2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信息物理系统技术综述

李洪阳 魏慕恒 黄洁 邱伯华 赵晔 骆文城 何晓 何潇

董滔, 李小丽, 赵大端. 基于事件触发的三阶离散多智能体系统一致性分析. 自动化学报, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
引用本文: 李洪阳, 魏慕恒, 黄洁, 邱伯华, 赵晔, 骆文城, 何晓, 何潇. 信息物理系统技术综述. 自动化学报, 2019, 45(1): 37-50. doi: 10.16383/j.aas.2018.c180362
DONG Tao, LI Xiao-Li, ZHAO Da-Duan. Event-triggered Consensus of Third-order Discrete-time Multi-agent Systems. ACTA AUTOMATICA SINICA, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
Citation: LI Hong-Yang, WEI Mu-Heng, HUANG Jie, QIU Bo-Hua, ZHAO Ye, LUO Wen-Cheng, HE Xiao, HE Xiao. Survey on Cyber-physical Systems. ACTA AUTOMATICA SINICA, 2019, 45(1): 37-50. doi: 10.16383/j.aas.2018.c180362

信息物理系统技术综述

doi: 10.16383/j.aas.2018.c180362
基金项目: 

工业和信息化部智能船舶1.0研发专项 [2016] 544

国家自然科学基金 61522309

国家自然科学基金 61733009

国家自然科学基金 61473163

详细信息
    作者简介:

    李洪阳  清华大学自动化系硕士研究生.主要研究方向为信息物理系统, 网络化系统的故障检测与估计. E-mail: lihongya16@mails.tsinghua.edu.cn

    魏慕恒  中国船舶工业系统工程研究院海洋智能技术创新中心高级工程师. 2013年获得清华大学博士学位.主要研究方向为信息物理系统, 工业智能, 工业大数据, 预测与健康管理. E-mail: weimuheng@163.com

    黄洁  清华大学自动化系博士研究生.主要研究方向为信息物理系统, 网络化系统的状态估计和故障诊断. E-mail: huangjie18@mails.tsinghua.edu.cn

    邱伯华  中国船舶工业系统工程研究院海洋智能技术创新中心研究员. 2004年获得哈尔滨工程大学硕士学位.主要研究方向为信息物理系统, 工业智能, 工业大数据, 预测与健康管理. E-mail: qiubh99@vip.sina.com

    赵晔  清华大学自动化系硕士研究生.主要研究方向为信息物理系统, 网络化系统的最优滤波与故障诊断. E-mail: zhaoye15@mails.tsinghua.edu.cn

    骆文城  北方工业大学自动化系硕士研究生.主要研究方向为信息物理系统, 网络化系统的安全性. E-mail: lwc199406@sina.com

    何晓  中国船舶工业系统工程研究院海洋智能技术创新中心工程师. 2012年获得中国矿业大学硕士学位.主要研究方向为信息物理系统, 预测与健康管理, 故障诊断, 船舶系统设计. E-mail: hxcumtb@126.com

    通讯作者:

    何潇  清华大学自动化系长聘副教授. 2010年在清华大学获得博士学位.主要研究方向为动态系统的故障诊断与容错控制, 网络化系统及其应用.本文通信作者. E-mail: hexiao@tsinghua.edu.cn

Survey on Cyber-physical Systems

Funds: 

the Research and Development Project of Intelligent Ship 1.0 from China's Ministry of Industry and Information Technology [2016] 544

National Natural Science Foundation of China 61522309

National Natural Science Foundation of China 61733009

National Natural Science Foundation of China 61473163

More Information
    Author Bio:

     Master student in the Department of Automation, Tsinghua University. His research interest covers cyber-physical systems, fault detection and estimation for networked systems

     Senior engineer at the Oceanic Intelligent Technology Innovation Center, CSSC Systems Engineering Research Institute. She received her Ph. D. degree from Tsinghua University in 2013. Her research interest covers cyber-physical systems, industrial AI, industrial big data, and prognostic and health management

     Ph. D. candidate in the Department of Automation, Tsinghua University. Her research interest covers cyber-physical systems, state estimation and fault diagnosis for networked systems

     Research professor at the Oceanic Intelligent Technology Innovation Center, CSSC Systems Engineering Research Institute. He received his master degree from Harbin Engineering University in 2004. His research interest covers cyber-physical systems, industrial AI, industrial big data, and prognostic and health management

     Master student in the Department of Automation, Tsinghua University. His research interest covers cyber-physical systems, optimal filtering and fault diagnosis for networked systems

     Master student in the Department of Automation, North China University of Technology. His research interest covers cyberphysical systems, security for networked systems

     Engineer at the Oceanic Intelligent Technology Innovation Center, CSSC Systems Engineering Research Institute. He received his master degree from China University of Mining and Technology in 2012. His research interest covers cyberphysical systems, prognostic and health management, fault diagnosis, and ship system design

    Corresponding author: HE Xiao  Tenure associate professor in the Department of Automation, Tsinghua University. He received his Ph. D. degree from Tsinghua University in 2010. His research interest covers fault diagnosis and fault tolerant control for dynamic systems, networked systems and their applications. Corresponding author of this paper
  • 摘要: 信息物理系统(Cyber-physical system,CPS)将计算、通信与控制技术紧密结合,实现了计算资源与物理资源的结合与协调.CPS是当前自动化领域的前沿研究方向,已经引起了学术界和工业界的广泛关注.本文对CPS进行了简要介绍,根据技术的应用特点对CPS的现有研究成果进行了分类,综述了各个研究方向的意义和研究进展,给出了CPS的两个典型实际案例,探讨了CPS研究中亟待解决的问题以及未来可能的研究方向.
  • 近些年来, 由于多智能体协同控制在编队控制[1]、机器人网络[2]、群集行为[3]、移动传感器[4-5]等方面的广泛应用, 多智能体系统的协同控制问题受到了众多研究者的广泛关注.一致性问题是多智能体系统协同控制领域的一个关键问题, 其目的是通过与邻居之间的信息交换, 使所有智能体的状态达成一致.迄今为止, 对多智能体一致性的研究也已取得了丰硕的成果, 根据多智能体的动力学模型分类, 主要可以将其分为以下4种情形:一阶[6-9]、二阶[10-13]、三阶[14-15]、高阶[16-18].

    在实际应用中, 由于CPU处理速度和内存容量的限制, 智能体不能频繁地进行控制以及与其邻居交换信息.因此, 事件触发控制策略作为减少控制次数和通信负载的有效途径, 受到了越来越多的关注.到目前为止, 对事件触发控制机制的研究也取得了很多成果[19-23].Xiao等[19]基于事件触发控制策略, 解决了带有领航者的离散多智能体系统的跟踪问题.通过利用状态测量误差并且基于二阶离散多智能体系统动力学模型, Zhu等[20]提出了一种自触发的控制策略, 该策略使得所有智能体的状态均达到一致. Huang等[21]研究了基于事件触发策略的Lur$'$e网络的跟踪问题.针对不同的领航者-跟随者系统, Xu等[22]提出了3种不同类型的事件触发控制器, 包含分簇式控制器、集中式控制器和分布式控制器, 以此来解决对应的一致性问题.然而, 大多数现有的事件触发一致性成果集中于考虑一阶多智能体系统和二阶多智能体系统, 很少有成果研究三阶多智能体系统的事件触发控制问题, 特别是对于三阶离散多智能体系统, 成果更是少之又少.所以, 设计相应的事件触发控制协议来解决三阶离散多智能体系统的一致性问题已变得尤为重要.

    本文研究了基于事件触发控制机制的三阶离散多智能体系统的一致性问题, 文章主要有以下三点贡献:

    1) 利用位置、速度和加速度三者的测量误差, 设计了一种新颖的事件触发控制机制.

    2) 利用不等式技巧, 分析得到了保证智能体渐近收敛到一致状态的充分条件.与现有的事件触发文献[19-22]不同的是, 所得的一致性条件与通信拓扑的Laplacian矩阵特征值和系统的耦合强度有关.

    3) 给出了排除类Zeno行为的参数条件, 进而使得事件触发控制器不会每个迭代时刻都更新.

    智能体间的通信拓扑结构用一个有向加权图来表示, 记为.其中, $\vartheta = \left\{ {1, 2, \cdots, n} \right\}$表示顶点集, $\varsigma\subseteq\vartheta\times\vartheta$表示边集, 称作邻接矩阵, ${a_{ij}}$表示边$\left({j, i} \right) \in \varsigma $的权值.当$\left({j, i} \right) \in \varsigma $时, 有${a_{ij}} > 0$; 否则, 有${a_{ij}} = 0$. ${a_{ij}} > 0$表示智能体$i$能收到来自智能体$j$的信息, 反之则不成立.对任意一条边$j$, 节点$j$称为父节点, 节点$i$则称为子节点, 节点$i$是节点$j$的邻居节点.假设通信拓扑中不存在自环, 即对任意$i\in \vartheta $, 有${a_{ii}} = 0$.

    定义$L = \left({{l_{ij}}}\right)\in{\bf R}^{n\times n}$为图${\cal G}$的Laplacian矩阵, 其中元素满足${l_{ij}} = - {a_{ij}} \le 0, i \ne j$; ${l_{ii}} = \sum\nolimits_{j = 1, j \ne i}^n {{a_{ij}} \ge 0} $.智能体$i$的入度定义为${d_i} = \sum\nolimits_{j = 1}^n {{a_{ij}}} $, 因此可得到$L = D - \Delta $, 其中, .如果有向图中存在一个始于节点$i$, 止于节点$j$的形如的边序列, 那么称存在一条从$i$到$j$的有向路径.特别地, 如果图中存在一个根节点, 并且该节点到其他所有节点都有有向路径, 那么称此有向图存在一个有向生成树.另外, 如果有向图${\cal G}$存在一个有向生成树, 则Laplacian矩阵$L$有一个0特征值并且其他特征值均含有正实部.

    考虑多智能体系统由$n$个智能体组成, 其通信拓扑结构由有向加权图${\cal G}$表示, 其中每个智能体可看作图${\cal G}$中的一个节点, 每个智能体满足如下动力学方程:

    $ \begin{equation} \left\{ \begin{array}{l} {x_i}\left( {k + 1} \right) = {x_i}\left( k \right) + {v_i}\left( k \right)\\ {v_i}\left( {k + 1} \right) = {v_i}\left( k \right) + {z_i}\left( k \right)\\ {z_i}\left( {k + 1} \right) = {z_i}\left( k \right) + {u_i}\left( k \right) \end{array} \right. \end{equation} $

    (1)

    其中, ${x_i}\left(k \right) \in \bf R$表示位置状态, ${v_i}\left(k \right) \in \bf R$表示速度状态, ${z_i}\left(k \right) \in \bf R$表示加速度状态, ${u_i}\left(k \right) \in \bf R$表示控制输入.

    基于事件触发控制机制的控制器协议设计如下:

    $ \begin{equation} {u_i}\left( k \right) = \lambda {b_i}\left( {k_p^i} \right) + \eta {c_i}\left( {k_p^i} \right) + \gamma {g_i}\left( {k_p^i} \right), k \in \left[ {k_p^i, k_{p + 1}^i} \right) \end{equation} $

    (2)

    其中, $\lambda> 0$, $\eta> 0$, $\gamma> 0$表示耦合强度,

    $ \begin{align*}&{b_i}\left( k \right)= \sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{x_j}\left( k \right) - {x_i}\left( k \right)} \right)} , \nonumber\\ &{c_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{v_j}\left( k \right) - {v_i}\left( k \right)} \right)}, \nonumber\\ & {g_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{z_j}\left( k \right) - {z_i}\left( k \right)} \right)} .\end{align*} $

    触发时刻序列定义为:

    $ \begin{equation} k_{p + 1}^i = \inf \left\{ {k:k > k_p^i, {E_i}\left( k \right) > 0} \right\} \end{equation} $

    (3)

    ${E_i}\left(k \right)$为触发函数, 具有以下形式:

    $ \begin{align} {E_i}\left( k \right)= & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|- {\delta _2}{\beta ^k} - \nonumber\nonumber\\ &{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| \end{align} $

    (4)

    其中, ${\delta _1} > 0$, ${\delta _2} > 0$, $\beta > 0$, , ${e_{ci}}\left(k \right) = {c_i}\left({k_p^i} \right) - {c_i}\left(k \right)$, ${e_{gi}}\left(k \right) = {g_i}\left({k_p^i} \right) - {g_i}\left(k \right)$.

    令$\varepsilon _i\left(k\right)={x_i}\left(k\right)-{x_1}\left(k\right)$, ${\varphi _i}\left(k\right)={v_i}\left(k \right)-$ ${v_1}\left(k\right)$, ${\phi _i}(k) = {z_i}(k) - {z_1}\left(k \right)$, $i = 2, \cdots, n$. , $\cdots, {\varphi _n}\left(k \right)]^{\rm T}$, $\phi \left(k \right) = {\left[{{\phi _2}\left(k \right), \cdots, {\phi _n}\left(k \right)} \right]^{\rm T}}$. $\psi \left(k \right) = {\left[{{\varepsilon ^{\rm T}}\left(k \right), {\varphi ^{\rm T}}\left(k \right), {\phi ^{\rm T}}\left(k \right)} \right]^{\rm T}}$, , ${\bar e_b} = {\left[{{e_{b1}}\left(k \right), \cdots, {e_{b1}}\left(k \right)} \right]^{\rm T}}$, , ${e_{c1}}\left(k \right)]^{\rm T}$, , ${\bar e_g} = $ ${\left[{{e_{g1}}\left(k \right), \cdots, {e_{g1}}\left(k \right)} \right]^{\rm T}}$, $\tilde e\left(k \right) = [\tilde e_b^{\rm T}\left(k \right), \tilde e_c^{\rm T}\left(k \right), $ $\tilde e_g^{\rm T}\left(k \right)]^{\rm T}$, $\bar e\left(k \right) = [\bar e_b^{\rm T}\left(k \right), \bar e_c^T\left(k \right), \bar e_g^{\rm T}\left(k \right)]^{\rm T}$,

    $ \hat L = \left[ {\begin{array}{*{20}{c}} {{d_2} + {a_{12}}}&{{a_{13}} - {a_{23}}}& \cdots &{{a_{1n}} - {a_{2n}}}\\ {{a_{12}} - {a_{32}}}&{{d_3} + {a_{13}}}& \cdots &{{a_{1n}} - {a_{3n}}}\\ \vdots & \vdots & \ddots & \vdots \\ {{a_{12}} - {a_{n2}}}&{{a_{13}} - {a_{n3}}}& \cdots &{{d_n} + {a_{1n}}} \end{array}} \right] $

    再结合式(1)和式(2)可得到:

    $ \begin{equation} \psi \left( {k + 1} \right) = {Q_1}\psi \left( k \right) + {Q_2}\left( {\tilde e\left( k \right) - \bar e\left( k \right)} \right) \end{equation} $

    (5)

    其中, , .

    定义1.对于三阶离散时间多智能体系统(1), 当且仅当所有智能体的位置变量、速度变量、加速度变量满足以下条件时, 称系统(1)能够达到一致.

    $ \begin{align*} &{\lim _{k \to \infty }}\left\| {{x_j}\left( k \right) - {x_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{v_j}\left( k \right) - {v_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{z_j}\left( k \right) - {z_i}\left( k \right)} \right\| = 0 \\&\quad\qquad \forall i, j = 1, 2, \cdots , n \end{align*} $

    定义2.如果$k_{p + 1}^i - k_p^i > 1$, 则称触发时刻序列$\left\{ {k_p^i} \right\}$不存在类Zeno行为.

    假设1.假设有向图中存在一个有向生成树.

    假设$\kappa$是矩阵${Q_1}$的特征值, ${\mu _i}$是$L$的特征值, 则有如下等式成立:

    $ {\rm{det}}\left( {\kappa {I_{3n - 3}} - {Q_1}} \right)=\nonumber\\ \det \left(\! \!{\begin{array}{*{20}{c}} {\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\!&\!{{0_{n - 1}}}\\ {{0_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\\ {\lambda {{\hat L}_{n - 1}}}\!&\!{\eta {{\hat L}_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}} + \gamma {{\hat L}_{n - 1}}} \end{array}} \!\!\right)=\nonumber\\ \prod\limits_{i = 2}^n {\left[ {{{\left( {\kappa - 1} \right)}^3} + \left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i}} \right]} $

    $ \begin{align} {m_i}\left( \kappa \right)= &{\left( {\kappa - 1} \right)^3} + \nonumber\\&\left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i} = 0, \nonumber\\& \qquad\qquad\qquad\qquad\qquad i = 2, \cdots , n \end{align} $

    (6)

    则有如下引理:

    引理1[15].   如果矩阵$L$有一个0特征值且其他所有特征值均有正实部, 并且参数$\lambda $, $\eta $, $\gamma $满足下列条件:

    $ \left\{ \begin{array}{l} 3\lambda - 2\eta < 0\\ \left( {\gamma - \eta + \lambda } \right)\left( {\lambda - \eta } \right) < - \dfrac{{\lambda \Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}}\\ \left( {4\gamma + \lambda - 2\eta } \right)<\dfrac{{8\Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}} \end{array} \right. $

    那么, 方程(6)的所有根都在单位圆内, 这也就意味着矩阵${Q_1}$的谱半径小于1, 即$\rho \left({{Q_1}} \right) < 1$.其中, 表示特征值${\mu _i}$的实部.

    引理2[23].  如果, 那么存在$M \ge 1$和$0 < \alpha < 1$使得下式成立

    $ {\left\| {{Q_1}} \right\|^k} \le M{\alpha ^k}, \quad k \ge 0 $

    定理1.  对于三阶离散多智能体系统(1), 基于假设1, 如果式(2)中的耦合强度满足引理1中的条件, 触发函数(4)中的参数满足$0 < {\delta _1} < 1$, , $0 < \alpha < \beta < 1$, 则称系统(1)能够实现渐近一致.

    证明.令$\omega \left(k \right) = \tilde e\left(k \right) - \bar e\left(k \right)$, 式(5)能够被重新写成如下形式:

    $ \begin{equation} \psi \left( k \right) = Q_1^k\psi \left( 0 \right) + {Q_2}\sum\limits_{s = 0}^{k - 1} {Q_1^{k - 1 - s}\omega \left( s \right)} \end{equation} $

    (7)

    根据引理1和引理2可知, 存在$M \ge 1$和$0 < \alpha < 1$使得下式成立.

    $ \begin{align} \left\| {\psi \left( k \right)} \right\|\le & {\left\| {{Q_1}} \right\|^k}\left\| {\psi \left( 0 \right)} \right\| + \nonumber\\ & \left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{{\left\| {{Q_1}} \right\|}^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|}\le \nonumber\\ & M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+\nonumber\\ & M\left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{\alpha ^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|} \end{align} $

    (8)

    由触发条件可得:

    $ \begin{align} & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ & \qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^k}\le\nonumber\\ &\qquad {\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\| + {\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\| + \nonumber\\ &\qquad{\delta _1}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\|+ {\delta _1}\left| {{e_{bi}} \left( k \right)} \right| + \nonumber\\ &\qquad{\delta _1}\left| {{e_{ci}} \left( k \right)} \right|+ {\delta _1}\left| {{e_{gi}}\left( k \right)} \right| + {\delta _2}{\beta ^k} \end{align} $

    (9)

    对上式移项可求解得:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le \nonumber\\ &\qquad\frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\|}}{{1 - {\delta _1}}} + \frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\|}}{{1 - {\delta _1}}}{\rm{ + }}\nonumber\\ &\qquad\frac{{{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (10)

    又因为, 和, 可得出下列不等式:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ &\qquad \frac{{{\delta _1}\left\| L \right\|}}{{1 - {\delta _1}}} \cdot \left( {\left\| {\varepsilon \left( k \right)} \right\|{\rm{ + }}\left\| {\varphi \left( k \right)} \right\|{\rm{ + }}\left\| {\phi \left( k \right)} \right\|} \right) +\nonumber\\ &\qquad \frac{{{\delta _2}{\beta ^k}}}{{1 - {\delta _1}}}\le \frac{{3{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (11)

    接着有如下不等式成立:

    $ \begin{align} \left\| {e\left( k \right)} \right\|\le \frac{{3\sqrt n {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{\sqrt n {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (12)

    其中, , ${e_b}(k) = \left[{{e_{b1}}(k), \cdots, {e_{bn}}(k)} \right]$, ${e_c}(k) = \left[{{e_{c1}}(k), \cdots, {e_{cn}}(k)} \right]$,

    注意到

    $ \begin{equation} \left\| {\tilde e( k )} \right\| + \left\| {\bar e( k )} \right\| \le \sqrt {6( {n - 1} )} \left\| {e( k )} \right\| \end{equation} $

    (13)

    于是有

    $ \begin{align} \left\| {\omega ( k )} \right\| &= \left\| {\tilde e( k ) - \bar e\left( k \right)} \right\| \le\nonumber\\ & \left\| {\tilde e\left( k \right)} \right\| + \left\| {\bar e\left( k \right)} \right\|\le\nonumber\\ & \frac{{3\sqrt {6n( {n - 1} )} {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| +\nonumber\\ & \frac{{\sqrt {6n( {n - 1} )} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (14)

    把式(14)代入式(8)可得

    $ \begin{align} \left\| {\psi \left( k \right)} \right\| &\le M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+ \nonumber\\ &\frac{{M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}} {\delta _1}3\sqrt {6n\left( {n - 1} \right)} \left\| L \right\|}}{{1 - {\delta _1}}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}}\left\| {\psi \left( s \right)} \right\|} + M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}} \frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}} {{1 - {\delta _1}}}{\beta ^s}} \end{align} $

    (15)

    接下来的部分, 将证明下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| \le W{\beta ^k}.\end{equation} $

    (16)

    其中, $W = \max \left\{ {{\Theta _1}, {\Theta _2}} \right\}$,

    首先, 证明对任意的$\rho > 1$, 下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| < \rho W{\beta ^k} \end{equation} $

    (17)

    利用反证法, 先假设式(17)不成立, 则必将存在${k^ * } > 0$使得并且当$k \in \left({0, {k^ * }} \right)$时$\left\| {\psi \left(k \right)} \right\| < \rho W{\beta ^k}$成立.因此, 根据式(17)可得:

    $ \begin{align*} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le\\ &\qquad M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} +\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}M\times \end{align*} $

    $ \begin{align*} &\qquad\sum\limits_{s = 0}^{{k^ * } - 1} {\alpha ^{ - s}}\left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot \left\| {\psi \left( s \right)} \right\|}}{{1 - {\delta _1}}}} \right]+ \\ &\qquad M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^s}} \right]} < \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} + \rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}\times\\ &\qquad \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot W{\beta ^s}}} {{1 - {\delta _1}}}} \right]} +\\ &\qquad\rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}{\beta ^s}}}{{1 - {\delta _1}}}} \right]=} \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}}- \nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\alpha ^{{k^ * }}}+\nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\beta ^{{k^ * }}} \end{align*} $

    1) 当$W = M\left\| {\psi \left(0 \right)} \right\|$时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\| - \nonumber\\ &\qquad \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} \ge 0 \end{aligned} \end{equation*} $

    所以可得到

    $ \begin{equation} \rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le \rho M\left\| {\psi \left( 0 \right)} \right\|{\beta ^{{k^ * }}}=\rho W{\beta ^{{k^ * }}} \end{equation} $

    (18)

    2) 当时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\|- \nonumber\\ &\qquad\frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} < 0 \end{aligned} \end{equation*} $

    所以有

    $ \begin{align} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\|\le\nonumber\\ & \frac{{\rho {\delta _2}M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} {\beta ^{{k^ * }}}}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right) - 3{\delta _1}M\left\| {{Q_2}} \right\|\left\| L \right\|\sqrt {6n\left( {n - 1} \right)} }}=\nonumber\\ &\rho W{\beta ^{{k^ * }}} \end{align} $

    (19)

    根据以上结果, 式(18)和式(19)都与假设相矛盾.这说明原命题成立, 即对任意的$\rho > 1$, 式(17)成立.易知, 如果$\rho \to 1$, 则式(16)成立.根据式(16)可知, 当$k \to + \infty $时, 有, 则系统(5)是收敛的.由$\psi \left(k \right)$的定义可知, 系统(1)能够实现渐近一致.

    定理2.  对于系统(1), 如果定理1中的条件成立, 并且控制器(2)中的设计参数满足如下条件,

    $ {\delta _1} \in \left( {\frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}}, 1} \right)\\ {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } $

    那么触发序列中的类Zeno行为将被排除.

    证明.  易知排除类Zeno行为的关键是要证明不等式$k_{p + 1}^i - k_p^i > 1$成立.根据事件触发机制可知, 下一个触发时刻将会发生在触发函数(4)大于0时.进而可得到如下不等式

    $ \begin{align} &\left| {{e_{bi}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{ci}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{gi}}\left( {k_{p + 1}^i} \right)} \right|\ge\nonumber\\ &\qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{align} $

    (20)

    定义, .结合式(20), 可得到下式

    $ \begin{equation} {G_i}\left( {k_{p + 1}^i} \right) \ge {\delta _1}{H_i}\left( {k_p^i} \right) + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{equation} $

    (21)

    结合式(16)和式(21)可得

    $ \begin{align} {\delta _2}{\beta ^{k_{p + 1}^i}} &\le {G_i}\left( {k_{p + 1}^i} \right) - {\delta _1}{H_i}\left( {k_p^i} \right)\le\nonumber\\ & \left\| L \right\|\left( {\left\| {\psi \left( {k_p^i} \right)} \right\| + \left\| {\psi \left( {k_{p + 1}^i} \right)} \right\|} \right)\le\nonumber\\ & W\left\| L \right\|\left( {{\beta ^{k_p^i}} + {\beta ^{k_{p + 1}^i}}} \right) \end{align} $

    (22)

    求解上式得

    $ \begin{equation} \left( {{\delta _2} - \left\| L \right\|W} \right){\beta ^{k_{p + 1}^i}} \le \left\| L \right\|W{\beta ^{k_p^i}} \end{equation} $

    (23)

    根据式(23)可得

    $ \begin{equation} k_{p + 1}^i - k_p^i > \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}} } {\ln \beta } \end{equation} $

    (24)

    基于(24)易知当时, 有如下不等式成立

    $ \begin{equation} \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}}} {\ln \beta } > 1 \end{equation} $

    (25)

    此外, 因为$W = M\left\| {\psi \left(0 \right)} \right\|$以及

    $ \begin{equation} {\delta _1} > \frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}} \end{equation} $

    (26)

    又可以得出

    $ \begin{equation} {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } = \frac{{\left\| L \right\|W\left( {1 + \beta } \right)}}{\beta } \end{equation} $

    (27)

    该式意味着式(25)成立, 又结合式(24)易知$k_{p + 1}^i - k_p^i > 1$, 即排除类Zeno行为的条件得已满足.

    注2.类Zeno行为广泛存在于基于事件触发控制机制的离散系统中.然而, 当前极少有文献研究如何排除类Zeno行为, 尤其是对于三阶多智能体动态模型.定理2给出了排除三阶离散多智能体系统的类Zeno行为的参数条件.

    本部分将利用一个仿真实验来验证本文所提算法及理论的正确性和有效性.假设三阶离散多智能体系统(1)包含6个智能体, 且有向加权通信拓扑结构如图 1所示, 权重取值为0或1, 可以明显地看出该图包含有向生成树(满足假设1).

    图 1  6个智能体通信拓扑结构图
    Fig. 1  The communication topology with six agents

    通过简单的计算可得, ${\mu _1} = 0$, ${\mu _2} = 0.6852$, ${\mu _3} = 1.5825 + 0.3865$i, ${\mu _4} = 1.5825 - 0.3865$i, ${\mu _5} = 3.2138$, ${\mu _6} = 3.9360$.令$M = 1$, 结合定理1和定理2可得到$0.035 < {\delta _1} < 1$, ${\delta _2} > 44.0025$, $0 < \alpha < \beta < 1$.令${\delta _1} = 0.2$, ${\delta _2} = 200$, $\alpha = 0.6$, $\beta = 0.9$, $\lambda = 0.02$, $\eta = 0.3$, $\gamma = 0.5$, 不难验证满足引理1的条件并且计算可知$\rho \left({{Q_1}} \right) = 0.9958 < 1$.三阶离散多智能体系统(1)的一致性结果如图 2~图 6所示.根据定理1可知, 基于控制器(2)和事件触发函数(4)的系统(1)能实现一致.从图 2~图 6可以看出, 仿真结果与理论分析符合.

    图 2  三阶离散多智能体系统的位置轨迹图
    Fig. 2  The trajectories of position in third-order discrete-time multi-agent systems
    图 3  三阶离散多智能体系统的速度轨迹图
    Fig. 3  The trajectories of speed in third-order discrete-time multi-agent systems
    图 4  三阶离散多智能体系统的加速度轨迹图
    Fig. 4  The trajectories of acceleration in third-order discrete-time multi-agent systems
    图 5  三阶离散多智能体系统的控制轨迹图
    Fig. 5  The trajectories of control in third-order discrete-time multi-agent systems
    图 6  100次迭代内所有智能体的触发时刻
    Fig. 6  Triggering instants of all agents within 100 iterations

    图 2~图 4分别表征了系统(1)中所有智能体的位置、速度和加速度的轨迹, 从图中可以看出以上3个变量确实达到了一致.图 5展示了控制输入的轨迹.为了更清楚地体现事件触发机制的优点, 图 6给出了0$ \sim $100次迭代内的各智能体的触发时刻轨迹.从图 6可以看出, 本文设计的事件触发协议确实达到了减少更新次数, 节省资源的目的.

    针对三阶离散多智能体系统的一致性问题, 构造了一个新颖的事件触发一致性协议, 分析得到了在通信拓扑为有向加权图且包含生成树的条件下, 系统中所有智能体的位置状态、速度状态和加速度状态渐近收敛到一致状态的充分条件.同时, 该条件指出了通信拓扑的Laplacian矩阵特征值和系统的耦合强度对系统一致性的影响.另外, 给出了排除类Zeno行为的参数条件.仿真实验结果也验证了上述结论的正确性.将文中获得的结论扩展到拓扑结构随时间变化的更高阶多智能体网络是极有意义的.这将是未来研究的一个具有挑战性的课题.


  • 本文责任编委 程龙
  • 图  1  CPS基本组成单元[4]

    Fig.  1  Basic units of CPS[4]

    图  2  CPS研究方向关系图

    Fig.  2  Diagram of CPS research interests

    图  3  DTS200三容水箱系统实物图[104]

    Fig.  3  DTS200 three-tank system[104]

    图  4  SOMS系统架构应用部署图

    Fig.  4  Application deployment diagram for SOMS system architecture

  • [1] 信息物理系统白皮书.中国电子技术标准化研究院, [Online], available: http://www.cesi.cn/201703/2251.html, 2018年9月21日

    White Paper: Cyber-Physical System. China Electronics Standardization Institute, [Online], available: http://www.cesi.cn/201703/2251.html, September 21, 2018
    [2] 李杰, 邱伯华, 刘宗长, 魏慕恒. CPS:新一代工业智能.上海:上海交通大学出版社, 2017.

    Lee J, Qiu Bo-Hua, Liu Zong-Chang, Wei Mu-Heng. Cyber-Physical System:The New Generation of Industrial Intelligence. Shanghai:Shanghai Jiao Tong University Press, 2017.
    [3] 邢黎闻.孙优贤院士论工业信息物理融合系统.信息化建设, 2018, (1):10-11 http://www.cnki.com.cn/Article/CJFDTotal-XXJS201801004.htm

    Xing Li-Wen. A report from academician You-Xian Sun on industrial cyber physics fusion systems. Informatization Construction, 2018, (1):10-11 http://www.cnki.com.cn/Article/CJFDTotal-XXJS201801004.htm
    [4] 温景容, 武穆清, 宿景芳.信息物理融合系统.自动化学报, 2012, 38(4):507-517 http://www.aas.net.cn/CN/abstract/abstract17704.shtml

    Wen Jing-Rong, Wu Mu-Qing, Su Jing-Fang. Cyber-physical system. Acta Automatica Sinica, 2012, 38(4):507-517 http://www.aas.net.cn/CN/abstract/abstract17704.shtml
    [5] 黎作鹏, 张天驰, 张菁.信息物理融合系统(CPS)研究综述.计算机科学, 2011, 38(9):25-31 doi: 10.3969/j.issn.1002-137X.2011.09.005

    Li Zuo-Peng, Zhang Tian-Chi, Zhang Jing. Survey on the research of cyber-physical systems (CPS). Computer Science, 2011, 38(9):25-31 doi: 10.3969/j.issn.1002-137X.2011.09.005
    [6] Guo A, Yu D, Hu Y, Wang S, An T, Zhang T F. Design and implementation of data collection system based on CPS model. In: Proceedings of the 2015 International Conference on Computer Science and Mechanical Automation (CSMA). Hangzhou, China: IEEE, 2015. 139-143 https://ieeexplore.ieee.org/document/7371638/
    [7] Iri N, Yu L, Shen H Y, Caulfield G. Congestion-adaptive data collection with accuracy guarantee in cyber-physical systems. In: Proceedings of the 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Seattle, WA, USA: IEEE, 2015. 82-90 https://ieeexplore.ieee.org/document/7338294
    [8] Huang W Q, Dai W B, Wang P, Vyatkin V. Real-time data acquisition support for IEC 61499 based industrial cyber-physical systems. In: Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON). Beijing, China: IEEE, 2017. 6689-6694
    [9] 齐超, 何勇.基于CPS的数据采集系统设计.计算机系统应用, 2010, 19(6):5-8 doi: 10.3969/j.issn.1003-3254.2010.06.002

    Qi Chao, He Yong. Design of data collection system based on CPS. Computer Systems and Applications, 2010, 19(6):5-8 doi: 10.3969/j.issn.1003-3254.2010.06.002
    [10] Kuo S Y, Chou Y H, Chen C Y. Quantum-inspired algorithm for cyber-physical visual surveillance deployment systems. Computer Networks, 2017, 117:5-18 doi: 10.1016/j.comnet.2016.11.013
    [11] Wang H, Li J Z, Gao H. Minimized cost gateway deployment in cyber-physical systems. International Journal of Distributed Sensor Networks, 2015, 2015(9):Article No. 28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003917695
    [12] Kim Y H, Kim C M, Han Y H, Jeong Y S, Park D S. An efficient strategy of nonuniform sensor deployment in cyber physical systems. The Journal of Supercomputing, 2013, 66(1):70-80 doi: 10.1007/s11227-013-0977-9
    [13] Liu J, Kou T Y, Chen Q, Sherali H D. On wireless network infrastructure optimisation for cyber-physical systems in future smart buildings. International Journal of Sensor Networks, 2015, 18(3-4):148-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93cfb3991706a7137e525bd2ea71ce54
    [14] 蒋俊, 黄传河, 华超, 胡海桥, 彭晖.基于软件定义资源的实时控制CPS数据传输机制.计算机工程与科学, 2015, 37(12):2250-2255 doi: 10.3969/j.issn.1007-130X.2015.12.009

    Jiang Jun, Huang Chuan-He, Hua Chao, Hu Hai-Qiao, Peng Hui. Data transmission scheme of real-time control CPS based on software defined resources. Computer Engineering and Science, 2015, 37(12):2250-2255 doi: 10.3969/j.issn.1007-130X.2015.12.009
    [15] Liu K, Lee V C S, Ng J K Y, Son S H, Sha E H M. Scheduling temporal data with dynamic snapshot consistency requirement in vehicular cyber-physical systems. ACM Transactions on Embedded Computing Systems, 2014, 13(5S):Article No. 163 https://dl.acm.org/citation.cfm?id=2629546
    [16] Xia F, Wang L Q, Zhang D Q, He D J, Kong X J. An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 2015, 58(2):125-138 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48f8311b9ea23dee9961f88c4283c747
    [17] You M L, Liu Q T, Sun H J. New communication strategy for spectrum sharing enabled smart grid cyber-physical system. IET Cyber-Physical Systems:Theory and Applications, 2017, 2(3):136-142 https://ieeexplore.ieee.org/document/8104002/
    [18] Nguyen N T, Leu M C, Liu X Q F. Real-time communication for manufacturing cyber-physical systems. In: Proceedings of the 16th IEEE International Symposium on Network Computing and Applications (NCA). Cambridge, MA, USA: IEEE, 2017. 241-244 https://www.computer.org/csdl/proceedings/nca/2017/1465/00/08171361-abs.html
    [19] Lazaro C, Oruklu E, Cinar A. Cyber-physical platform development for multivariable artificial pancreas systems. International Journal of Handheld Computing Research, 2015, 6(3):1-16 doi: 10.4018/IJHCR
    [20] Ma M M, An J Y, Huang Z, Cao Z B. Sensor data fusion based on an improved dempaster-shafer evidence theory in vehicular cyber-physical systems. In: Proceedings of the 2015 IEEE International Symposium on Intelligent Control (ISIC). Sydney, Australia: IEEE, 2015. 683-687
    [21] 彭宇, 罗清华, 彭喜元.网络化测试体系中不确定性数据处理方法浅析.仪器仪表学报, 2010, 31(1):229-240 http://d.old.wanfangdata.com.cn/Periodical/yqyb201001040

    Peng Yu, Luo Qing-Hua, Peng Xi-Yuan. Analysis of uncertain data processing methods in networking test framework. Chinese Journal of Scientific Instrument, 2010, 31(1):229-240 http://d.old.wanfangdata.com.cn/Periodical/yqyb201001040
    [22] Fitzgerald J, Gamble C, Payne R, Larsen P G, Basagiannis S, Mady A E D. Collaborative model-based systems engineering for cyber-physical systems, with a building automation case study. INCOSE International Symposium, 2016, 26(1):817-832 doi: 10.1002/j.2334-5837.2016.00195.x
    [23] Larsen P G, Fitzgerald J, Woodcock J, Nilsson R, Gamble C, Foster S. Towards semantically integrated models and tools for cyber-physical systems design. In: Proceedings of the 7th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation. Corfu, Greece: Springer, 2016. 171-186 doi: 10.1007%2F978-3-319-47169-3_13
    [24] Wang B B, Baras J S. HybridSim: a modeling and co-simulation toolchain for cyber-physical systems. In: Proceedings of the 17th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications. Delft, Netherlands: IEEE, 2013. 33-40 https://ieeexplore.ieee.org/document/6690491
    [25] Derler P, Lee E A, Vincentelli A S. Modeling cyber-physical systems. Proceedings of the IEEE, 2012, 100(1):13-28 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201116001
    [26] Wan J, Canedo A, Faruque M A A. Cyber-physical codesign at the functional level for multidomain automotive systems. IEEE Systems Journal, 2017, 11(4):2949-2959 https://ieeexplore.ieee.org/document/7293612
    [27] Vatanparvar K, Faezi S, Burago I, Levorato M, Faruque M A A. Extended range electric vehicle with driving behavior estimation in energy management. IEEE Transactions on Smart Grid, 2018, DOI: 10.1109/TSG.2018.2815689
    [28] Sun Z, Ou G, Dyke S J, Lu C. A state estimation method for wireless structural control systems. Structural Control and Health Monitoring, 2017, 24(6):Article No. e1929 doi: 10.1002/stc.1929
    [29] Savas A J, Srivastava V, Leonard N E. On distributed linear filtering with noisy communication. In: Proceedings of the 2017 American Control Conference (ACC). Seattle, WA, USA: IEEE, 2017. 2699-2704
    [30] Shoukry Y, Nuzzo P, Puggelli A, Sangiovanni-Vincentelli A L, Seshia S A, Tabuada P. Secure state estimation for cyber-physical systems under sensor attacks:a satisfiability modulo theory approach. IEEE Transactions on Automatic Control, 2017, 62(10):4917-4932 doi: 10.1109/TAC.2017.2676679
    [31] Mishra S, Shoukry Y, Karamchandani N, Diggavi S N, Tabuada P. Secure state estimation against sensor attacks in the presence of noise. IEEE Transactions on Control of Network Systems, 2017, 4(1):49-59 https://ieeexplore.ieee.org/document/7562377
    [32] Shoukry Y, Tabuada P. Event-triggered state observers for sparse sensor noise/attacks. IEEE Transactions on Automatic Control, 2016, 61(8):2079-2091 doi: 10.1109/TAC.2015.2492159
    [33] Sun Z X, Krishnan S, Hackmann G, Yan G R, Dyke S J, Lu C Y, et al. Damage detection on a full-scale highway sign structure with a distributed wireless sensor network. Smart Structures and Systems, 2015, 16(1):223-242 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO201523047607134
    [34] Reppa V, Polycarpou M M, Panayiotou C G. Distributed sensor fault diagnosis for a network of interconnected cyberphysical systems. IEEE Transactions on Control of Network Systems, 2015, 2(1):11-23 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbbe2bcac5456010f7f61c22d89f6c63
    [35] Lokhov A Y, Lemons N, McAndrew T C, Hagberg A, Backhaus S. Detection of cyber-physical faults and intrusions from physical correlations. In: Proceedings of the 16th IEEE International Conference on Data Mining (ICDM). Barcelona, Spain: IEEE, 2016. 303-310
    [36] Payne R, Fitzgerald J, Bryans J, Winthorpe E. Applying model-based SE techniques for dependable land systems. INCOSE International Symposium, 2016, 26(1):1783-1798 doi: 10.1002/iis2.2016.26.issue-1
    [37] Rungger M, Tabuada P. A notion of robustness for cyber-physical systems. IEEE Transactions on Automatic Control, 2016, 61(8):2108-2123 doi: 10.1109/TAC.2015.2492438
    [38] Jackson M, Fitzgerald J S. Resilience profiling in the model-based design of cyber-physical systems. In: Proceedings of the 14th Overture Workshop on Towards Analytical Tool Chains. Limassol, Cyprus: Aarhus University Department of Engineering, 2016. 1-16
    [39] De Persis C, Postoyan R. A Lyapunov redesign of coordination algorithms for cyber-physical systems. IEEE Transactions on Automatic Control, 2017, 62(2):808-823 doi: 10.1109/TAC.2016.2565062
    [40] Dinh S, Li J, Agrawal K, Gill C, Lu C Y. Blocking analysis for spin locks in real-time parallel tasks. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(4):789-802 https://ieeexplore.ieee.org/document/8122044
    [41] Lee H, Faruque M A A. Run-time scheduling framework for event-driven applications on a GPU-based embedded system. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(12):1956-1967 doi: 10.1109/TCAD.2016.2547916
    [42] Quintas J, Menezes P, Dias J. Information model and architecture specification for context awareness interaction decision support in cyber-physical human-machine systems. IEEE Transactions on Human-Machine Systems, 2017, 47(3):323-331 doi: 10.1109/THMS.2016.2634923
    [43] Wang F F, Ju F, Lu Y. A study on performance evaluation and status-based decision for cyber-physical production systems. In: Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE). Xi'an, China: IEEE, 2017. 1000-1005 https://ieeexplore.ieee.org/document/8256233
    [44] Vatanparvar K, Fakhouri S, Siddika M A, Faruque M A A. Compartmentalisation-based design automation method for power grid. IET Cyber-Physical Systems:Theory and Applications, 2017, 2(1):20-27 https://ieeexplore.ieee.org/document/7898558
    [45] Ma Y H, Gunatilaka D, Li B, Gonzalez H, Lu C Y. Holistic cyber-physical management for dependable wireless control systems. ACM Transactions on Cyber-Physical Systems, 2018, 3(1):Article No. 3 https://arxiv.org/abs/1705.01862
    [46] Ames A D, Xu X R, Grizzle J W, Tabuada P. Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 2017, 62(8):3861-3876 doi: 10.1109/TAC.2016.2638961
    [47] Buini H M, Peter S, Givargis T. Adaptive embedded control of cyber-physical systems using reinforcement learning. IET Cyber-Physical Systems:Theory and Applications, 2017, 2(3):127-135 https://ieeexplore.ieee.org/document/8103981
    [48] Xu J, Haddad W M, Hayakawa T. An adaptive control architecture for cyber-physical system security in the face of sensor and actuator attacks and exogenous stochastic disturbances. In: Proceedings of the 56th Annual Conference on Decision and Control (CDC). Melbourne, Australia: IEEE, 2017. 1380-1385 https://ieeexplore.ieee.org/document/8263847
    [49] An L W, Yang G H. Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent DoS attacks. IEEE Transactions on Cybernetics, 2018, DOI: 10.1109/TCYB.2017.2787740
    [50] Song Y D, Huang X C, Wen C Y. Robust adaptive fault-tolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Transactions on Industrial Electronics, 2017, 64(6):4876-4884 doi: 10.1109/TIE.2017.2669891
    [51] Cheng S T, Chou J H. Fuzzy-based actuators controlling for minimizing power consumption in cyber-physical system. In: Proceedings of the 26th IEEE International Conference on Advanced Information Networking and Applications. Fukuoka City, Japan: IEEE, 2012. 160-166 https://ieeexplore.ieee.org/document/6184866
    [52] Garcia C A, Castellanos E X, Buele J, Espinoza J, Beltrán C, Pilatasig M, et al. Fuzzy control implementation in low cost CPPS devices. In: Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). Daegu, South Korea: IEEE, 2017. 162-167
    [53] Carni D, Grimaldi D, Nigro L, Sciammarella P F, Cicirelli F. Agent-based software architecture for distributed measurement systems and cyber-physical systems design. In: Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Torino, Italy: IEEE, 2017. 1898-1903 https://ieeexplore.ieee.org/document/7969977
    [54] Engelsberger M, Greiner T. Software architecture for cyber-physical control systems with flexible application of the software-as-a-service and on-premises model. In: Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT). Seville, Spain: IEEE, 2015. 1544-1549 https://ieeexplore.ieee.org/document/7125316
    [55] Kim J H, Lee S H, Kim W T, Park S M. Data transport block structure design in CPS middleware subsystem. In: Proceedings of the 2010 International Conference on Information and Communication Technology Convergence (ICTC). Jeju, South Korea: IEEE, 2010. 427-428 https://ieeexplore.ieee.org/document/5674808
    [56] Dabholkar A, Gokhale A. An approach to middleware specialization for cyber physical systems. In: Proceedings of the 29th IEEE International Conference on Distributed Computing Systems Workshops. Montreal, Canada: IEEE, 2009. 73-79 https://ieeexplore.ieee.org/document/5158836
    [57] Reijers N, Wang Y C, Shih C S, Hsu J Y, Lin K J. Building intelligent middleware for large scale CPS systems. In: Proceedings of the 2011 IEEE International Conference on Service-Oriented Computing and Applications (SOCA). Irvine, CA, USA: IEEE, 2011. 1-4 https://ieeexplore.ieee.org/document/6166238
    [58] Huang J, Bastani F, Yen I L, Dong J, Zhang W, Wang F J, et al. Extending service model to build an effective service composition framework for cyber-physical systems. In: Proceedings of the 2009 IEEE International Conference on Service-Oriented Computing and Applications (SOCA). Taipei, China: IEEE, 2009. 1-8 https://ieeexplore.ieee.org/document/5410453
    [59] Feljan A V, Mohalik S K, Jayaraman M B, Badrinath R. SOA-PE: a service-oriented architecture for planning and execution in cyber-physical systems. In: Proceedings of the 2015 International Conference on Smart Sensors and Systems (IC-SSS). Bangalore, India: IEEE, 2015. 1-6 https://ieeexplore.ieee.org/document/7873602
    [60] Yen I L, Zhu W, Bastani F, Huang Y T, Zhou G. Rapid service composition reasoning for agile cyber physical systems. In: Proceedings of the 10th IEEE International Symposium on Service-Oriented System Engineering (SOSE). Oxford, England: IEEE, 2016. 442-449 https://ieeexplore.ieee.org/document/7473059
    [61] Wang T, Niu C L, Cheng L L. A two-phase context-sensitive service composition method with the workflow model in cyber-physical systems. In: Proceedings of the 17th IEEE International Conference on Computational Science and Engineering. Chengdu, China: IEEE, 2014. 1475-1482 https://ieeexplore.ieee.org/document/7023786
    [62] Li F F, Liu C, Yu G, Chen Z. A scheduling algorithm of events with uncertain timestamps for CPS. In: Proceedings of the 3rd International Conference on Big Data Computing and Communications (BIGCOM). Chengdu, China: IEEE, 2017. 313-319 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000008113083
    [63] Chejerla B K, Madria S. Information fusion architecture for variable-load scheduling in a cloud-assisted CPS. In: Proceedings of the 2nd IEEE International Conference on Collaboration and Internet Computing (CIC). Pittsburgh, PA, USA: IEEE, 2016. 178-187 https://ieeexplore.ieee.org/abstract/document/7809705/
    [64] Zhou B H, Yu M, Liu T. A mixed parameter scheduling algorithm of node operating system in CPS. In: Proceedings of the 12th World Congress on Intelligent Control and Automation (WCICA). Guilin, China: IEEE, 2016. 2980-2985 https://ieeexplore.ieee.org/document/7578492
    [65] Zhou B H, Yao Y, Mao H Y, Yao D P, Xu L B. Research on optimal ELSF real-time scheduling algorithm for CPS. In: Proceedings of the 28th Chinese Control and Decision Conference (CCDC). Yinchuan, China: IEEE, 2016. 6867-6871 https://ieeexplore.ieee.org/document/7532235
    [66] Schneider R, Goswami D, Masrur A, Chakraborty S. QoC-oriented efficient schedule synthesis for mixed-criticality cyber-physical systems. In: Proceedings of the 2012 Forum on Specification and Design Languages. Vienna, Austria: IEEE, 2012. 60-67 https://ieeexplore.ieee.org/document/6336986
    [67] Zhang J, Yang X D, Fan H B. An improved real-time task preemptive scheduling in cyber-physical systems. In: Proceedings of the 29th Chinese Control and Decision Conference (CCDC). Chongqing, China: IEEE, 2017. 5843-5848 https://ieeexplore.ieee.org/document/7978213
    [68] 伦永亮, 程良伦.一种基于反馈的CPS上层资源动态分配与优化调度策略.科技通报, 2012, 28(12):128-130 doi: 10.3969/j.issn.1001-7119.2012.12.044

    Lun Yong-Liang, Cheng Liang-Lun. A kind of the upper resources based on feedback CPS dynamic allocation and optimization scheduling strategy. Bulletin of Science and Technology, 2012, 28(12):128-130 doi: 10.3969/j.issn.1001-7119.2012.12.044
    [69] 韩杰, 马斌, 黄宽, 王长涛, 魏威.基于蚁群算法的分布式CPS系统任务调度设计.测控技术, 2015, 34(2):121-124 doi: 10.3969/j.issn.1000-8829.2015.02.033

    Han Jie, Ma Bin, Huang Kuan, Wang Chang-Tao, Wei Wei. Design of distributed CPS system task scheduling based on ant colony algorithm. Measurement and Control Technology, 2015, 34(2):121-124 doi: 10.3969/j.issn.1000-8829.2015.02.033
    [70] Yang T T, Feng H L, Zhao J, Deng R L, Wang Y, Su Z. Genetic optimization-based scheduling in maritime cyber physical systems. International Journal of Distributed Sensor Networks, 2017, 13(7):1-10
    [71] Gong H F, Li R F, An J Y, Chen W W, Li K Q. Scheduling algorithms of flat semi-dormant multicontrollers for a cyber-physical system. IEEE Transactions on Industrial Informatics, 2017, 13(4):1665-1680 doi: 10.1109/TII.2017.2690939
    [72] Park P. Traffic generation rate control of wireless sensor and actuator networks. IEEE Communications Letters, 2015, 19(5):827-830 doi: 10.1109/LCOMM.2015.2409064
    [73] Kim D, Won Y, Eun Y, Park K J. W-Simplex: resilient network and control co-design under wireless channel uncertainty in cyber-physical systems. In: Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA). Mauna Lani, HI, USA: IEEE, 2017. 49-54 https://ieeexplore.ieee.org/document/8062439
    [74] Lorenzo B, Garcia-Rois J, Li X H, Gonzalez-Castano J, Fang Y G. A robust dynamic edge network architecture for the internet of things. IEEE Network, 2018, 32(1):8-15 https://ieeexplore.ieee.org/document/8270625
    [75] Samant R, Agrawal A, Behera L. Design of communication network for cyber physical system. In: Proceedings of the 39th National Systems Conference (NSC). Noida, India: IEEE, 2015. 1-6 https://ieeexplore.ieee.org/document/7489082
    [76] Fallah Y P, Sengupta R. A cyber-physical systems approach to the design of vehicle safety networks. In: Proceedings of the 32nd International Conference on Distributed Computing Systems Workshops. Macau, China: IEEE, 2012. 324-329 https://ieeexplore.ieee.org/document/6258175
    [77] Taha A F, Gatsis N, Summers T, Nugroho S. Actuator selection for cyber-physical systems. In: Proceedings of the 2017 American Control Conference (ACC). Seattle, WA, USA: IEEE, 2017. 5300-5305 https://ieeexplore.ieee.org/document/7963778
    [78] Shen C, Chen S B. A cyber-physical design for indoor temperature monitoring using wireless sensor networks. In: Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, CA, USA: IEEE, 2017. 1-6 https://ieeexplore.ieee.org/document/7925596
    [79] Mariappan R, Reddy P V N, Wu C. Cyber physical system using intelligent wireless sensor actuator networks for disaster recovery. In: Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks (CICN). Jabalpur, India: IEEE, 2015. 95-99 https://ieeexplore.ieee.org/document/7546063
    [80] Garay J R B, Kofuji S T. Architecture for sensor networks in cyber-physical system. In: Proceedings of the 2010 IEEE Latin-American Conference on Communications. Bogota, Colombia: IEEE, 2010. 1-6 https://ieeexplore.ieee.org/document/5641126
    [81] Triki B, Rekhis S, Boudriga N. A novel secure and multipath routing algorithm in wireless sensor networks. In: Proceedings of the 2010 International Conference on Data Communication Networking (DCNET). Athens, Greece: IEEE, 2010. 25-34 https://ieeexplore.ieee.org/document/5740713
    [82] Pitt L, Green P R, Lennox B. A sensor network for predicting and maintaining occupant comfort. In: Proceedings of the 2013 IEEE Workshop on Environmental Energy and Structural Monitoring Systems. Trento, Italy: IEEE, 2013. 19-24 https://ieeexplore.ieee.org/document/6661696
    [83] Zhang R R. Research on advanced sensor network based cyber-physical system for the smart grid. In: Proceedings of the 2014 China International Conference on Electricity Distribution (CICED). Shenzhen, China: IEEE, 2014. 423-426 https://ieeexplore.ieee.org/document/6991742
    [84] Schleich B, Anwer N, Mathieu L, Wartzack S. Shaping the digital twin for design and production engineering. CIRP Annals, 2017, 66(1):141-144 doi: 10.1016/j.cirp.2017.04.040
    [85] Grieves M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White paper, Florida Institute of Technology. 2015.
    [86] Alam K M, El Saddik A. C2PS:a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access, 2017, 5:2050-2062 doi: 10.1109/ACCESS.2017.2657006
    [87] Coronado P D U, Lynn R, Louhichi W, Parto M, Wescoat E, Kurfess T. Part data integration in the shop floor digital twin:mobile and cloud technologies to enable a manufacturing execution system. Journal of Manufacturing Systems, 2018, 48:25-33 doi: 10.1016/j.jmsy.2018.02.002
    [88] Zhuang C B, Liu J H, Xiong H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor. International Journal of Advanced Manufacturing Technology, 2018, 96(1-4):1149-1163 doi: 10.1007%2Fs00170-018-1617-6
    [89] Iglesias D, Bunting P, Esquembri S, Hollocombe J, Silburn S, Vitton-Mea L, et al. Digital twin applications for the JET divertor. Fusion Engineering and Design, 2017, 125:71-76 doi: 10.1016/j.fusengdes.2017.10.012
    [90] 彭昆仑, 彭伟, 王东霞, 邢倩倩.信息物理融合系统安全问题研究综述.信息网络安全, 2016, (7):20-28 doi: 10.3969/j.issn.1671-1122.2016.07.004

    Peng Kun-Lun, Peng Wei, Wang Dong-Xia, Xing Qian-Qian. Research survey on security issues in cyber-physical systems. Netinfo Security, 2016, (7):20-28 doi: 10.3969/j.issn.1671-1122.2016.07.004
    [91] Zhao Y H, He X, Zhou D H. Optimal joint control and triggering strategies against denial of service attacks:a zero-sum game. IET Control Theory and Applications, 2017, 11(14):2352-2360 doi: 10.1049/iet-cta.2016.0601
    [92] Yang C, Yang W, Shi H B. DoS attack in centralised sensor network against state estimation. IET Control Theory and Applications, 2018, 12(9):1244-1253 doi: 10.1049/iet-cta.2017.0819
    [93] Yang Q Y, Yang J, Yu W, An D, Zhang N, Zhao W. On false data-injection attacks against power system state estimation:modeling and countermeasures. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(3):717-729 https://ieeexplore.ieee.org/document/6490324
    [94] Zhao J F, Wang J, Yin L. Detection and control against replay attacks in smart grid. In: Proceedings of the 12th International Conference on Computational Intelligence and Security (CIS). Wuxi, China: IEEE, 2016. 624-627 https://ieeexplore.ieee.org/document/7820542
    [95] Esmalifalak M, Shi G, Han Z, Song L Y. Bad data injection attack and defense in electricity market using game theory study. IEEE Transactions on Smart Grid, 2013, 4(1):160-169 doi: 10.1109/TSG.2012.2224391
    [96] Beg O A, Johnson T T, Davoudi A. Detection of false-data injection attacks in cyber-physical DC microgrids. IEEE Transactions on Industrial Informatics, 2017, 13(5):2693-2703 doi: 10.1109/TII.2017.2656905
    [97] Yu J J Q, Hou Y H, Li V O K. Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Transactions on Industrial Informatics, 2018, 14(7):3271-3280 doi: 10.1109/TII.2018.2825243
    [98] Zhu M H, Martínez S. On the performance analysis of resilient networked control systems under replay attacks. IEEE Transactions on Automatic Control, 2014, 59(3):804-808 doi: 10.1109/TAC.2013.2279896
    [99] Biron Z A, Dey S, Pisu P. Resilient control strategy under denial of service in connected vehicles. In: Proceedings of the 2017 American Control Conference (ACC). Seattle, WA, USA: IEEE, 2017. 4971-4976
    [100] 胡虎, 赵敏, 宁振波, 郭朝晖, 陈志成, 朱铎先, 等.三体智能革命.北京:机械工业出版社, 2016.

    Hu Hu, Zhao Min, Ning Zhen-Bo, Guo Zhao-Hui, Chen Zhi-Cheng, Zhu Duo-Xian, et al. Three-body Intelligence Revolution. Beijing:China Machine Press, 2016.
    [101] Yang B, Li J W, Han Q N, He T, Chen C L, Guan X P. Distributed control for charging multiple electric vehicles with overload limitation. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(12):3441-3454 doi: 10.1109/TPDS.2016.2533614
    [102] Yang B, Shen Y Y, Han Q N, Chen C L, Guan X P, Zhang W D. Energy-efficient resource allocation for time-varying OFDMA relay systems with hybrid energy supplies. IEEE Systems Journal, 2018, 12(1):702-713 doi: 10.1109/JSYST.2016.2551319
    [103] 何潇, 王子栋, 刘洋, 吉吟东, 周东华.基于Internet的网络化三容水箱实验平台.南京航空航天大学学报, 2011, 43(S1):190-193 http://d.old.wanfangdata.com.cn/Conference/7494302

    He Xiao, Wang Zi-Dong, Liu Yang, Ji Yin-Dong, Zhou Dong-Hua. Internet-based three-tank experimental platform. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(S1):190-193 http://d.old.wanfangdata.com.cn/Conference/7494302
    [104] Zhou D H, He X, Wang Z D, Liu G P, Ji Y D. Leakage fault diagnosis for an internet-based three-tank system:an experimental study. IEEE Transactions on Control Systems Technology, 2012, 20(4):857-870 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcdade5c459f91be56995f5823eb2ba0
    [105] He X, Wang Z D, Ji Y D, Zhou D H. Robust fault detection for networked systems with distributed sensors. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):166-177 doi: 10.1109/TAES.2011.5705667
    [106] He X, Wang Z D, Wang X F, Zhou D H. Networked strong tracking filtering with multiple packet dropouts:algorithms and applications. IEEE Transactions on Industrial Electronics, 2014, 61(3):1454-1463 doi: 10.1109/TIE.2013.2261038
    [107] 邱伯华, 张玉峰, 魏慕恒, 何晓, 张羽, 朱慧敏. "大智号":智慧领航.科技纵览, 2018, (2):66-69 doi: 10.3969/j.issn.2095-4409.2018.02.025

    Qiu Bo-Hua, Zhang Yu-Feng, Wei Mu-Heng, He Xiao, Zhang Yu, Zhu Hui-Min. Great intelligence:cyber-enable ship. IEEE Spectrum, 2018, (2):66-69 doi: 10.3969/j.issn.2095-4409.2018.02.025
    [108] 邱伯华, 蒋云鹏, 魏慕恒, 何晓, 朱武.知识经济与CPS在船舶工业中的应用实践.信息技术与标准化, 2016, (11):17-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016123000024868

    Qiu Bo-Hua, Jiang Yun-Peng, Wei Mu-Heng, He Xiao, Zhu Wu. Knowledge economy and the application of CPS in shipbuilding industry. Information Technology and Standardization, 2016, (11):17-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016123000024868
    [109] Qiu B H, Zhang Y, Wei M H, Li Y J, Wang Y. Hybrid cloud based cyber-enabled ship control and management system. In: Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM). Seattle, WA, USA: IEEE, 2018. 1-6
    [110] 李杰[著], 邱伯华, 刘宗长, 魏慕恒, 董智升[译].工业大数据: 工业4.0时代的工业转型与价值创造.北京: 机械工业出版社, 2015.

    Lee J[Author], Qiu Bo-Hua, Liu Zong-Chang, Wei Mu-Heng, Dong Zhi-Sheng[Translator]. Industrial Big Data: The Revolutionary Transformation and Value Creation in Industry 4.0 Era. Beijing: China Machine Press, 2015.
  • 期刊类型引用(3)

    1. 岳振宇,范大昭,董杨,纪松,李东子. 一种星载平台轻量化快速影像匹配方法. 地球信息科学学报. 2022(05): 925-939 . 百度学术
    2. 王若兰,潘万彬,曹伟娟. 图像局部区域匹配驱动的导航式拼图方法. 计算机辅助设计与图形学学报. 2020(03): 452-461 . 百度学术
    3. 胡敬双,聂洪玉. 灰度序模式的局部特征描述算法. 中国图象图形学报. 2017(06): 824-832 . 百度学术

    其他类型引用(9)

  • 加载中
  • 图(4)
    计量
    • 文章访问数:  6551
    • HTML全文浏览量:  2701
    • PDF下载量:  2774
    • 被引次数: 12
    出版历程
    • 收稿日期:  2018-05-30
    • 录用日期:  2018-09-07
    • 刊出日期:  2019-01-20

    目录

    /

    返回文章
    返回