2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业过程多速率分层运行优化控制

代伟 陆文捷 付俊 马小平

代伟, 陆文捷, 付俊, 马小平. 工业过程多速率分层运行优化控制. 自动化学报, 2019, 45(10): 1946-1959. doi: 10.16383/j.aas.2018.c180300
引用本文: 代伟, 陆文捷, 付俊, 马小平. 工业过程多速率分层运行优化控制. 自动化学报, 2019, 45(10): 1946-1959. doi: 10.16383/j.aas.2018.c180300
DAI Wei, LU Wen-Jie, FU Jun, MA Xiao-Ping. Multi-rate Layered Optimal Operational Control of Industrial Processes. ACTA AUTOMATICA SINICA, 2019, 45(10): 1946-1959. doi: 10.16383/j.aas.2018.c180300
Citation: DAI Wei, LU Wen-Jie, FU Jun, MA Xiao-Ping. Multi-rate Layered Optimal Operational Control of Industrial Processes. ACTA AUTOMATICA SINICA, 2019, 45(10): 1946-1959. doi: 10.16383/j.aas.2018.c180300

工业过程多速率分层运行优化控制

doi: 10.16383/j.aas.2018.c180300
基金项目: 

国家自然科学基金 61741318

中国博士后科学基金 2015M581885

江苏省自然科学基金 BK20160275

流程工业综合自动化国家重点实验室开放基金 PAL-N201706

国家自然科学基金 61603393

中国博士后科学基金 2018T110571

国家自然科学基金 61503384

详细信息
    作者简介:

    陆文捷  中国矿业大学信息与控制学院硕士研究生.主要研究方向为复杂工业过程运行优化与控制.E-mail:luwenjiecumt@163.com

    付俊  东北大学流程工业综合自动化国家重点实验室教授.主要研究方向为动态优化, 切换系统, 非线性控制.E-mail:junfu@mail.neu.edu.cn

    马小平  中国矿业大学信息与控制工程学院教授.主要研究方向为过程控制, 网络控制, 故障诊断.E-mail:xpma@cumt.edu.cn

    通讯作者:

    代伟  中国矿业大学信息与控制工程学院副教授.主要研究方向为复杂工业过程建模、运行优化与控制.本文通信作者.E-mail:weidai@cumt.edu.cn

Multi-rate Layered Optimal Operational Control of Industrial Processes

Funds: 

National Natural Science Foundation of China 61741318

the Postdoctoral Science Foundation of China 2015M581885

Natural Science Foundation of Jiangsu Provinces BK20160275

State Key Laboratory of Synthetical Automation for Process Industries PAL-N201706

National Natural Science Foundation of China 61603393

the Postdoctoral Science Foundation of China 2018T110571

National Natural Science Foundation of China 61503384

More Information
    Author Bio:

       Master student at the School of Information and control Engineering, China University of Mining and Technology. His research interest covers operational optimization and control for complex industrial process

       Professor at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers dynamic optimization, switching system, and nonlinear control

      Professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers process control, networked control, and fault detection

    Corresponding author: DAI Wei    Associate professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers modeling, operational optimization and control for complex industrial process. Corresponding author of this paper
  • 摘要: 工业过程运行优化控制通常采用基础回路层和运行层两层结构,涉及不同时间尺度特性的被控对象,且由于检测装置采样周期不同难以统一控制与采样周期;此外,运行层动态往往机理复杂难以建模.因此针对这一多层次、多时间尺度且部分模型未知的复杂多速率控制问题,本文提出一种工业过程多速率分层运行优化控制方法.该方法在使用提升技术解决分层多速率问题的基础上,采用一种基于Q-!学习的数据驱动运行层设定值优化方法,更新基础回路层的设定值;并针对提升后的系统采用模型预测控制(Model predictive control,MPC)方法设计基础回路层控制器以跟踪设定值,从而实现运行指标的优化控制.对典型工业闭路磨矿过程进行了仿真实验,验证了本文所提方法的有效性.
    1)  本文责任编委 王鼎
  • 图  1  多速率工业过程的双层层级架构

    Fig.  1  Two-layer structure of multi-rate industrial processes

    图  2  闭路磨矿过程工艺流程图

    Fig.  2  Flow chart of closed-circuit mineral grinding process

    图  3  本文方法下的运行指标控制曲线

    Fig.  3  Control curve of operational indices using the proposed method

    图  4  本文方法下的基础回路层输出曲线

    Fig.  4  Output curve of basic loop layer using the proposed method

    图  5  本文方法下的基础回路层输入曲线

    Fig.  5  Input curve of basic loop layer using the proposed method

    图  6  PI+MPC方法下的运行指标控制曲线

    Fig.  6  Control curve of operational indices using the PI+MPC method

    图  7  PI+MPC方法下的基础回路层输出曲线

    Fig.  7  Output curve of basic loop layer using the PI+MPC method

    图  8  PI+PI方法下的运行指标控制曲线

    Fig.  8  Control curve of operational indices using the PI+PI method

    图  9  PI+PI方法下的基础回路层输出曲线

    Fig.  9  Output curve of basic loop layer using the PI+PI method

  • [1] 柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml

    Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml
    [2] 桂卫华, 阳春华.复杂有色冶金生产过程智能建模、控制与优化.北京:科学出版社, 2010

    Gui Wei-Hua, Yang Chun-Hua. Intelligent Modeling, Control And Optimization of Complex Nonferrous Metallurgical Process. Beijing:Science Press, 2010
    [3] 柴天佑.工业过程控制系统研究现状与发展方向.中国科学:信息科学, 2016, 46:1003-1015 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-fc201608005

    Chai Tian-You. Industrial process control systems:research status and development direction. Scientia Sinica Informationis, 2016, 46:1003-1015 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-fc201608005
    [4] Skogestad S. Plantwide control:the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5):487-507 doi: 10.1016/S0959-1524(00)00023-8
    [5] Ye L J, Cao Y, Yuan X F, Song Z H. Retrofit self-optimizing control:a step forward toward real implementation. IEEE Transactions on Industrial Electronics, 2017, 64(6):4662-4670 doi: 10.1109/TIE.2017.2668991
    [6] Jaschke J, Skogestad S. NCO tracking and self-optimizing control in the context of real-time optimization. Journal of Process Control, 2011, 21:1047-1416 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f99a0156d4465b06373780e4860b85ca
    [7] Darbya M L, Nikolaoub M, Jonesc J, Nicholsond D. RTO:an overview and assessment of current practice. Journal of Process Control, 2011, 21(6):874-884 doi: 10.1016/j.jprocont.2011.03.009
    [8] Sequeira S E, Graells M, Puigjaner L. Real-time evolution for online optimization of continuous processes. Industrial and Engineering Chemistry Research, 2002, 41(7):1815-1825 doi: 10.1021/ie010464l
    [9] Sun Z J, Qin S J, Singhal A, Megan L. Control performance monitoring of LP-MPC cascade systems. In: Proceedings of the 2011 American Control Conference. San Francisco, USA: IEEE, 2011. 4422-4427
    [10] Souzaa G D, Odloaka D, Zaninb A C. Real time optimization (RTO) with model predictive control (MPC). Computers and Chemical Engineering, 2010, 34(12):1999-2006 doi: 10.1016/j.compchemeng.2010.07.001
    [11] Al-Shammari A A, Forbes J F. Post-optimality approach to prevent cycling in linear MPC target calculation. European Journal of Control, 2012, 18(6):558-569 doi: 10.3166/EJC.18.558-569
    [12] Pontes K V, Wolf I J, Embirucų M, Marquardt W. Dynamic real-time optimization of industrial polymerization processes with fast dynamics. Industrial and Engineering Chemistry Research, 2015, 54(47):11881-11893 doi: 10.1021/acs.iecr.5b00909
    [13] Ellis M, Christofides P D. Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems. Control Engineering Practice, 2014, 22(22):242-251 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5cab633219a01a66ce7e1ded2d1b270
    [14] Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2012, 9(1):417-426 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b3efc97111492c98ea4b6e285ad88d0
    [15] Zyl V F, Paquot F, Fouche F, Gomez A. Implementation of a SAG grinding expert system at Kansanshi Mine-Zambia. IFAC Proceedings Volumes, 2013, 46(16):178-181 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214389137
    [16] 乔俊飞, 韩改堂, 周红标.基于知识的污水生化处理过程智能优化方法.自动化学报, 2017, 43(6):1038-1046 http://www.aas.net.cn/CN/abstract/abstract19079.shtml

    Qiao Jun-Fei, Han Gai-Tang, Zhou Hong-Biao. Knowledge-based intelligent optimal control for wastewater biochemical treatment process. Acta Automatica Sinica, 2017, 43(6):1038-1046 http://www.aas.net.cn/CN/abstract/abstract19079.shtml
    [17] Li H X, Guan S P. Hybrid intelligent control strategy. Supervising a DCS-controlled batch process. IEEE Control Systems Magazine, 2001, 21(3):36-48 doi: 10.1109/37.924796
    [18] Xie S W, Xie Y F, Li F B, Yang C H, Gui W H. Optimal setting and control for iron removal process based on adaptive neural network soft-sensor. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, PP(99):1-13
    [19] Wang D, He H B, Liu D R. Adaptive critic nonlinear robust control:a survey. IEEE Transactions on Cybernetics, 2017, 47(10):3429-3451 doi: 10.1109/TCYB.2017.2712188
    [20] Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE circuits and systems magazine, 2009, 9(3):32-50 doi: 10.1109/MCAS.2009.933854
    [21] 王鼎, 穆朝絮, 刘德荣.基于迭代神经动态规划的数据驱动非线性近似最优调节.自动化学报, 2017, 43(3):366-375 http://www.aas.net.cn/CN/abstract/abstract19015.shtml

    Wang Ding, Mu Chao-Xu, Liu De-Rong. Data-driven nonlinear near-optimal regulation based on iterative neural dynamic programming. Acta Automatica Sinica, 2017, 43(3):366-375 http://www.aas.net.cn/CN/abstract/abstract19015.shtml
    [22] 代伟, 柴天佑.数据驱动的复杂磨矿过程运行优化控制方法.自动化学报, 2014, 40(9):2005-2014 http://www.aas.net.cn/CN/abstract/abstract18472.shtml

    Dai Wei, Chai Tian-You. Data-driven optimal operational control of complex grinding processes. Acta Automatica Sinica, 2014, 40(9):2005-2014 http://www.aas.net.cn/CN/abstract/abstract18472.shtml
    [23] Lu X L, Kiumarsi B, Chai T Y, Lewis F L. Data-driven optimal control of operational indices for a class of industrial processes. IET Control Theory and Applications, 2016, 10(12):1348-1356 doi: 10.1049/iet-cta.2015.0798
    [24] 李金娜, 高溪泽, 柴天佑, 范家璐.数据驱动的工业过程运行优化控制.控制理论与应用, 2016, 33(12):1584-1592 doi: 10.7641/CTA.2016.60455

    Li Jin-Na, Gao Xi-Ze, Chai Tian-You, Fan Jia-Lu. Data-driven operational optimization control of industrial processes. Control Theory and Applications, 2016, 33(12):1584-1592 doi: 10.7641/CTA.2016.60455
    [25] Li J N, Kiumarsi B, Chai T Y, Fan J L. Off-policy reinforcement learning:optimal operational control for two-time-scale industrial processes. IEEE Transactions on Cybernetics, 2017, 47(12):4547-4558 doi: 10.1109/TCYB.2017.2761841
    [26] Kiumarsi B, Lewis F L, Modares H, Karimpour A, Naghibi M. Reinforcement Q-!learning for optimal tracking control of linear discrete-time systems with unknown dynamics. Automatica, 2014, 50(4):1167-1175 doi: 10.1016/j.automatica.2014.02.015
    [27] Lewis F L, Vrabie D, Vamvoudakis K G. Reinforcement learning and feedback control:using natural decision methods to design optimal adaptive controllers. IEEE Control Systems, 2012, 32(6):76-105 doi: 10.1109/MCS.2012.2214134
    [28] Wei Q L, Song R B, Sun Q F. Nonlinear neuro-optimal tracking control via stable iterative Q-learning algorithm. Neurocomputing, 2015, 168:520-528 doi: 10.1016/j.neucom.2015.05.075
    [29] Hewer G A. An iterative technique for the computation of steady state gains for the discrete optimal regulator. IEEE Transactions on Automation Control, 1971, 16(4):382-384 doi: 10.1109/TAC.1971.1099755
    [30] Bradtke S J, Ydstie B E, Barto A G. Adaptive linear quadratic control using policy iteration. In: Proceedings of the 1994 American Control Conference. Baltimore, USA: IEEE, 1994. 3475-3475
    [31] Chen X S, Yang J, Li S H, Li Q. Disturbance observer based multi-variable control of ball mill grinding circuits. Journal of Process Control, 2009, 19(7):1205-1213 doi: 10.1016/j.jprocont.2009.02.004
  • 加载中
图(9)
计量
  • 文章访问数:  1941
  • HTML全文浏览量:  425
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-12
  • 录用日期:  2018-10-06
  • 刊出日期:  2019-10-20

目录

    /

    返回文章
    返回