实验结果也验证了上述结论的正确性.将文中获得的结论扩展到拓扑结构随时间变化的更高阶多智能体网络是极有意义的.这将是未来研究的一个具有挑战性的课题.


  • 本文责任编委 王占山
  • 图  1  IES系统多级对等协同优化架构

    Fig.  1  The architecture of multilevel peer-to-peer co-optimization in IES

    图  2  IES系统电力调度体系

    Fig.  2  The power dispatching architecture of IES

    图  3  IES系统信息交互体系

    Fig.  3  The information interaction architecture of IES

    图  4  光伏、风机出力及基本负荷水平曲线

    Fig.  4  Renewable energy output and basic load curves

    图  5  算法性能的对比分析

    Fig.  5  Performance comparison and analysis of different algorithms

    图  6  联盟1产消者3实时电力供求平衡

    Fig.  6  Real-time supply and demand balance of 3rd prosumer in the first union

    图  7  联盟2产消者10实时电力供求平衡

    Fig.  7  Real-time supply and demand balance of 10th prosumer in the second union

    图  8  联盟3产消者6实时电力供求平衡

    Fig.  8  Real-time supply and demand balance of 6th prosumer in the third union

    图  9  联盟4产消者14实时电力供求平衡

    Fig.  9  Real-time supply and demand balance of 14th prosumer in the fourth union

    表  1  优化模型相关参数

    Table  1  The values of related parameters

    参数 取值
    $\eta$ 0.9
    $l_{1}$ 0.01
    $l_{2}$ 0.015
    $\rho$ 0.8
    $e_{1}$ 0.03
    $e_{2}$ 0.045
    下载: 导出CSV

    表  2  不同控制参数下的迭代次数和计算时间

    Table  2  The number of iterations and calculation time with different control parameters

    $\varepsilon$ 迭代次数(次) 总计算时间(s)
    0.8 20 483.46
    0.6 15 369.90
    0.4 11 281.34
    0.2 8 162.64
    下载: 导出CSV

    表  3  联盟1产消者3某时段多级对等电力交易结果

    Table  3  Multilevel peer-to-peer power trading results of the third prosumer node in the first union at a certain time

    时段 偏差电量(kWh) 买方报价(元/kWh) 买方密封交易信息摘要 卖方 购买电量(kWh) 卖方收益(元) 买方支付(元)
    3:15 0.457 0.348 eb45cc1d1c684ae290d373e18b260d95 联盟1产消者2 0.097 0.034 0.158
    - - - a378420878294a04965be0a999054616 联盟1产消者11 0.082 0.029 -
    - - - d9f7bf9a2b054722913725c4335a802f 联盟2产消者5 0.144 0.050 -
    - - - e00a77da2c944828b304543a749562d3 联盟3产消者3 0.130 0.045 -
    3:20 0.441 0.327 77298613587a49b5ae3d79a66b20b3f7 联盟1产消者4 0.002 0.001 0.144
    - - - 0928c7e54bb04ab9a9405046982b1ece 联盟2产消者8 0.128 0.042 -
    - - - 836cdb97cb5c4eb5a10cde523126ce51 联盟3产消者13 0.201 0.065 -
    - - - 1b9ce86e11a0493a928491ae96ff1531 联盟4产消者7 0.110 0.036 -
    3:25 0.385 0.296 700d192ebcc94008bf2834f13ebfe180 联盟1产消者6 0.084 0.025 0.114
    - - - 1e25a82f6df84e13a0585f717800f703 联盟1产消者15 0.124 0.037 -
    - - - 5ceb8c3095014a7b90f43b8e977c8fd0 联盟3产消者9 0.092 0.027 -
    - - - 23d398b02ba14c84a585faf63aa05f39 联盟4产消者1 0.085 0.025 -
    3:30 0.426 0.324 8bd98c74da514150914b09951289d1dd 联盟1产消者5 0.039 0.013 0.138
    - - - 2c39321d56564099af552d0f605f7ece 联盟2产消者10 0.123 0.040 -
    - - - 84e0e44dd96e4957ae25c95c1668e7d2 联盟3产消者6 0.046 0.015 -
    - - - 75d10e745eb44602a352f65b3b5e084a 联盟4产消者6 0.218 0.070 -
    3:35 0.377 0.291 e7318fc4dda44955ac1083961c703939 联盟1产消者12 0.090 0.026 0.110
    - - - d2a7c521239b4afa9f078a7402c4b246 联盟1产消者7 0.059 0.017 -
    - - - 2a2cbf7036854a7bafcb34fbd868bea1 联盟1产消者4 0.081 0.024 -
    - - - b84c13d1b952407a9c1589d35d2d5ee4 联盟4产消者1 0.147 0.043 -
    下载: 导出CSV
  • [1] Yu X H, Xue Y S.Smart grids:a cyber-physical systems perspective.Proceedings of the IEEE, 2016, 104(5):10581070 doi: 10.1109/JPROC.2015.2503119
    [2] Xue Y S, Yu X H.Beyond smart grid-cyber-physical-social system in energy future (point of view).Proceedings of the IEEE, 2017, 105(12):2290-2292 doi: 10.1109/JPROC.2017.2768698
    [3] 管晓宏, 赵千川, 贾庆山, 吴江, 刘烃.信息物理融合能源系统.北京:科学出版社, 2016.

    Guan Xiao-Hong, Zhao Qian-Chuan, Jia Qing-Shan, Wu Jiang, Liu Ting.Cyber-Physical Energy Systems.Beijing:Science Press, 2016.
    [4] 杨新法, 苏剑, 吕志鹏, 刘海涛, 李蕊.微电网技术综述.中国电机工程学报, 2014, 34(1):57-70 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201401008

    Yang Xin-Fa, Su Jian, Lv Zhi-Peng, Liu Hai-Tao, Li Rui.Overview on micro-grid technology.Proceedings of the CSEE, 2014, 34(1):57-70 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201401008
    [5] Wu Y, Tan X Q, Qian L P, Tsang D H K, Song W Z, Yu L.Optimal pricing and energy scheduling for hybrid energy trading market in future smart grid.IEEE Transactions on Industrial Informatics, 2015, 11(6):1585-1596 doi: 10.1109/TII.2015.2426052
    [6] Farraj A, Hammad E, Deepa K.A cyber-physical control framework for transient stability in smart grid.IEEE Transactions on Smart Grid, 2018, 9(2):1205-1215 doi: 10.1109/TSG.2016.2581588
    [7] 王毅, 张宁, 康重庆.能源互联网中能量枢纽的优化规划与运行研究综述及展望.中国电机工程学报, 2015, 35(22):5669-5681 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201522001

    Wang Yi, Zhang Ning, Kang Chong-Qing.Review and prospect of optimal planning and operation of energy hub in energy internet.Proceedings of the CSEE, 2015, 35(22):5669-5681 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201522001
    [8] Zhang H G, Li Y S, Gao D W, Zhou G J.Distributed optimal energy management for energy internet.IEEE Transactions on Industrial Informatics, 2017, 13(6):3081-3097 doi: 10.1109/TII.2017.2714199
    [9] 孙秋野, 滕菲, 张化光.能源互联网及其关键控制问题.自动化学报, 2017, 43(2):176-194 http://www.aas.net.cn/CN/abstract/abstract18999.shtml

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang.Energy internet and its key control issues.Acta Automatica Sinica, 2017, 43(2):176-194 http://www.aas.net.cn/CN/abstract/abstract18999.shtml
    [10] Zhang J J, Gao D W, Zhang Y C, Wang X, Zhao X Y, Duan D L, et al.Social energy:mining energy from the society.IEEE/CAA Journal of Automatica Sinica, 2017, 4(3):466482 doi: 10.1109/JAS.2017.7510547
    [11] 邓建玲, 王飞跃, 陈耀斌, 赵向阳.从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架.自动化学报, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml

    Deng Jian-Ling, Wang Fei-Yue, Chen Yao-Bin, Zhao Xiang-Yang.From industries 4.0 to energy 5.0:concept and framework of intelligent energy systems.Acta Automatica Sinica, 2015, 41(12):2003-2016 http://www.aas.net.cn/CN/abstract/abstract18774.shtml
    [12] Vrba P, Mařík V, Siano P, Leitão P, Zhabelova G, Vyatkin V, et al.A review of agent and service-oriented concepts applied to intelligent energy systems.IEEE Transactions on Industrial Informatics, 2014, 10(3):1890-1903 doi: 10.1109/TII.2014.2326411
    [13] Palensky P, Widl E, Stifter M, Elsheikh A.Modeling intelligent energy systems:co-simulation platform for validating flexible-demand EV charging management.IEEE Transactions on Smart Grid, 2013, 4(4):1939-1947 doi: 10.1109/TSG.2013.2258050
    [14] 程乐峰, 余涛, 张孝顺, 殷林飞, 瞿凯平.信息-物理-社会融合的智慧能源调度机器人及其知识自动化:框架、技术与挑战.中国电机工程学报, 2018, 38(1):25-40 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201801003.htm

    Cheng Le-Feng, Yu Tao, Zhang Xiao-Shun, Yin Lin-Fei, Qu Kai-Ping.Cyber-physical-social systems based smart energy robotic dispatcher and its knowledge automation:framework, techniques and challenges.Proceedings of the CSEE, 2018, 38(1):25-40 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201801003.htm
    [15] Roche R, Blunier B, Miraoui A, Hilaire V, Koukam A.Multi-agent systems for grid energy management:a short review.In:Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society.Glendale, USA:IEEE, 2010.3341-3346
    [16] Duan R, Deconinck G.Future electricity market interoperability of a multi-agent model of the smart grid.In:Proceedings of the 2010 International Conference on Networking, Sensing and Control (ICNSC).Chicago, USA:IEEE, 2010.625-630
    [17] Vergados D J, Mamounakis I, Makris P, Varvarigos E.Prosumer clustering into virtual microgrids for cost reduction in renewable energy trading markets.Sustainable Energy, Grids and Networks, 2016, 7:90-103 doi: 10.1016/j.segan.2016.06.002
    [18] Marzband M, Javadi M, Domínguez-García J L, Moghaddam M M.Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties.IET Generation, Transmission and Distribution, 2016, 10(12):2999-3009 doi: 10.1049/iet-gtd.2016.0024
    [19] Di Battista G, Di Donato V, Patrignani M, Pizzonia M, Roselli V, Tamassia R.Bitconeview:visualization of flows in the Bitcoin transaction graph.In:Proceedings of the 2015 IEEE Symposium on Visualization for Cyber Security.Chicago, USA:IEEE, 2015.1-8
    [20] Nguyen Q K.Blockchain-a financial technology for future sustainable development.In:Proceedings of the 3rd International Conference on Green Technology and Sustainable Development.Taiwan, China:IEEE, 2016.51-54
    [21] 张宁, 王毅, 康重庆, 程将南, 贺大玮.能源互联网中的区块链技术:研究框架与典型应用初探.中国电机工程学报, 2016, 36(15):4011-4022 http://d.old.wanfangdata.com.cn/Periodical/shjn201803002

    Zhang Ning, Wang Yi, Kang Chong-Qing, Cheng Jiang-Nan, He Da-Wei.Blockchain technique in the energy internet:preliminary research framework and typical applications.Proceedings of the CSEE, 2016, 36(15):4011-4022 http://d.old.wanfangdata.com.cn/Periodical/shjn201803002
    [22] 平健, 陈思捷, 张宁, 严正, 姚良忠.基于智能合约的配电网去中心化交易机制.中国电机工程学报, 2017, 37(13):3682-3690 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201713004.htm

    Ping Jian, Chen Si-Jie, Zhang Ning, Yan Zheng, Yao Liang-Zhong.Decentralized transactive mechanism in distribution network based on smart contract.Proceedings of the CSEE, 2017, 37(13):3682-3690 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201713004.htm
    [23] 孙秋野, 赵美伊, 陈月, 马大中.能源互联网多能源系统最优功率流.中国电机工程学报, 2017, 37(6):1590-1598 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017042100215298

    Sun Qiu-Ye, Zhao Mei-Yi, Chen Yue, Ma Da-Zhong.Optimal energy flow of multiple energy systems in energy internet.Proceedings of the CSEE, 2017, 37(6):1590-1598 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017042100215298
    [24] Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M.A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet.IEEE Transactions on Smart Grid, 2015, 6(6):30063019 doi: 10.1109/TSG.2015.2412779
    [25] Di Giorgio A, Liberati F.Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models.Applied Energy, 2014, 128:119-132 doi: 10.1016/j.apenergy.2014.04.032
    [26] Zhang C H, Wu J Z, Zhou Y, Cheng M, Long C.Peer-to-Peer energy trading in a microgrid.Applied Energy, 2018, 220:1-12 doi: 10.1016/j.apenergy.2018.03.010
    [27] 王永福, 张伯明, 孙宏斌, 夏清, 黄永皓, 孟远景, 等.基于内点法的实时平衡交易算法.电网技术, 2004, 28(1):48-50, 55 doi: 10.3321/j.issn:1000-3673.2004.01.012

    Wang Yong-Fu, Zhang Bo-Ming, Sun Hong-Bin, Xia Qing, Huang Yong-Hao, Meng Yuan-Jing, et al.A new method for balancing trade based on interior-point algorithm.Power System Technology, 2004, 28(1):48-50, 55 doi: 10.3321/j.issn:1000-3673.2004.01.012
    [28] 王魁, 张步涵, 周杨, 李俊芳.基于混沌量子粒子群算法的含风电场电力系统实时调度.电力系统自动化, 2011, 35(22):141-146 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201122028

    Wang Kui, Zhang Bu-Han, Zhou Yang, Li Jun-Fang.Real-time dispatch in wind power integrated system based on choas quantum-behaved particle swarm optimization.Automation of Electric Power Systems, 2011, 35(22):141-146 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201122028
    [29] Chen J Y, Wang J, Chen Q, Wu D.Optimal dispatch of medium-voltage microgrid using an adaptive PSO algorithm.In:Proceedings of the 7th International Conference on Intelligent Human-Machine Systems and Cybernetics.Hangzhou, China:IEEE, 2015.324-329
    [30] Li Y L, Shao W, You L, Wang B Z.An improved PSO algorithm and its application to UWB antenna design.IEEE Antennas and Wireless Propagation Letters, 2013, 12:12361239 doi: 10.1109/LAWP.2013.2283375
    [31] 王飞跃, 王晓, 袁勇, 王涛, 林懿伦.社会计算与计算社会:智慧社会的基础与必然.科学通报, 2015, 60(5-6):460-469 http://d.old.wanfangdata.com.cn/Periodical/fzxtyfzxkx200404002

    Wang Fei-Yue, Wang Xiao, Yuan Yong, Wang Tao, Lin Yi-Lun.Social computing and computational societies:the foundation and consequence of smart societies.Chinese Science Bulletin, 2015, 60(5-6):460-469 http://d.old.wanfangdata.com.cn/Periodical/fzxtyfzxkx200404002
    [32] 孙秋野, 王冰玉, 黄博南, 马大中.狭义能源互联网优化控制框架及实现.中国电机工程学报, 2015, 35(18):4571-4580 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201518002

    Sun Qiu-Ye, Wang Bing-Yu, Huang Bo-Nan, Ma Da-Zhong.The optimization control and implementation for the special energy internet.Proceedings of the CSEE, 2015, 35(18):4571-4580 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201518002
    [33] 孙秋野.能源互联网.北京:科学出版社, 2015.

    Sun Qiu-Ye.The Energy Internet.Beijing:Science Press, 2015.
    [34] 王飞跃.平行控制:数据驱动的计算控制方法.自动化学报, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml

    Wang Fei-Yue.Parallel control:a method for data-driven and computational control.Acta Automatica Sinica, 2013, 39(4):293-302 http://www.aas.net.cn/CN/abstract/abstract17915.shtml
    [35] 张俊, 高文忠, 张应晨, 郑心湖, 杨柳青, 郝君, 等.运行于区块链上的智能分布式电力能源系统:需求、概念、方法以及展望.自动化学报, 2017, 43(9):1544-1554 http://www.aas.net.cn/CN/abstract/abstract19130.shtml

    Zhang Jun, Gao Wen-Zhong, Zhang Ying-Chen, Zheng Xin-Hu, Yang Liu-Qing, Hao Jun, et al.Blockchain based intelligent distributed electrical energy systems:needs, concepts, approaches and vision.Acta Automatica Sinica, 2017, 43(9):1544-1554 http://www.aas.net.cn/CN/abstract/abstract19130.shtml
    [36] Cheng S, Zeng B, Huang Y Z.Research on application model of blockchain technology in distributed electricity market.In:Proceedings of the 2nd International Conference on New Energy and Future Energy System (NEFES).Kunming, China:IOP Publishing Ltd, 2017.1-11
    [37] Geary R C.A note on "a constant-utility index of the cost of living".The Review of Economic Studies, 1950, 18(1):65-66 doi: 10.2307/2296107
    [38] 项顶, 宋永华, 胡泽春, 徐智威.电动汽车参与V2G的最优峰谷电价研究.中国电机工程学报, 2013, 33(31):15-25 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201331030

    Xiang Ding, Song Yong-Hua, Hu Ze-Chun, Xu Zhi-Wei.Research on optimal time of use price for electric vehicle participating V2G.Proceedings of the CSEE, 2013, 33(31):1525 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201331030
    [39] Friedman D, Rust J.The Double Auction Market:Institutions, Theories and Evidence.Boulder, CO, USA:Westview Press, 1993.
    [40] Iosifidis G, Koutsopoulos I.Double auction mechanisms for resource allocation in autonomous networks.IEEE Journal on Selected Areas in Communications, 2010, 28(1):95-102 doi: 10.1109/JSAC.2010.100110
  • 期刊类型引用(3)

    1. 岳振宇,范大昭,董杨,纪松,李东子. 一种星载平台轻量化快速影像匹配方法. 地球信息科学学报. 2022(05): 925-939 . 百度学术
    2. 王若兰,潘万彬,曹伟娟. 图像局部区域匹配驱动的导航式拼图方法. 计算机辅助设计与图形学学报. 2020(03): 452-461 . 百度学术
    3. 胡敬双,聂洪玉. 灰度序模式的局部特征描述算法. 中国图象图形学报. 2017(06): 824-832 . 百度学术

    其他类型引用(9)

  • 加载中
  • 图(9) / 表(3)
    计量
    • 文章访问数:  3373
    • HTML全文浏览量:  425
    • PDF下载量:  943
    • 被引次数: 12
    出版历程
    • 收稿日期:  2018-05-30
    • 录用日期:  2018-08-27
    • 刊出日期:  2019-01-20

    目录

    /

    返回文章
    返回