-
摘要: 随着信息物理系统(Cyber-physical system,CPS)融合深度和融合广度的不断增加,信息物理生产系统(Cyber-physical production system,CPPS)呈现出显著的社会化趋势.通过对信息物理生产系统相关技术的研究,分析了信息物理生产系统的社会化演进历程,建立了社会信息物理生产系统(Social cyber-physical production system,SCPPS)模型;根据人与智能体的信息物理交互行为差异,基于对人类社会行为特点的分析,类比研究了智能体社会与人类社会融合的广义互联社会特点;归纳出信息物理系统的七种交互模式及其在社会信息物理生产系统中的应用;总结出社会信息物理生产系统面临标准化、人性化和安全化的挑战问题.
-
关键词:
- 信息物理系统 /
- 信息物理生产系统 /
- 社会信息物理生产系统 /
- 物联网 /
- 交互模式
Abstract: With the increasing fusion depth and breadth of cyber and physical spaces, the cyber-physical production system (CPPS) presents a significant social trend. In this paper, through investigations on related CPPS technologies, we expound the social evolution of CPPS, and establish a social cyber-physical production system (SCPPS) model. According to the difference of cyber-physical interaction between humans and agents, we derive the behavior characteristics of the networked society of agents and humans based on an analogical analysis of the characteristics of human society. We also discuss the cyber-physical interaction models and their application in SCPPS, as well as the challenges of SCPPS in terms of standardization, humanization and security. -
迭代学习控制技术问世于上世纪80年代初, 适用于重复作业对象的控制器设计, 可实现在整个作业区间上的零误差跟踪 [1]. 当系统在固定区间内重复运行时, 可学习的不确定性虽然随着时间的变化而变化, 但在各次运行中呈现相同的变化规律, 沿迭代轴来看, 同一时刻对应的不确定性为一常值. 由此, 可通过学习方法对其进行估计, 并根据误差不断修正控制输入. 这样, 经过足够多次迭代运行后, 可将闭环系统中可学习的不确定性予以完全补偿, 实现系统状态对参考信号在整个作业区间上的完全跟踪 [2-7]. 至今, 这种控制技术已应用于机械臂、磁盘驱动器和逆变电路等.
目前, 基于Lyapunov方法设计学习控制系统引起了人们的关注 [2-3]. 在设计学习控制系统过程中, 需要处理各种不确定性, 常见的有线性参数不确定、非线性参数不确定性 [8]和非参数不确定性 [9] 等. 线性参数不确定性又可分为固定常数 [10-11]、不随迭代次数变化的时变参数 [12], 以及随迭代次数变化的时变参数 [13]. 从已经发表的文献数量来看, 非线性参数不确定性和非参数不确定性方面的结果较少. 文献[14]利用界函数设计反馈项补偿非参数不确定性. 文献[15-16] 结合使用鲁棒方法与学习方法处理非参数不确定性. 傅里叶级数等逼近工具也可用于估计该类不确定 [17]. 文献[18]针对控制增益时变的非参数不确定系统, 基于Backstepping方法设计迭代学习控制系统. 文献[19]针对一类同含参数不确定性和非参数不确定性的 非线性系统, 分别提出准最优迭代学习控制算法和准最优重复学习控制算法.
在应用常规迭代学习控制算法时, 需要在每次迭代开始前进行严格初始定位, 以使系统初态与期望轨迹的起始点完全一致 [3]. 但在实际中, 受复位条件的限制, 系统存在非零误差初值. 因此, 研究适用于任意误差初值的迭代学习控制算法, 不仅具有理论意义, 还可拓宽迭代学习控制技术的应用范围. 针对连续系统的Lyapunov方法初值问题解决方案见文献[20-22]. 文献[20]提出了时变边界层解决方案. 其控制策略是: 经过足够多次迭代后, 闭环系统的滤波误差可以收敛到与迭代初值相关的时变死区中. 文献[21] 给出误差跟踪设计方法, 并将其与参考信号初始修正方法进行对比. 文献[22]研究非参数不确定系统的误差跟踪学习控制算法. 另外, 在参考信号光滑闭合场合, 可采用重复学习控制方法设 计控制器, 该法在运行过程中勿需停顿及复位 [2, 23-24].
设计自适应或自适应学习控制器时, 为了处理有界的不确定性, 常采用鲁棒方法予以处理. 根据界函数与符号函数设计反馈项可完全补偿不确定性, 但据此设计的控制器在实现时容易发生颤振现象. 为了克服这一不足, 可以采用饱和函数代替符号函数, 实现边界层外的切换控制和边界层内的线性反馈控制. 类似的方法还有单位向量连续化 [25]. 在一些场合, 例如根据反演方法设计控制器时, 为了设计上的方便, 可以采用双曲正切函数代替符号函数 [26]. 文献[27]利用双曲正切函数为严格反馈时变系统设计学习控制器.
为解决参数/非参数混合不确定系统的轨迹跟踪问题, 针对任意初态的非严格复位系统, 本文 提出基于滤波误差初始修正的自适应迭代学习控制方法. 在构造修正滤波误差后, 采用Lyapunov方法设计迭代学习控制器并进行性能分析, 利用鲁棒手段确保系统变量有界, 处理非参数不确定性后, 将所得的各未知时变参数合并为两个未知时变参数向量, 并通过学习方法分别予以估计. 经过足够多次迭代后, 闭环系统的修正滤波误差在整个作业区间收敛于零, 滤波 误差在预设的部分作业区间上收敛于零. 文中所给出的修正滤波误差构造方案, 具有构造简单实现方便的特点.
1. 问题描述
考虑有限时间区间$[0, T]$上重复运行的非线性不确定系统
$\begin{cases} \dot{x}_{ik}=x_{i+1k}, i=1, 2, \cdots, n-1\\dot{x}_{nk}=f( x_k, t)+g( x_k, t)u_k \end{cases}\label{01cssys} $
(1) 式中, $k=0, 1, 2, \cdots$为重复作业次数. ${x}_k=[x_{1k}$, ${x}_{2k}, \cdots, x_{nk}]^{\rm T}\in R^n$为状态向量, $u_k\in R$为控制输入, $f( x_k, t)$与$g( x_k, t)$为不确定性, 未知实数 $g( x_k, t)>0$. 参考信号为${x_d} = {[{x_d}, {{\dot x}_d}, {{\ddot x}_d}, \cdots , {x_d}^{(n - 1)}]^{\rm{T}}}, {x_d}^{(n)}$存在.
本文考虑系统状态初值$ x_k(0)$, $k=0, 1, 2, \cdots$, 任意情形下的学习控制算法, 拟构造修正滤波误差设计控制器, 在足够多次迭代后, 实现闭环系统的$ x_k$ 在部分作业区间上精确跟踪$ x_d$. 因控制器设计需要, 做如下假设.
假设 1. 函数
$f( x_k, t)= \theta^{\rm T}(t) \varphi( x_k, t)+\Delta f( x_k, t) $
(2) 其中, $ \theta(t)\in R^m$为未知时变常数, $ \varphi( x_k, t)$为与$ \theta(t)$同维的连续向量, $\Delta f( x_k, t)$满足
$|\Delta f({\xi _1}, t) - \Delta f({\xi _2}, t)| \le {\alpha _f}({\xi _1}, {\xi _2}, t){\xi _1} - {\xi _2}, \forall {\xi _1} \in {R^n}, \forall {\xi _2} \in {R^n}$
此处, $\alpha_f(\cdot, \cdot, \cdot)$为非负连续函数.
假设 2. 函数$g(\cdot, \cdot)$满足
$|g({\xi _1}, t) - g({\xi _2}, t)| \le {\alpha _g}({\xi _1}, {\xi _2}, t){\xi _1} - {\xi _2}, \forall {\xi _1} \in {R^n}, \forall {\xi _2} \in {R^n}{\rm{ }}$
其中, $\alpha_g(\cdot, \cdot, \cdot)$为非负连续函数, 且 存在连续函数$g_{m}( x_k, t)$, 满足$0<g_{m}( x_k, t)\leq g( x_k, t)$.
假设 3. $\partial g({x_k}, t)\partial {x_k} < + \infty $.
参数不确定性和非参数不确定性是系统中常见的不确定性, 本文在假设性方面的要求较文献[28]低. 为叙述简便, 下文记$g_{m}( x_k, t)$, $ \varphi( x_k, t)$, $\Delta f( x_k, t)$, $g( x_k, t)$, $\Delta f( x_d, t)$, $g( x_d, t)$, $\alpha_f( x_k, x_d$, $t)$, $\alpha_g( x_k, x_d, t)$分别为$g_{mk}$, $ \varphi_k$, $\Delta f_k$, gk, $\Delta f_d$, gd, $\alpha_{fk}$, $\alpha_{gk}$. 在不引起歧义时, 函数的自变量t常被略去.
2. 滤波误差初始修正下的控制器设计
记
${e_k} = {[{e_{1k}}, {e_{2k}}, \cdots , {e_{nk}}]^{\rm{T}}} = {x_k} - {x_d}{s_k} = {c_1}{e_{1k}} + \cdots + {c_{n - 1}}{e_{n - 1k}} + {e_{nk}}$
(3) 选取合适的参数$c_1$, $\cdots$, $c_{n-1}$, 使得多项式$\Delta(p)=$ $p^{n-1}$ $+$ $c_{n-1}p^{n-2}+\cdots+c_2p+c_1$为Hurwitz多项式.
定义 1.
$s_{\phi k}=s_k-\phi(t)s_k(0) \label{sfkdef} $
(4) 其中, $\phi(t)$为一类连续可导的单调递减函数, 满足$\phi(0)=1$, $\phi(t)=0$ $(\forall t\in [t_1, T])$. 一种可选的$\phi(t)$ 构造方案为 {\small
$\phi (t) = \left\{ {\matrix{ {{{10{{({t_1} - t)}^3}} \over {t_1^3}} - {{15{{({t_1} - t)}^4}} \over {t_1^4}} + {{6{{({t_1} - t)}^5}} \over {t_1^5}}, } \hfill&{0 \le t \le {t_1}\;0, } \hfill&{{t_1}} \hfill&{ < t \le T\;} \hfill \cr } } \right.$
本文称$s_{\phi k}$为修正滤波误差, 其与误差$ e_k$的关系满足引理1.
引理 1. 对于任意$\mu>0$及取值任意的系统初态$ x_k(0)$, 不等式
$\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu |{s_{\phi k}}|{e_k}{\rm{d}}\tau \le \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _1}(\mu , t)s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau $
成立. 其中, $\beta_1(\mu, t)=[\mu+t\|A\|{\rm e}^{\|A\| t}(1+\mu)^2]$, $\beta_2(t)$ $=$ $t\|A \|{\rm e}^{t\|A\|} (|s_k(0)|+\|{ e}_{k}(0)-bs_k(0)\|) +\|{ e}_{k}(0)$ $+$ $ b(\phi(t)-1) s_k(0)\|$, $ b=[0, 0, \cdots, 0, 1]^{\rm T}$,
$A = \left( {\matrix{ 0&1&0& \cdots &{} \cr 0&0&1& \cdots &{} \cr \vdots & \vdots & \vdots & \ddots & \vdots \cr 0&{ - {c_1}}&{ - {c_2}}& \cdots &{} \cr } } \right)$
(5) 证明 . 由式(4)知,
$\eqalign{ &{{\dot s}_{\phi k}} = {c^{\rm{T}}}{e_k} + {{\dot e}_{nk}} - \eta (t){s_k}(0) \cr &{{\dot e}_k} = A{e_k} + b({{\dot s}_{\phi k}} + \eta (t){s_k}(0)) \cr} $
(6) 式中, $ c=[0, c_1, c_2, \cdots, c_{n-1}]^{\rm T}$, $\eta(t)= \dfrac{{\rm d}\phi}{{\rm d}t}$. 对式(6)两边定积分, 可得
$\eqalign{ &{e_k} = \int_0^t A {e_k}{\rm{d}}\tau + b{s_{\phi k}} + {e_k}(0) - \cr &b{s_{\phi k}}(0) + b{s_k}(0)\int_0^t \eta (\tau ){\rm{d}}\tau = \int_0^t A {e_k}{\rm{d}}\tau + b{s_{\phi k}} + {e_k}(0) + b(\phi (t) - 1){s_k}(0) \cr} $
(7) 两边取范数
${e_k} \le \int_0^t {A} {e_k}{\rm{d}}\tau + |{s_{\phi k}}| + {e_k}(0) + b(\phi (t) - 1){s_k}(0)$
利用Bellman引理%
${e_k} \le A{{\rm{e}}^{tA}}\int_0^t | {s_{\phi k}}|{\rm{d}}\tau + |{s_{\phi k}}| + {\beta _2}$
(8) 在式(8)的两边同乘以${\rm e}^{-\lambda t}\mu|{s}_{\phi k}|$后取定积分, 根据柯西不等式可以推得
$\eqalign{ &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu |{s_{\phi k}}|{e_k}{\rm{d}}\tau \le A{{\rm{e}}^{At}} \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu (\tau )|{s_{\phi k}}(\tau )|\int_0^v | {s_{\phi k}}(v)|{\rm{d}}v{\rm{d}}\tau + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau \le \cr &A{{\rm{e}}^{At}}{[\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} (1 + \mu (\tau ))|{s_{\phi k}}(\tau )|{\rm{d}}\tau ]^2} + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} \mu s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau \le \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} [\mu + tA{{\rm{e}}^{At}}{(1 + \mu )^2}]s_{\phi k}^2{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau )\mu |{s_{\phi k}}|{\rm{d}}\tau \cr} $
文给出了修正滤波误差与系统误差之间的不等式关系, 在下文的控制器设计和收敛性分析中, 将利用该不等式关系处理不确定性.
对$V_{1k}=\dfrac{1}{2g_k}{\rm e}^{-\lambda t}s_{\phi k}^2$求关于时间的导数, 得
$\eqalign{ &{{\dot V}_{1k}} = - \lambda {1 \over {2{g_k}}}{{\rm{e}}^{ - \lambda t}}s_{\phi k}^2 + {{\rm{e}}^{ - \lambda t}}[ - {1 \over {2g_k^2}}{{\dot g}_k}s_{\phi k}^2 + {s_{\phi k}}g_k^{ - 1}({c^{\rm{T}}}{e_k} - {x_d}^{(n)} - \eta (t){s_k} \cr &(0) + {\theta ^{\rm{T}}}{\varphi _k}) + {s_{\phi k}}(g_k^{ - 1}\Delta {f_k} + {u_k})] \cr} $
根据假设1和假设2, 可以推出
$\begin{align} &{{s}_{\phi k}}{{({{g}_{k}})}^{-1}}\Delta {{f}_{k}}={{s}_{\phi k}}[g_{d}^{-1}\Delta {{f}_{d}}+g_{d}^{-1}(\Delta {{f}_{k}}-\Delta {{f}_{d}})+ \\ &g_{k}^{-1}g_{d}^{-1}({{g}_{d}}-{{g}_{k}})\Delta {{f}_{d}}+g_{k}^{-1}g_{d}^{-1}({{g}_{d}}-{{g}_{k}})(\Delta {{f}_{k}}-\Delta {{f}_{d}})] \\ &\le {{s}_{\phi k}}g_{d}^{-1}\Delta {{f}_{d}}+|{{s}_{\phi k}}|g_{d}^{-1}{{\alpha }_{fk}}{{e}_{k}}+|{{s}_{\phi k}}|g_{k}^{-1}g_{d}^{-1}|\Delta {{f}_{d}}|{{\alpha }_{gk}}{{e}_{k}}+|{{s}_{\phi k}}| \\ &g_{k}^{-1}g_{d}^{-1}{{\alpha }_{fk}}{{e}_{k}}{{\alpha }_{gk}}{{e}_{k}} \\ \end{align}$
和
${{s}_{\phi k}}{{({{g}_{k}})}^{-1}}({{c}^{\text{T}}}{{e}_{k}}+{{\theta }^{\text{T}}}{{\varphi }_{k}}-{{x}_{d}}^{(n)}-\eta (t){{s}_{k}}(0))$
$\eqalign{ &{s_{\phi k}}{({g_k})^{ - 1}}({c^{\rm{T}}}{e_k} + {\theta ^{\rm{T}}}{\varphi _k} - {x_d}^{(n)} - \eta (t){s_k}(0)) \le {s_{\phi k}}g_d^{ - 1} \cr &({c^{\rm{T}}}{e_k} + {\theta ^{\rm{T}}}{\varphi _k} - {x_d}^{(n)} - \eta (t){s_k}(0)) + \cr &|{s_{\phi k}}|{({g_k}{g_d})^{ - 1}}{e_k}{\alpha _{gk}}|{c^{\rm{T}}}{e_k} + {\theta ^{\rm{T}}}{\varphi _k} - {x_d}^{(n)} - \eta (t){s_k}(0)| \cr} $
结合以上三式, 有
$\eqalign{ &{V_{1k}} \le \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} [ - {\lambda \over {2{g_k}}}s_{\phi k}^2 - {1 \over {2g_k^2}}{{\dot g}_k}s_k^2 + \cr &_{\phi k}({p^{\rm{T}}}{\psi _{1k}} + {u_k})]{\rm{d}}\tau + \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\rho _k}|{s_{\phi k}}|{e_k}{\rm{d}}\tau \cr} $
(9) 其中,
$\eqalign{ &{\rho _k} = g_d^{ - 1}{\alpha _{fk}} + g_{mk}^{ - 1}g_d^{ - 1}|\Delta {f_d}|{\alpha _{gk}} + g_{mk}^{ - 1}g_d^{ - 1}{\alpha _{fk}}{\alpha _{gk}}{e_k} \cr & + {({g_{mk}}{g_d})^{ - 1}}{\alpha _{gk}}|{c^{\rm{T}}}{e_k} - {x_d}^{(n)} - \eta (t){s_k}(0)| + {({g_{mk}}{g_d})^{ - 1}}{\alpha _{gk}} \cr &\theta {\varphi _k}\;p = {\left( {\matrix{ {g_d^{ - 1}\Delta {f_d}}&{g_d^{ - 1}}&{g_d^{ - 1}{\theta ^{\rm{T}}}\;} \cr } } \right)^{\rm{T}}}\;{\psi _{1k}} = \cr &1{c^{\rm{T}}}{e_k} - {x_d}^{(n)} - \eta (t){s_k}(0){\varphi _k}^{\rm{T}} \cr} $
根据引理1,
$\eqalign{ &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\rho _k}|{s_{\phi k}}|{e_k}{\rm{d}}\tau \le \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _1}({\rho _k}, t)s_{\phi k}^2{\rm{d}}\tau + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _2}(\tau ){\rho _k}|{s_{\phi k}}|{\rm{d}}\tau = \int_0^t {{{\rm{e}}^{ - \lambda \tau }}} {\beta _1}({\rho _k}, t)s_{\phi k}^2{\rm{d}}\tau + \cr &\int_0^t {{{\rm{e}}^{ - \lambda \tau }}} |{s_{\phi k}}|{\vartheta ^{\rm{T}}}(\tau ){\psi _{2k}}{\rm{d}}\tau \cr} $
成立. 其中
$\begin{align} &\vartheta (t)=[g_{d}^{-1}{{l}_{1}}{{\beta }_{5}}, g_{d}^{-1}|\Delta {{f}_{d}}|{{l}_{1}}{{\beta }_{5}}, g_{d}^{-1}\| \\ &\theta \|{{l}_{1}}{{\beta }_{5}}, g_{d}^{-1}{{\beta }_{5}}, g_{d}^{-1}|\Delta {{f}_{d}}|{{\beta }_{5}}, g_{d}^{-1}\|\theta \|{{\beta }_{5}}|{{]}^{\text{T}}} \\ &{{\psi }_{2k}}=\left[ {{l}_{2}}\frac{{{\beta }_{3}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\frac{{{\beta }_{3}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\|{{\varphi }_{k}}\|\frac{{{\beta }_{3}}}{{{\beta }_{5}}}, \right. \\ &{{\left. {{l}_{2}}\frac{{{\beta }_{4}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\frac{{{\beta }_{4}}}{{{\beta }_{5}}}, g_{mk}^{-1}{{\alpha }_{gk}}\|{{\varphi }_{k}}\|\frac{{{\beta }_{4}}}{{{\beta }_{5}}} \right]}^{\text{T}}} \\ &\ {{l}_{1}}=t\|A\|{{\text{e}}^{t\|A\|}}\ \\ &{{l}_{2}}={{\alpha }_{fk}}+g_{mk}^{-1}{{\alpha }_{fk}}{{\alpha }_{gk}}\|{{e}_{k}}\|+g_{mk}^{-1}{{\alpha }_{gk}}|{{c}^{\text{T}}}{{e}_{k}}-\eta (t){{s}_{k}}(0)-{{x}_{d}}^{(n)}| \\ \end{align}$
其中, $\beta_1$与$\beta_2$的含义见引理1, $\beta_3(t)=(|s_k(0)|$ $+$ $\|{ e}_{k}(0)$ $-$ $ bs_k(0)\|)$, $\beta_4= \|{ e}_{k}(0)+ b(\phi(t)-1) s_k(0)\|$, $\beta_5$ $>$ $0$ 为设计参数.
将上式的结果应用于式(9), 有
$\begin{align} &{{V}_{1k}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}[\frac{-\lambda }{2{{g}_{k}}}s_{\phi k}^{2}\frac{1}{2g_{k}^{2}}{{{\dot{g}}}_{k}}s_{k}^{2}+{{s}_{\phi k}}({{p}^{\text{T}}}{{\psi }_{1k}}+{{u}_{k}})] \\ &\text{d}\tau +\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\beta }_{1}}({{\rho }_{k}}, t)s_{\phi k}^{2}\text{d}\tau +\int_{0}^{t}{|}{{s}_{\phi k}}|{{\vartheta }^{\text{T}}}{{\psi }_{2k}}\text{d}\tau \\ \end{align}$
(10) 由此, 设计控制律
$\begin{align} &{{u}_{k}}=-p_{k}^{\text{T}}{{\psi }_{1k}}-\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)\times \\ &(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}})-\frac{{{s}_{\phi k}}\|{{\psi }_{1k}}\|}{\varepsilon }-\frac{{{s}_{\phi k}}}{\varepsilon {{g}_{mk}}}(1+|{{c}^{\text{T}}}{{e}_{k}}|+\|{{\varphi }_{k}}\|+{{\alpha }_{fk}}\|{{e}_{k}}\|) \\ \end{align}$
(11) 其中,
$\begin{align} & {{p}_{k}}=\text{sat}({{{\hat{p}}}_{k}}) \\ & {{{\hat{p}}}_{k}}=\text{sat}({{{\hat{p}}}_{k-1}})+{{\gamma }_{2}}{{s}_{\phi k}}{{\psi }_{1k}}, {{{\hat{p}}}_{-1}}=0 \\ \end{align}$
(12) $\begin{align} & {{\vartheta }_{k}}=\text{sat}({{{\hat{\vartheta }}}_{k}}) \\ & {{{\hat{\vartheta }}}_{k}}=\text{sat}({{{\hat{\vartheta }}}_{k}}-1)+{{\gamma }_{3}}|{{s}_{\phi k}}|{{\psi }_{2k}}, {{{\hat{\vartheta }}}_{-1}}=0 \\ \end{align}$
(13) 式中, $ p_{k}$为对$ p$的估计, $ \vartheta_k$为对$ \vartheta$的估计, $\gamma_1>0$, $\gamma_2$ $>$ $0$, $\gamma_3>0$, $\varepsilon\gg 0$. 对于$\hat a \in R$,
$\text{sat}(\hat{a})=\left\{ \begin{align} &\bar{a}, |\hat{a}|\text{sgn}(\hat{a})>\bar{a} \\ &\hat{a}, 其他 \\ \end{align} \right.\ $
(14) $\bar{a}$为对应的限幅, 对于向量$\hat { a}$, ${\rm sat}(\hat { a})$ 表示对向量中的各元素进行上述限幅运算.
在上文的设计过程中, 系统中原有的参数不确定性$ \theta$和非参数不确定性$\Delta f_k$, gk被转化为新的参数不确定性$ p$, $ \vartheta$, 即非参数不确定性的补偿问题被转化为未知时变参数的估计问题. 利用学习方法估计线性时变参数不确定性的已有成果较多, 可以采用部分限幅学习、完全限幅学习或无限幅学习的方法对未知时变参数进行估计. 本文采用的是完全限幅学习方案.
3. 收敛性分析
闭环系统具有的稳定性与收敛性方面的性质可总结为定理1.
定理1. 在$ x_k(0)$, $k=0, 1, 2, \cdots$, 取值任意的情况下, 将控制律(11)施加于系统(1), 足够多次迭代后, 可使sk在区间$[t_1, T]$上收敛于零, 即
$\lim_{k\rightarrow +\infty} s_k(t)=0, t\in [t_1, T] $
(15) 并保证闭环系统所有信号有界.
证明 1) 系统变量的有界性 对Lyapunov函数$V_{2k}=\dfrac{1}{2}s_{\phi k}^2$求导
$\begin{align} &{{{\dot{V}}}_{2k}}={{s}_{\phi k}}({{c}^{\text{T}}}{{e}_{k}}-{{x}_{d}}^{(n)}-\eta {{s}_{k}}(0)+{{\theta }^{\text{T}}}{{\varphi }_{k}}+{{f}_{k}}+{{g}_{k}}{{u}_{k}})\le \\ &|{{s}_{\phi k}}||{{c}^{\text{T}}}{{e}_{k}}|+|{{s}_{\phi k}}|(|{{x}_{d}}^{(n)}|+|{{f}_{d}}|+|\eta {{s}_{k}}(0)|)+|{{s}_{\phi k}}| \\ &\|\theta \|\|{{\varphi }_{k}}\|+|{{s}_{\phi k}}|{{\alpha }_{fk}}\|{{e}_{k}}\|+|{{s}_{\phi k}}|{{g}_{k}}\|{{p}_{k}}\|\|{{\psi }_{1k}}\| \\ &-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}(1+|{{c}^{\text{T}}}{{e}_{k}}|+\|{{\varphi }_{k}}\|+{{\alpha }_{fk}}\|{{e}_{k}}\|)-{{g}_{k}}\frac{s_{\phi k}^{2}\|{{\psi }_{1k}}\|}{\varepsilon } \\ &-{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}}) \\ \end{align}$
(16) 当$|s_{\phi k}|\geq \varepsilon $时,
$|{{s}_{\phi k}}||{{c}^{\text{T}}}{{e}_{k}}|-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}|{{c}^{\text{T}}}{{e}_{k}}|\le 0$
(17) $|{{s}_{\phi k}}|{{\alpha }_{fk}}\|{{e}_{k}}\|-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}{{\alpha }_{fk}}\|{{e}_{k}}\|\le 0$
(18) 当$|{{s}_{\phi k}}|\ge \varepsilon (|{{x}_{d}}^{(n)}|+|{{f}_{d}}|+|\eta {{s}_{k}}(0)|)$时,
$|{{s}_{\phi k}}|(|{{x}_{d}}^{(n)}|+|{{f}_{d}}|)-\frac{{{g}_{k}}s_{\phi k}^{2}}{\varepsilon {{g}_{mk}}}\le 0$
(19) 当$|s_{\phi k}|\geq \varepsilon \| p_{k}\| $时,
$|s_{\phi k}|g_k \| p_{k}\| \| \psi_{1k} \| -g_k\frac{s_{\phi k}^2\| \psi_{1k}\|}{\varepsilon }\leq 0 $
(20) 当$|s_{\phi k}|\geq \varepsilon \| \theta\| $时,
$|s_{\phi k}| \| \theta\| \| \varphi_k\| -\frac{g_k s_{\phi k}^2}{\varepsilon g_{mk}}\| \varphi_k\|\leq 0 $
(21) 综合式(16) $\sim$ (21), 可知当
$|{{s}_{\phi k}}|\ge \max (\varepsilon , \varepsilon (|{{x}_{d}}^{(n)}|+|{{f}_{d}}|+|\eta {{s}_{k}}(0)|), \varepsilon \|{{p}_{k}}\|, \varepsilon \|\theta \|)$
(22) 时,
${{{\dot{V}}}_{2k}}\le -{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}})$
根据双曲函数的性质可知
${{\gamma }_{1}}(k+1)(k+2){{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\times \text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi }}k)\ge 0$
结合以上两式, 可以推出满足条件(22)时
$\dot V_{2k}\leq 0 $
(23) 由此可以得到$s_{\phi k}$的有界性, 在此基础上, 结合饱和函数的性质, 易得其他变量也为有界.
2) 误差的收敛性 选择Lyapunov泛函
${{L}_{k}}={{V}_{1k}}+\frac{1}{2{{\gamma }_{2}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\tilde{p}_{k}^{\text{T}}{{{\tilde{p}}}_{k}}\text{d}\tau \frac{1}{2{{\gamma }_{3}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\tilde{\vartheta }_{k}^{\text{T}}{{{\tilde{\vartheta }}}_{k}}\text{d}\tau $
(24) 式中, $\tilde{ p}_{k}= p-p_{k}$, $\tilde{ \vartheta}_{k}= \vartheta-\vartheta_{k}$.
前文已证闭环系统变量均为有界, 结合假设3, 可知取足够大的$\lambda$, 由式(10)和式(11), 可得
$\begin{align} &{{V}_{1k}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}[{{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}+|{{s}_{\phi k}}|\tilde{\vartheta }_{k}^{\text{T}}{{\psi }_{2k}}+ \\ &|{{s}_{\phi k}}|\vartheta _{k}^{\text{T}}{{\psi }_{2k}}-{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\times \text{tanh}({{\gamma }_{1}}(k+1)(k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}})]\text{d}\tau \\ \end{align}$
对于$a\in R$, $\varepsilon>0$, 不等式$0\le |a|-a\text{tanh}({{a}_{\varepsilon }})\le {{\delta }_{\varepsilon }}$成立 [26-27], 式中$\delta$为一常数, 满足$\delta ={{\text{e}}^{-}}(\delta +1)$, 其值为0.2785. 于是, 可知
$\begin{align} &|{{s}_{\phi k}}|\vartheta _{k}^{\text{T}}{{\psi }_{2k}}-{{s}_{\phi k}}\vartheta _{k}^{\text{T}}{{\psi }_{2k}}\text{tanh}({{\gamma }_{1}}(k+1)\times (k+2)\vartheta _{k}^{\text{T}}{{\psi }_{2k}}{{s}_{\phi k}}) \\ &\le \delta {{\gamma }_{1}}(k+1)(k+2) \\ \end{align}$
(25) 成立. 据此, 可以推出
${{V}_{1k}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}({{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}+|{{s}_{\phi k}}|\tilde{\vartheta }_{k}^{\text{T}}{{\psi }_{2k}})\text{d}\tau +\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\gamma }_{1}}(k+1)(k+2)\text{d}\tau $
(26) 由式(26)及式(24), 知
$\begin{align} &{{L}_{k}}-{{L}_{k-1}}\le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}({{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}+|{{s}_{\phi k}}|\tilde{\vartheta }_{k}^{\text{T}}{{\psi }_{2k}})\text{d}\tau + \\ &\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\delta {{\gamma }_{1}}(k+1)(k+2)\text{d}\tau -{{V}_{1k-1}}+\frac{1}{2{{\gamma }_{2}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}(\tilde{p}_{k}^{\text{T}}{{{\tilde{p}}}_{k}}-\tilde{p}_{k-1}^{\text{T}}{{{\tilde{p}}}_{k-1}})\text{d}\tau + \\ &\frac{1}{2{{\gamma }_{3}}}\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}(\tilde{\vartheta }_{k}^{\text{T}}{{{\tilde{\vartheta }}}_{k}}-\tilde{\vartheta }_{k-1}^{\text{T}}{{{\tilde{\vartheta }}}_{k-1}})\text{d}\tau \\ \end{align}$
(27) 利用学习律(12)和(13), 分别可以推出
$\begin{align} &\frac{1}{2{{\gamma }_{2}}}\left( \tilde{p}_{k}^{\text{T}}{{{\tilde{p}}}_{k}}-\tilde{p}_{k-1}^{\text{T}}{{{\tilde{p}}}_{k-1}} \right)+{{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}\le \\ &-\frac{1}{{{\gamma }_{2}}}(p-{{p}_{k{{)}^{\text{T}}}(p}}_{k}-{{p}_{k-1}})+{{s}_{\phi k}}\tilde{p}_{k}^{\text{T}}{{\psi }_{1k}}= \\ &\frac{1}{{{\gamma }_{2}}}{{(p-{{p}_{k}})}^{\text{T}}}(-{{p}_{k}}+{{p}_{k-1}}+{{\gamma }_{2}}{{s}_{\phi k}}{{\psi }_{1k}})= \\ &\frac{1}{{{\gamma }_{2}}}{{(p-\text{sat}({{{\hat{p}}}_{k}}))}^{\text{T}}}({{{\hat{p}}}_{k}}-\text{sat}({{{\hat{p}}}_{k}}))\le 0 \\ \end{align}$
(28) 及
$\begin{align} &\frac{1}{2{{\gamma }_{3}}}\left( \tilde{\vartheta }_{k}^{\text{T}}{{{\tilde{\vartheta }}}_{k}}-\tilde{\vartheta }_{k-1}^{\text{T}}{{{\tilde{\vartheta }}}_{k-1}} \right)+|{{s}_{\phi k}}|{{{\tilde{\vartheta }}}_{k}}{{\psi }_{2k}}\le -\frac{1}{{{\gamma }_{3}}}{{({{\vartheta }_{k}}-{{\vartheta }_{k-1}})}^{\text{T}}}{{{\tilde{\vartheta }}}_{k}}+ \\ &|{{s}_{\phi k}}|{{{\tilde{\vartheta }}}_{k}}{{\psi }_{2k}}=\frac{1}{{{\gamma }_{3}}}{{(-{{\vartheta }_{k}}+{{\vartheta }_{k-1}}+{{\gamma }_{3}}|{{s}_{\phi k}}|)}^{\text{T}}}{{{\tilde{\vartheta }}}_{k}}{{\psi }_{2k}}= \\ &\frac{1}{{{\gamma }_{3}}}{{({{{\hat{\vartheta }}}_{k}}-\text{sat}({{{\hat{\vartheta }}}_{k}}))}^{\text{T}}}(\vartheta -\text{sat}({{{\hat{\vartheta }}}_{k}}))\le 0 \\ \end{align}$
(29) 将式(28)和式(29)的结果应用于式(27)
${{L}_{k}}-{{L}_{k-1}}\le {{\int }_{0}}^{t}{{\text{e}}^{-\lambda \tau }}\delta {{\gamma }_{1}}(k+1)(k+2)\text{d}\tau -{{V}_{1k-1}}$
进一步地
${{L}_{k}}\le {{L}_{0}}+\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\sum\limits_{i=1}^{k}{\delta {{\gamma }_{1}}}(i+1)(i+2)\text{d}\tau -\sum\limits_{i=0}^{k-1}{\left( \frac{1}{2{{g}_{i}}}{{\text{e}}^{-\lambda t}}s_{\phi i}^{2} \right)}$
由于$L_0$为非负有界量, 且
$\begin{align} &\underset{k\to +\infty }{\mathop{\lim }}\,\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}\sum\limits_{i=1}^{k}{\delta {{\gamma }_{1}}}(i+1)(i+2)\text{d}\tau =\frac{\delta }{{{\gamma }_{1}}\lambda }\left( 1-{{\text{e}}^{-\lambda t}} \right) \\ &\underset{k\to +\infty }{\mathop{\lim }}\,\left( \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\cdots - \right.\left. \frac{1}{k+1}+\frac{1}{k+1}-\frac{1}{k+2} \right)<{{\frac{\delta }{2{{\gamma }_{1}}\lambda }}_{k}} \\ \end{align}$
(30) 是有界的, 故根据数列收敛的必要性, 可知
$\lim_{k\rightarrow +\infty}s_{\phi k}=0 $
(31) 至此, 根据$s_{\phi k}$的定义, 可得
$\lim_{k\rightarrow +\infty} s_k(t)= 0, t\in [t_1, T] $
上文给出了基于滤波误差初始修正的自适应迭代学习控制方法, 适用于系统初态任意情形. 经过足够多次迭代后, 籍由$s_{\phi k}$在整个作业区间收敛于零, 实现了sk 在预设的部分作业区间收敛于零.
应该注意的是, 严格复位即$ x_k(0)= x_d(0)$, $k=$ $0, 1, 2, \cdots$ 情形, 属本文所考虑情形的一种特殊情况. 在此情况下, $s_k(0)=0$, $ e_k(0)=0$, $s_{\phi k}=s_k$, 引理1结论中的$\beta_2=0$, 控制律(11)中的$ \psi_{2k}= 0$. 引理1的结论及控制律(11)分别退化为
$\int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\mu }_{k}}|{{s}_{\phi k}}|\|{{e}_{k}}\|\text{d}\tau \le \int_{0}^{t}{{{\text{e}}^{-\lambda \tau }}}{{\beta }_{1}}({{\mu }_{k}}, t)s_{\phi k}^{2}\text{d}\tau $
及
${{u}_{k}}=-p_{k}^{\text{T}}{{\psi }_{1k}}-\frac{{{s}_{k}}\|{{\psi }_{1k}}\|}{\varepsilon }-\frac{{{s}_{k}}}{\varepsilon {{g}_{mk}}}(1+|{{c}^{\text{T}}}{{e}_{k}}|+\|{{\varphi }_{k}}\|+{{\alpha }_{fk}}\|{{e}_{k}}\|)$
(32) 其中, $ p_{k}$的取值同式(12). 相应的收敛性质可总结为定理2.
定理2. 在$ x_k(0)= x_d(0)$, $k=0, 1, 2, \cdots$ 情形下, 将控制律(32)施加于系统(1), 足够多次迭代后, 可使sk在整个作业区间$[0, T]$上收敛于零, 即
$\lim_{k\rightarrow + \infty} s_k(t)= 0, t\in [0, T] $
(33) 并保证闭环系统中的所有信号有界.
容易看出, 修正滤波误差的构造方法简单. 由上文的设计和分析过程可以看出, 采用滤波误差初始修正方法设计控制器, 勿需进行分类讨论, 由此具有使用上的便捷性. 经过足够多次迭代后, 可实现滤波误差在预设的部分作业区间收敛于零.
4. 仿真算例
考虑如下倒立摆系统
$\begin{align} &{{{\dot{x}}}_{1k}}={{x}_{2k}}dot{{x}_{2k}}=g\sin {{x}_{1k}}-\frac{mlx_{2k}^{2}\cos {{x}_{1k}}\sin {{x}_{1k}}}{{{m}_{c}}+m} \\ &l\left( \frac{4}{3}-\frac{m{{\cos }^{2}}{{x}_{1k}}}{{{m}_{c}}+m} \right)+\frac{\cos {{x}_{1k}}}{{{m}_{c}}+m}l\left( \frac{4}{3}-\frac{m\text{co}{{\text{s}}^{2}}{{x}_{1k}}}{{{m}_{c}}+m} \right){{u}_{k}} \\ \end{align}$
(34) 这里, $x_{1k}$和$x_{2k}$分别是倒立摆的角位移与角速度, $x_{1k}(0)=1.2+0.1(r_1-0.5)$, $x_{2k}(0)=$ $-0.2$ $+$ $0.05r_2$, $r_1$和$r_2$均为0 $\sim$ 1之间的随机数. $g=9.8 {\rm m}/{\rm s}^2$为重力加速度, $m_c=1$ kg是小车的质量, $m=0.1$ kg为摆的质量, $l=0.5$ m为摆长的一半, uk为小车的推力. 参考信号是$[{\cos}(\pi t), -\pi{\sin} (\pi t)]^{\rm T}$. $[x_{1 k}(0), x_{2k}(0)]^{\rm T}\neq[1, 0]^{\rm T}$. 视 $g\sin {{x}_{1k}}-\frac{mlx_{2k}^{2}\cos {{x}_{1k}}\sin {{x}_{1k}}}{{{m}_{c}}+m}l(\frac{4}{3}-m{{\cos }^{2}}{{x}_{1k}}{{m}_{c}}+m)$和 $\frac{\cos {{x}_{1k}}}{{{m}_{c}}+m}l(\frac{4}{3}-m{{\cos }^{2}}{{x}_{1k}}{{m}_{c}}+m)$分别为$\Delta f_k$和gk. 考虑到实际系统存在的多种不确定性和扰动, 设各参数与标称值存在$\pm 40 % $的偏差, 取
$\begin{align} &{{g}_{mk}}=\frac{|{{\cos }_{1k}}|}{1.44+0.23\cos _{1k}^{2}}{{\alpha }_{fk}}= \\ &\frac{ml\max (|{{x}_{2k}}|, |{{{\dot{x}}}_{d}}|){{m}_{c}}+m}{l}{{\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)}^{2}} \\ &+g+ml\max (x_{2k}^{2}, \dot{x}_{d}^{2})2({{m}_{c}}+m)l\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)+ \\ &\max (x_{2k}^{2}, \dot{x}_{d}^{2})2({{m}_{c}}+m)l{{\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)}^{2}}\times \frac{m}{{{m}_{c}}+m}{{\alpha }_{gk}}= \\ &\frac{1}{{{m}_{c}}+m}l\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)+\frac{\frac{1}{{{m}_{c}}+m}}{l{{\left( \frac{4}{3}-\frac{m}{{{m}_{c}}+m} \right)}^{2}}} \\ \end{align}$
采用控制律(11)及相应学习律进行仿真. 仿真参数取 $\gamma_1=1$, $\gamma_2=5$, $\gamma_3=0.01$, $\varepsilon=100$, $\bar{p}=20$, $\bar{ \vartheta}$ $=$ $80$, $c_1=10$, $T=2$, $t_1=0.3$, $\beta_5=10$, $\beta_1$, $\beta_2$, $\beta_3$, $\beta_4$的含义见前文. 采用第2节给出的方案构造$\phi(t)$. 迭代30 次后, 仿真结果如图 1 $\sim$ 图 6所示. 图 1和图 2是第30次迭代时的系统状态情况. 图 3和图 4分别是第30次迭代过程中的状态误差和控制输入情况. 图 5是在$k=1, 5, 10, 20, 30$ 等次迭代过程中的滤波误差情况, 可以看出, 经过足够多次迭代后, 可实现滤波误差sk在$[t_1, T]$上的取值为零. 图 6是Jk的收敛过程, 在该图中, $J_{k}= \max_{t\in[0, T]} |s_{\phi k}(t)| $.
本文与文献[22]采用仿真模型相同, 在上文的仿真中, 参数学习律的增益取值为5, 而在文献[22]的仿真中, 学习律的增益取值为30. 对比之下, 本文所提方法在学习增益较小的情况下, 仍具有较快的误差收敛速度.
为了进一步说明本文所提设计方法的有效性, 下面采用文献[20]所提的时变边界层方案解决相同问题, 迭代学习模糊控制器取
$u_k=u_{1k}+u_{2k} $
(35) 其中,
$\begin{align} &{{u}_{1k}}=w_{fk}^{\text{T}}(t){{z}_{f}}({{x}_{k}})+w_{gk}^{\text{T}}(t){{z}_{g}}({{x}_{k}}){{\varpi }_{k}}- \\ &\text{sat}\left( \frac{{{s}_{k}}}{{{v}_{k}}} \right){{\epsilon }_{k}}(1+{{\varpi }_{k}}){{u}_{2k}}=-{{\gamma }_{4}}{{s}_{vk}}z_{f}^{\text{T}}({{x}_{k}}){{z}_{f}}({{x}_{k}})- \\ &{{\gamma }_{5}}{{s}_{vk}}z_{g}^{\text{T}}({{x}_{k}}){{z}_{g}}({{x}_{k}})\varpi _{k}^{2}-{{\gamma }_{6}}{{s}_{vk}}{{(1+{{\varpi }_{k}})}^{2}}{{\varpi }_{k}}= \\ &-{{c}_{1}}{{e}_{2k}}+{{{\ddot{x}}}_{d}}-{{\gamma }_{7}}{{s}_{vk}}\ {{w}_{fk}}={{{\hat{w}}}_{fk}}=\text{sat}({{{\hat{w}}}_{fk-1}})-{{\gamma }_{8}}{{s}_{vk}}{{z}_{f}}({{x}_{k}}), {{{\hat{w}}}_{f-1}}=0 \\ &{{w}_{gk}}=\text{sat}({{{\hat{w}}}_{gk}}){{{\hat{w}}}_{gk}}=\text{sat}({{{\hat{w}}}_{gk-1}})-{{\gamma }_{9}}{{s}_{vk}}{{z}_{g}}({{x}_{k}}), \\ &{{{\hat{w}}}_{g-1}}=0{{n}_{k}}=\text{sat}({{\epsilon }_{k}}=\text{sat}({{{\hat{\epsilon }}}_{k}})+{{\gamma }_{10}}{{s}_{vk}}(1+|{{\omega }_{k}}|), {{{\hat{\epsilon }}}_{-1}}=0 \\ \end{align}$
(36) 式中, $s_{vk} =s_k-v_k{\rm sat}({s_k}/{v_k})$, $v_k=|c_1e_{1k}(0)+e_{2k}(0)|{\rm e}^{-\sigma t}$, $\sigma>0$.
模糊基函数$ z_{f}( x_k)$与$ z_{g}( x_k)$ 均采用下述属函数构造
$\begin{align} &{{\mu }_{1}}({{x}_{i}})=1+{{\text{e}}^{5({{x}_{i}}+2)}} \\ &{{\mu }_{2}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}+1.5)}^{2}}}} \\ &{{\mu }_{3}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}+0.5)}^{2}}}} \\ &{{\mu }_{4}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}-0.5)}^{2}}}} \\ &{{\mu }_{5}}({{x}_{i}})={{\text{e}}^{-{{({{x}_{i}}-1.5)}^{2}}}} \\ &{{\mu }_{6}}({{x}_{i}})=1+{{\text{e}}^{-5({{x}_{i}}-2)}} \\ \end{align}$
$i=1, 2$. 具体构造方法见文献[20]的第2节. 不难看出, $ z_{f}( x_k)$与$ z_{g}( x_k)$ 均为36维的向量.
仿真参数取 $\gamma_4=\gamma_5=\gamma_6=\gamma_7=\gamma_8=\gamma_9=5$, $\gamma_{10}$ $=$ $0.01$, $\bar{w}_f=100$, $\bar{w}_g=100$, $\bar{\epsilon}=30$, $\sigma=5$, $c_1$的取值同前. 迭代30 次后, 仿真结果如图 7 $\sim$ 图 11所示. 图 7和图 8是第30次迭代时的系统状态情况. 图 9和图 10分别是第30次迭代过程中的状态误差和控制输入情况. 图 11是Jk的收敛过 程, 在该图中, $J_{k}= \max_{t\in[0, T]} |s_{v k}(t)| $.
对比图 1和图 2与图 7和图 8, 可以看出 本文提出的基于滤波误差初始修正学习控制方法和文献[20]所提的基于时变边界层的模糊学习控制方法, 均可用于解决迭代学习控制的初值问题, 实现系统状态对参考信号在部分作业区间上的精确跟踪. 在作业周期的后半段, 本文所提方法具有较好的误差收敛性能, 由图 3可见, 误差曲线在作业周期后半段几乎完全为零, 且曲线几乎没有波动; 而在图 9中, 误差曲线在作业区间后半段存在一定幅度的波动. 该现象产生的原因与修正滤波误差/时变边界层的构造方式有关. $s_{\phi k}(t)=0$, $t\in [0, T]$ 蕴含
$s_k(t)=0, t\in [t_1, T] $
(37) 但$s_{v k}(t)=0$, $t\in [0, T]$ 则意味着$s_k(t)\leq |s_k(0)|{\rm e}^{-\sigma t}$, $t\in [0, T]$. 对比图 7和图 11可以看出, 本文所提方法在不使用高增益反馈的情况下, 仍然具有较快的误差收敛速度和较好的控制精度.
仿真结果表明, 利用本文给出的滤波误差初始修正方法设计学习控制器, 可用于解决参数/非参数不确定学习控制系统的初值问题. 使用这种方法进行控制器设计时, 可以比较方便地构造出修正滤波误差, 由其设计的控制器具有较快的误差收敛速度, 能够获得较好的控制精度. 修正滤波误差的使用较为方便. 上述结果说明了本文所提控制方法的有效性.
5. 结论
本文提出基于滤波误差初始修正的自适应迭代学习控制方法, 解决参数/非参数混合不确定系统在任意初态情形下的轨迹跟踪问题. 这种设计方法处理非参数不确定性后, 将系统中原有的非参数不确定性补偿问题转化为线性时变参数估计问题, 达到简化设计的目的. 文中所构造的修正滤波误差兼具构造和使用方面的便捷性. 仿真结果表明, 对比已有主流方法, 本文所提方案可获得较快的误差收敛速度和较好的控制精度.
-
[1] Lee E A. Cyber-physical systems-are computing foundations adequate? Position Paper for NSF Workshop on Cyber, 2006:6-14 https://www.semanticscholar.org/paper/Cyber-Physical-Systems-Are-Computing-Foundations-Lee/7e17f766050b6847566424c0d8bf602b6099f779 [2] Cyber Physical Systems PWG. Framework for CyberPhysical Systems Release 1.0[Online], avaliable: https://s3.amazonaws.com/nist-sgcps/cpspwg/flles/pwgglobal/CPS_PWG_Framework_for_Cyber_Physical_Systems_Release_10_Final.pdf, March 21, 2018 [3] The European Union0s Seventh Framework Programme. CyPhERS. Cyber-Physical EuropeanRoadmap and Strategy[Online], avaliable: http://cyphers.eu/sites/default/flles/d6.1+2report.pdf, March 21, 2018 [4] Acatech. Living in a networked world[Online], avaliable: http://www.cyphers.eu/sites/default/flles/acatechSTUDIEagendaCPSengANSICHT.pdf, March 21, 2018 [5] Thoben K D, Wiesner S A, Wuest T. Industrie 4.0 and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 2017, 11(1):4-16 doi: 10.20965/ijat.2017.p0004 [6] Kagermann H, Wahlster W, Helbig J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry, Final Report of the Industrie 4.0 Working Group, 2013. [7] Weyer S, Meyer T, Ohmer M, Gorecky D, Zühlke D. Future modeling and simulation of CPS-based factories:an example from the automotive industry. IFAC-PapersOnLine, 2016, 49(31):97-102 doi: 10.1016/j.ifacol.2016.12.168 [8] Li L. China0s manufacturing locus in 2025:with a comparison of "Made-in-China 2025" and "Industry 4.0". Technological Forecasting and Social Change, 2018, 135:66-74 doi: 10.1016/j.techfore.2017.05.028 [9] Zhang Y F, Zhang G, Wang J Q, Sun S D, Si S B, Yang T. Real-time information capturing and integration framework of the internet of manufacturing things. International Journal of Computer Integrated Manufacturing, 2015, 28(8):811-822 doi: 10.1080/0951192X.2014.900874 [10] Monostori L. Cyber-physical production systems:roots, expectations and R & D challenges. Procedia CIRP, 2014, 17:9-13 doi: 10.1016/j.procir.2014.03.115 [11] Lee J, Bagheri B, Kao H A. A Cyber-Physical Systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 2015, 3:18-23 doi: 10.1016/j.mfglet.2014.12.001 [12] Wiesner S, Marilungo E, Thoben K D. Cyber-physical product-service systems-challenges for requirements engineering. International Journal of Automation Technology, 2017, 11(1):17-28 doi: 10.20965/ijat.2017.p0017 [13] Ecer G. Soziotechnisches potenzial cyber-physischer systeme. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2015, 110(3):142-144 doi: 10.3139/104.111298 [14] 姚锡凡, 练肇通, 杨屹, 张毅, 金鸿.智慧制造-面向未来互联网的人机物协同制造新模式.计算机集成制造系统, 2014, 20(6):1490-1498 http://www.cnki.com.cn/article/cjfdtotal-jsjj201406028.htmYao Xi-Fan, Lian Zhao-Tong, Yang Yi, Zhang Yi, Jin Hong. Wisdom manufacturing:new humans-computersthings collaborative manufacturing model. Computer Integrated Manufacturing Systems, 2014, 20(6):1490-1498 http://www.cnki.com.cn/article/cjfdtotal-jsjj201406028.htm [15] Yao X F, Zhou J J, Lin Y Z, Li Y, Yu H N, Liu Y. Smart manufacturing based on Cyber-Physical Systems and beyond. Journal of Intelligent Manufacturing, 2017:1-13 doi: 10.1007/s10845-017-1384-5 [16] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001Wang Fei-Yue. Software deflned systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001 [17] Wang F Y. The emergence of intelligent enterprises:from CPS to CPSS. Social Learning, 2010:85-88 https://www.researchgate.net/publication/220628939_The_emergence_of_intelligent_enterprises_From_CPS_to_CPSS?_sg=rg7ekrVzyJVshX-jOc_CPJ48VpHvDBWZ456Y3V2ikh_2KYtFzZliouyq9UzMcl04NrzCWcYlFLZrsYj0lPeryg [18] 王飞跃.从社会计算到社会制造:一场即将来临的产业革命.中国科学院院刊, 2012, 6(27):658-669 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201206002Wang Fei-Yue. From social computing to social manufacturing:The coming industrial revolution and new frontier in cyber-physical-social pace. Bulletin of the Chinese Academy of Sciences, 2012, 6(27):658-669 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201206002 [19] Yao X F, Lin Y Z. Emerging manufacturing paradigm shifts for the incoming industrial revolution. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8):1665-1676 doi: 10.1007/s00170-015-8076-0 [20] Lee J, Jin C, Bagheri B. Cyber physical systems for predictive production systems. Production Engineering, 2017, 11(2):155-165 doi: 10.1007/s11740-017-0729-4 [21] Lam H Y, Ho G T S, Wu C H, Choy K L. Customer relationship mining system for efiective strategies formulation. Industrial Management and Data Systems, 2014, 114(5):711-733 doi: 10.1108/IMDS-08-2013-0329 [22] Xu Y P, Chen G X, Zheng J L. An integrated solutionKAGFM for mass customization in customer-oriented product design under cloud manufacturing environment. The International Journal of Advanced Manufacturing Technology, 2016, 84(1-4):85-101 doi: 10.1007/s00170-015-8074-2 [23] Hsiao W P, Chiu M C. A mass personalization methodology based on co-creation. Moving Integrated Product Development to Service Clouds in the Global Economy, 2014, 1:698-705 http://ebooks.iospress.nl/publication/37920 [24] Bertolotti I C, Hu T T. Modular design of an open-source, networked embedded system. Computer Standards and Interfaces, 2015, 37:41-52 doi: 10.1016/j.csi.2014.05.004 [25] Stark R, Kind S, Neumeyer S. Innovations in digital modelling for next generation manufacturing system design. CIRP Annals, 2017, 66(1):169-172 doi: 10.1016/j.cirp.2017.04.045 [26] Tan C B, Hu S J, Chung H, Barton K, Piya C, Ramani K, et al. Product personalization enabled by assembly architecture and cyber physical systems. CIRP Annals, 2017, 66(1):33-36 doi: 10.1016/j.cirp.2017.04.106 [27] Mladineo M, Veza I, Gjeldum N. Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm. International Journal of Production Research, 2017, 55(9):2506-2521 doi: 10.1080/00207543.2016.1234084 [28] Wang X V, Lopez N B N, Ijomah W, Wang L H, Li J H. A smart cloud-based system for the WEEE recovery/recycling. Journal of Manufacturing Science and Engineering, 2015, 137(6):061010 doi: 10.1115/1.4030304 [29] Qiu X, Luo H, Xu G Y, Zhong R Y, Huang G Q. Physical assets and service sharing for IoT-enabled supply Hub in industrial park (SHIP). International Journal of Production Economics, 2015, 159:4-15 doi: 10.1016/j.ijpe.2014.09.001 [30] Addo-Tenkorang R, Helo P T, Kantola J. Concurrent enterprise:a conceptual framework for enterprise supplychain network activities. Enterprise Information Systems, 2017, 11(4):474-511 doi: 10.1080/17517575.2016.1212274 [31] Noseworthy J, Leeser M. E-cient communication between the embedded processor and the reconflgurable logic on an FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16(8):1083-1090 doi: 10.1109/TVLSI.2008.2000525 [32] Long Y H, Zhou Z D, Liu Q, Chen B Y, Zhou H L. Embedded-based modular NC systems. The International Journal of Advanced Manufacturing Technology, 2009, 40(7-8):749-759 doi: 10.1007/s00170-008-1384-x [33] 徐钢, 张晓彤, 黎敏, 徐金梧.基于嵌入式CPS模型的产品质量在线管控方法.机械工程学报, 2017, 53(12):94-101 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201712012Xu Gang, Zhang Xiao-Tong, Li Min, Xu Jin-Wu. Online monitoring and control method of product quality based on embedded cyber-physical system models. Journal of Mechanical Engineering, 2017, 53(12):94-101 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201712012 [34] Lien S Y, Liau T H, Kao C Y, Chen K C. Cooperative access class barring for machine-to-machine communications. IEEE Transactions on Wireless Communications, 2012, 11(1):27-32 doi: 10.1109/TWC.2011.111611.110350 [35] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks:a comprehensive survey. IEEE Communications Surveys and Tutorials, 2016, 18(3):1617-1655 doi: 10.1109/COMST.2016.2532458 [36] Kamel M, Hamouda W, Youssef A. Ultra-dense networks:a survey. IEEE Communications Surveys and Tutorials, 2016, 18(4):2522-2545 doi: 10.1109/COMST.2016.2571730 [37] Gao Z, Dai L L, Mi D, Wang Z C, Imran M A, Shakir M Z. MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 2015, 22(5):13-21 doi: 10.1109/MWC.2015.7306533 [38] Noura M, Nordin R. A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network and Computer Applications, 2016, 71:130-150 doi: 10.1016/j.jnca.2016.04.021 [39] Farhang-Boroujeny B, Moradi H. OFDM inspired waveforms for 5G. IEEE Communications Surveys and Tutorials, 2016, 18(4):2474-2492 doi: 10.1109/COMST.2016.2565566 [40] Thembelihle D, Rossi M, Munaretto D. Softwarization of mobile network functions towards agile and energy e-cient 5G architectures: a survey. Wireless Communications and Mobile Computing, 2017, 2017: Article ID 8618364 [41] Su Z, Xu Q C. Content distribution over content centric mobile social networks in 5G. IEEE Communications Magazine, 2015, 53(6):66-72 doi: 10.1109/MCOM.2015.7120047 [42] Liang C C, Yu F R, Zhang X. Information-centric network function virtualization over 5G mobile wireless networks. IEEE Network, 2015, 29(3):68-74 doi: 10.1109/MNET.2015.7113228 [43] Liu L, Zhao S L, Yu Z L, Dai H J. A big data inspired chaotic solution for fuzzy feedback linearization model in cyber-physical systems. Ad Hoc Networks, 2015, 35:97-104 doi: 10.1016/j.adhoc.2015.07.010 [44] Venkatesan M, Arunkumar T, Prabhavathy P. A novel CpTree-based co-located classifler for big data analysis. International Journal of Communication Networks and Distributed Systems, 2015, 15(2-3):191-211 [45] 姚锡凡, 周佳军, 张存吉, 刘敏.主动制造-大数据驱动的新兴制造范式.计算机集成制造系统, 2017, 23(1):172-185 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt201701019Yao Xi-Fan, Zhou Jia-Jun, Zhang Cun-Ji, Liu Min. Proactive manufacturing-a big-data driven emerging manufacturing paradigm. Computer Integrated Manufacturing Systems, 2017, 23(1):172-185 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt201701019 [46] Babiceanu R F, Seker R. Manufacturing cyber-physical systems enabled by complex event processing and big data environments: a framework for development. In: Proceedings of the 2015 Service Orientation in Holonic and MultiAgent Manufacturing. Cham: Springer, 2015, 594: 165-173 [47] Chen J H, Yang J Z, Zhou H C, Xiang H, Zhu Z H, Li Y S, et al. CPS modeling of CNC machine tool work processes using an instruction-domain based approach. Engineering, 2015, 1(2):247-260 doi: 10.15302/J-ENG-2015054 [48] Kuang L, Tang X, Yu M Q, Huang Y J, Guo K H. A comprehensive ranking model for tweets big data in online social network. EURASIP Journal on Wireless Communications and Networking, 2016, 2016:46 doi: 10.1186/s13638-016-0532-5 [49] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. air force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, Hawaii, USA: AIAA, 2012. [50] Grieves M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White Paper, 2015. [51] Ma J H, Ning H S, Huang R H, Liu H, Yang L T, Chen J J, et al. Cybermatics:a holistic fleld for systematic study of Cyber-Enabled new worlds. IEEE Access, 2015, 3:2270-2280 doi: 10.1109/ACCESS.2015.2498288 [52] Alam K M, El Saddik A. C2PS:a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access, 2017, 5:2050-2062 doi: 10.1109/ACCESS.2017.2657006 [53] Tao F, Zhang M, Cheng J J, Qi Q L. Digital twin workshop:a new paradigm for future workshop. Computer Integrated Manufacturing Systems, 2017, 23(1):1-9 [54] Tao F, Cheng J F, Qi Q L, Zhang M, Zhang H, Sui F Y. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):3563-3576 doi: 10.1007/s00170-017-0233-1 [55] Schroeder G N, Steinmetz C, Pereira C E, Espindola D B. Digital twin data modeling with automationML and a communication methodology for data exchange. IFAC-PapersOnLine, 2016, 49(30):12-17 https://www.sciencedirect.com/science/article/pii/S2405896316325538 [56] Misik S, Cela A, Bradac Z. Distributed systems-a brief review of theory and practice. IFAC-PapersOnLine, 2016, 49(25):318-323 doi: 10.1016/j.ifacol.2016.12.057 [57] Akyildiz I F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks:a survey. Computer Networks, 2002, 38(4):393-422 doi: 10.1016/S1389-1286(01)00302-4 [58] Gupta R A, Chow M Y. Networked control system:overview and research trends. IEEE Transactions on Industrial Electronics, 2010, 57(7):2527-2535 doi: 10.1109/TIE.2009.2035462 [59] Mangharam R, Pajic M. Distributed control for cyberphysical systems. Journal of the Indian Institute of Science, 2013, 93(3):353-387 [60] Lu C Y, Saifullah A, Li B, Sha M, Gonzalez H, Gunatilaka D, et al. Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proceedings of the IEEE, 2016, 104(5):1013-1024 doi: 10.1109/JPROC.2015.2497161 [61] Ge X H, Yang F W, Han Q L. Distributed networked control systems:a brief overview. Information Sciences, 2017, 380:117-131 doi: 10.1016/j.ins.2015.07.047 [62] Adamson G, Wang L H, Moore P. Feature-based control and information framework for adaptive and distributed manufacturing in cyber physical systems. Journal of Manufacturing Systems, 2017, 43:305-315 doi: 10.1016/j.jmsy.2016.12.003 [63] García-Valls M, Calva-Urrego C, De La Puente J A, Alonso A. Adjusting middleware knobs to assess scalability limits of distributed cyber-physical systems. Computer Standards and Interfaces, 2017, 51:95-103 doi: 10.1016/j.csi.2016.11.003 [64] Etxeberria-Agiriano I, Calvo I, Noguero A, Zulueta E. Towards middleware-based cooperation topologies for the next generation of CPS. International Journal of Online Engineering, 2012, 8:20-27 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6f6c1866e720cc0a852b5c3bd7b98c9a [65] Ishizaki T, Sandberg H, Kashima K, Imura J I, Aihara K. Dissipativity-preserving model reduction for large-scale distributed control systems. IEEE Transactions on Automatic Control, 2015, 60(4):1023-1037 doi: 10.1109/TAC.2014.2370271 [66] Zarrin J, Aguiar R L, Barraca J P. Resource discovery for distributed computing systems:a comprehensive survey. Journal of Parallel and Distributed Computing, 2018, 113:127-166 doi: 10.1016/j.jpdc.2017.11.010 [67] Ren L T, Xie S S, Zhang Y, Peng J B, Zhang L D. Chattering analysis for discrete sliding mode control of distributed control systems. Journal of Systems Engineering and Electronics, 2016, 27(5):1096-1107 doi: 10.21629/JSEE.2016.05.17 [68] Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 2013, 9(1):427-438 doi: 10.1109/TII.2012.2219061 [69] Valckenaers P, Van Brussel H, Holvoet T. Fundamentals of holonic systems and their implications for selfadaptive and self-organizing systems. In: Proceedings of the 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops. Venice, Veneto, Italy: IEEE, 2008. 168-173 [70] Barbosa J, Leit~ao P, Adam E, Trentesaux D. Dynamic self-organization in holonic multi-agent manufacturing systems:the ADACOR evolution. Computers in Industry, 2015, 66:99-111 doi: 10.1016/j.compind.2014.10.011 [71] Sanislav T, Zeadally S, Mois G, Fouchal H. Multi-agent architecture for reliable cyber-physical systems (CPS). In: Proceedings of the 2017 IEEE Symposium on Computers and Communications. Heraklion, Greece: IEEE, 2017. 170-175 [72] Taboun M S, Brennan R W. An embedded multi-agent systems based industrial wireless sensor network. Sensors, 2017, 17(9):2112 doi: 10.3390/s17092112 [73] Verma P K, Verma R, Prakash A, Agrawal A, Naik K, Tripathi R, et al. Machine-to-machine (M2M) communications:a survey. Journal of Network and Computer Applications, 2016, 66:83-105 doi: 10.1016/j.jnca.2016.02.016 [74] Xu X Y, Hua Q S. Industrial big data analysis in smart factory:current status and research strategies. IEEE Access, 2017, 5:17543-17551 doi: 10.1109/ACCESS.2017.2741105 [75] Zhang Y F, Qian C, Lv J X, Liu Y. Agent and cyberphysical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Transactions on Industrial Informatics, 2017, 13(2):737-747 doi: 10.1109/TII.2016.2618892 [76] Jiang Z Q, Jin Y, Mingcheng E, Li Q. Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system. IEEE Access, 2017, 6:1855-1869 https://www.onacademic.com/detail/journal_1000040194012310_ce3f.html [77] Dworschak B, Zaiser H. Competences for cyber-physical systems in manufacturing-flrst flndings and scenarios. In: Proceedings of the International Conference on Digital Enterprise Technology-DET 2014 Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution. Stuttgart, Germany: Elsevier, 2014. 345-350 [78] Castelli F, Michieletto S, Ghidoni S, Pagello E. A machine learning-based visual servoing approach for fast robot control in industrial setting. International Journal of Advanced Robotic Systems, 2017, 14(6):1-10 doi: 10.1177/1729881417738884 [79] Vafadar M, Behrad A. A vision based system for communicating in virtual reality environments by recognizing human hand gestures. Multimedia Tools and Applications, 2015, 74(18):7515-7535 doi: 10.1007/s11042-014-1989-z [80] Xu T, Zhang H, Yu C. See you see me: the role of Eye contact in multimodal human-robot interaction. ACM Transactions on Interactive Intelligent Systems, 2016, 6(1): Article No. 2 [81] Rascon C, Meza I, Fuentes G, Salinas L, Pineda L A. Integration of the multi-DOA estimation functionality to human-robot interaction. International Journal of Advanced Robotic Systems, 2015, 12(2):8 doi: 10.5772/59993 [82] Alonso-Martín F, Gamboa-Montero J J, Castillo J C, Castro-GonzÁlez A, Salichs M A. Detecting and classifying Á human touches in a social robot through acoustic sensing and machine learning. Sensors, 2017, 17(5):1138 doi: 10.3390/s17051138 [83] Gastaldo P, Pinna L, Seminara L, Valle M, Zunino R. A tensor-based approach to touch modality classiflcation by using machine learning. Robotics and Autonomous Systems, 2015, 63:268-278 doi: 10.1016/j.robot.2014.09.022 [84] Cherubini A, Passama R, Fraisse P, Crosnier A. A unifled multimodal control framework for human-robot interaction. Robotics and Autonomous Systems, 2015, 70:106-115 doi: 10.1016/j.robot.2015.03.002 [85] Katona J, Kovari A. EEG-based computer control interface for brain-machine interaction. International Journal of Online Engineering, 2015, 11(6):43-48 doi: 10.3991/ijoe.v11i6.5119 [86] Saproo S, Faller J, Shih V, Sajda P, Waytowich N R, Bohannon A, et al. Cortically coupled computing:a new paradigm for synergistic human-machine interaction. Computer, 2016, 49(9):60-68 doi: 10.1109/MC.2016.294 [87] Ma J X, Zhang Y, Cichocki A, Matsuno F. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs:application to robot control. IEEE Transactions on Biomedical Engineering, 2015, 62(3):876-889 doi: 10.1109/TBME.2014.2369483 [88] Karunanayaka K, Johari N, Hariri S, Camelia H, Bielawski K S, Cheok A D. New thermal taste actuation technology for future multisensory virtual reality and internet. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4):1496-1505 doi: 10.1109/TVCG.2018.2794073 [89] Frank J A, Krishnamoorthy S P, Kapila V. Toward mobile mixed-reality interaction with multi-robot systems. IEEE Robotics and Automation Letters, 2017, 2(4):1901-1908 doi: 10.1109/LRA.2017.2714128 [90] Esposito A, Esposito A M, Vogel C. Needs and challenges in human computer interaction for processing social emotional information. Pattern Recognition Letters, 2015, 66:41-51 doi: 10.1016/j.patrec.2015.02.013 [91] Cooney M D, Nishio S, Ishiguro H. Importance of touch for conveying afiection in a multimodal interaction with a small humanoid robot. International Journal of Humanoid Robotics, 2015, 12(1):1550002 doi: 10.1142/S0219843615500024 [92] Hossain M S, Muhammad G. Audio-visual emotion recognition using multi-directional regression and Ridgelet transform. Journal on Multimodal User Interfaces, 2016, 10(4):325-333 doi: 10.1007/s12193-015-0207-2 [93] Matsas E, Vosniakos G C, Batras D. Prototyping proactive and adaptive techniques for human-robot collaboration in manufacturing using virtual reality. Robotics and Computer-Integrated Manufacturing, 2018, 50:168-180 doi: 10.1016/j.rcim.2017.09.005 [94] Mancisidor A, Zubizarreta A, Cabanes I, Portillo E, Jung J H. Virtual sensors for advanced controllers in rehabilitation robotics. Sensors, 2018, 18(3):785 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876757/ [95] Tabbache B, Benbouzid M E H, Kheloui A, Bourgeot J M. Virtual-sensor-based maximum-likelihood voting approach for fault-tolerant control of electric vehicle powertrains. IEEE Transactions on Vehicular Technology, 2013, 62(3):1075-1083 doi: 10.1109/TVT.2012.2230200 [96] Brizzi F, Peppoloni L, Graziano A, Di Stefano E, Avizzano C A, Rufialdi E. Efiects of augmented reality on the performance of teleoperated industrial assembly tasks in a robotic embodiment. IEEE Transactions on HumanMachine Systems, 2018, 48(2):197-206 doi: 10.1109/THMS.2017.2782490 [97] Soete N, Claeys A, Hoedt S, Mahy B, Cottyn J. Towards mixed reality in SCADA applications. IFAC-PapersOnLine, 2015, 48(3):2417-2422 [98] Wang X V, KemÉny Z, VÁncza J, Wang L H. Human-robot collaborative assembly in cyber-physical production:classiflcation framework and implementation. CIRP Annals, 2017, 66(1):5-8 doi: 10.1016/j.cirp.2017.04.101 [99] Hu W L, Akash K, Jain N, Reid T. Real-time sensing of trust in human-machine interactions. IFAC-PapersOnLine, 2016, 49(32):48-53 doi: 10.1016/j.ifacol.2016.12.188 [100] Rezazadegan F, Geng J, Ghirardi M, Menga G, MurÉ S, Camuncoli G, et al. Risked-based design for the physical human-robot interaction (pHRI):an overview. Chemical Engineering Transactions, 2015, 43:1249-1254 https://iris.polito.it/handle/11583/2626949#.XMU-XPmfCPI [101] Peng G, Zhou G, Nguyen D T, Qi X, Yang Q, Wang S Q. Continuous authentication with touch behavioral biometrics and voice on wearable glasses. IEEE Transactions on Human-Machine Systems, 2017, 47(3):404-416 doi: 10.1109/THMS.2016.2623562 [102] 沈苏彬, 范曲立, 宗平, 毛燕琴, 黄维.物联网的体系结构与相关技术研究.南京邮电大学学报(自然科学版), 2009, 29(6):1-11 doi: 10.3969/j.issn.1673-5439.2009.06.001Shen Su-Bin, Fan Qu-Li, Zong Ping, Mao Yan-Qin, Huang Wei. Study on the architecture and associated technologies for internet of things. Journal of Nanjing University of Posts and Telecommunications (Nature Science), 2009, 29(6):1-11 doi: 10.3969/j.issn.1673-5439.2009.06.001 [103] Kafle V P, Fukushima Y, Harai H. Internet of things standardization in ITU and prospective networking technologies. IEEE Communications Magazine, 2016, 54(9):43-49 https://ieeexplore.ieee.org/abstract/document/7565271 [104] Vermesan O, Friess P, Guillemin P, Gusmeroli S, Sundmaeker H, Bassi A, et al. Internet of Things Strategic Research Roadmap. The Cluster of European Research Projects, Technical Report, 2009. [105] 温家宝. 2010年政府工作报告[Online], avaliable: , 2018年5月25日Wen Jia-Bao. Report on Government Work[Online], avaliable: http://www.gov.cn/2010lh/content1555767.htm, May 252018 [106] Romaniuk R S. IoT-review of critical issues. International Journal of Electronics and Telecommunications, 2018, 64(1):95-102 http://journals.pan.pl/Content/102764/PDF/IJET_1_2018_15_1210.pdf [107] Ma H D. Internet of things:objectives and scientiflc challenges. Journal of Computer Science and Technology, 2011, 26(6):919-924 doi: 10.1007/s11390-011-1189-5 [108] Cheng B, Zhu D, Zhao S, Chen J L. Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Transactions on Network and Service Management, 2016, 13(2):349-361 doi: 10.1109/TNSM.2016.2541171 [109] Shokrollahi S, Shams F. Rich Device-Services (RDS):a service-oriented approach to the internet of things (IoT). Wireless Personal Communications, 2017, 97(2):3183-3201 doi: 10.1007/s11277-017-4669-2 [110] Batalla J M, Gajewski M, Latoszek W, Krawiec P, Mavromoustakis C X, Mastorakis G. ID-based service-oriented communications for unifled access to IoT. Computers and Electrical Engineering, 2016, 52:98-113 doi: 10.1016/j.compeleceng.2016.02.020 [111] Binu A, Kumar G S. Virtualization techniques: a methodical review of XEN and KVM. In: Proceedings of the 1st International Conference on Advances in Computing and Communications. Kochi, India: Springer Verlag, 2011. 399-410 [112] Ahmad R W, Gani A, Hamid S H A, Shiraz M, Yousafzai A, Xia F. A survey on virtual machine migration and server consolidation frameworks for cloud data centers. Journal of Network and Computer Applications, 2015, 52:11-25 doi: 10.1016/j.jnca.2015.02.002 [113] Manohar N. A survey of virtualization techniques in cloud computing. In: Proceedings of the 2013 International Conference on VLSI, Communication, Advanced Devices, Signals and Systems and Networking. Bengaluru, Karnataka, India: Springer Verlag, 2013. 461-470 [114] Mell P, Grance T:The NIST Deflnition of Cloud Computing:Recommendations of the National Institute of Standards and Technology. Nova Science Publishers, Inc, USA, 2012. 97-101 [115] Morariu O, Borangiu T, Raileanu S. VMES:virtualization aware manufacturing execution system. Computers in Industry, 2015, 67:27-37 doi: 10.1016/j.compind.2014.11.003 [116] Shu Z G, Wan J F, Zhang D Q, Li D. Cloud-integrated cyber-physical systems for complex industrial applications. Mobile Networks and Applications, 2016, 21(5):865-878 doi: 10.1007/s11036-015-0664-6 [117] Li D, Tang H, Wang S Y, Liu C L. A big data enabled loadbalancing control for smart manufacturing of industry 4.0. Cluster Computing, 2017, 20(2):1855-1864 doi: 10.1007/s10586-017-0852-1 [118] Dehury C K, Sahoo P K. Design and implementation of a novel service management framework for IoT devices in cloud. Journal of Systems and Software, 2016, 119:149-161 doi: 10.1016/j.jss.2016.06.059 [119] Mourtzis D, Vlachou E. Cloud-based cyber-physical systems and quality of services. The TQM Journal, 2016, 28(5):704-733 doi: 10.1108/TQM-10-2015-0133 [120] Colombo A W, Bangemann T, Karnouskos S, Delsing J, Stluka P, Harrison R, et al. Industrial Cloud-Based CyberPhysical Systems:The IMC-AESOP Approach. Switzerland:Springer International Publishing, 2014. [121] Wang P, Gao R X, Fan Z Y. Cloud computing for cloud manufacturing:beneflts and limitations. Journal of Manufacturing Science and Engineering, 2015, 137(4):040901 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c946c96245a3b8f84df392232be9dc0d [122] MezgÁr I, Rauschecker U. The challenge of networked enterprises for cloud computing interoperability. Computers in Industry, 2014, 65(4):657-674 doi: 10.1016/j.compind.2014.01.017 [123] Hu P F, Dhelim S, Ning H S, Qiu T. Survey on fog computing:architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 2017, 98:27-42 doi: 10.1016/j.jnca.2017.09.002 [124] Kumar V S, Marathe M V, Parthasarathy S, Srinivasan A. Distributed algorithms for end-to-end packet scheduling in wireless ad hoc networks. ACM Transactions on Algorithms, 2016, 12(3): Article No. 28 https://www.researchgate.net/publication/301646415_Distributed_Algorithms_for_End-to-End_Packet_Scheduling_in_Wireless_Ad_Hoc_Networks [125] El-Sayed H, Sankar S, Prasad M, Puthal D, Gupta A, Mohanty M, et al. Edge of things:the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access, 2017, 6:1706-1717 https://www.researchgate.net/publication/321638174_Edge_of_Things_The_Big_Picture_on_the_Integration_of_Edge_IoT_and_the_Cloud_in_a_Distributed_Computing_Environment [126] Osanaiye O, Chen S, Yan Z, Lu R X, Choo K K R, Dlodlo M. From cloud to fog computing:a review and a conceptual live VM migration framework. IEEE Access, 2017, 5:8284-8300 doi: 10.1109/ACCESS.2017.2692960 [127] Wu D Z, Liu S P, Zhang L, Terpenny J, Gao R X, Kurfess T, et al. A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. Journal of Manufacturing Systems, 2017, 43:25-34 doi: 10.1016/j.jmsy.2017.02.011 [128] Georgakopoulos D, Jayaraman P P, Fazia M, Villari M, Ranjan R. Internet of things and edge cloud computing roadmap for manufacturing. IEEE Cloud Computing, 2016, 3(4):66-73 doi: 10.1109/MCC.2016.91 [129] Vilalta R, Lopez V, Giorgetti A, Peng S P, Orsini V, Velasco L, et al. TelcoFog:a unifled flexible fog and cloud computing architecture for 5G networks. IEEE Communications Magazine, 2017, 55(8):36-43 doi: 10.1109/MCOM.2017.1600838 [130] Yang P, Zhang N, Bi Y G, Yu L, Shen X S. Catalyzing cloud-fog interoperation in 5G wireless networks:an SDN approach. IEEE Network, 2017, 31(5):14-20 doi: 10.1109/MNET.2017.1600078 [131] Nakamoto S. Bitcoin: a peer-to-peer electronic cash system[Online], available: https://bitcoin.org/bitcoin.pdf, April 2, 2018 [132] Gomber P, Kaufiman R J, Parker C, Weber B W. On the flntech revolution:interpreting the forces of innovation, disruption, and transformation in flnancial services. Journal of Management Information Systems, 2018, 35(1):220-265 doi: 10.1080/07421222.2018.1440766 [133] Nordrum A. Govern by blockchain dubai wants one platform to rule them all, while Illinois will try anything. IEEE Spectrum, 2017, 54(10):54-55 doi: 10.1109/MSPEC.2017.8048841 [134] Kang J W, Yu R, Huang X M, Maharjan S, Zhang Y, Hossain E. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Transactions on Industrial Informatics, 2017, 13(6):3154-3164 doi: 10.1109/TII.2017.2709784 [135] Zhang J, Xue N, Huang X. A secure system for pervasive social network-based healthcare. IEEE Access, 2016, 4:9239-9250 doi: 10.1109/ACCESS.2016.2645904 [136] Li Z, Wang W M, Liu G, Liu L, He J D, Huang G Q. Toward open manufacturing:a cross-enterprises knowledge and services exchange framework based on blockchain and edge computing. Industrial Management and Data Systems, 2018, 118(1):303-320 doi: 10.1108/IMDS-04-2017-0142 [137] 袁勇, 王飞跃.区块链技术发展现状与展望.自动化学报, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtmlYuan Yong, Wang Fei-Yue. Blockchain:the state of the art and future trends. Acta Automatica Sinica, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml [138] 袁勇, 周涛, 周傲英, 段永朝, 王飞跃.区块链技术:从数据智能到知识自动化.自动化学报, 2017, 43(9):1485-1490 http://www.aas.net.cn/CN/abstract/abstract19125.shtmlYuan Yong, Zhou Tao, Zhou Ao-Ying, Duan Yong-Chao, Wang Fei-Yue. Blockchain technology:from data intelligence to knowledge automation. Acta Automatica Sinica, 2017, 43(9):1485-1490 http://www.aas.net.cn/CN/abstract/abstract19125.shtml [139] Petersen M, Hackius N, Kersten W. Blockchain for manufacturing and logistics:basics, beneflts, and use cases. ZWF Zeitschrift für Wirtschaftlichen Fabrikbetrieb, 2016, 111(10):626-629 doi: 10.3139/104.111603 [140] Preuveneers D, Joosen W, Ilie-Zudor E. Trustworthy datadriven networked production for customer-centric plants. Industrial Management and Data Systems, 2017, 117(10):2305-2324 doi: 10.1108/IMDS-10-2016-0419 [141] Huckle S, White M. Socialism and the blockchain. Future Internet, 2016, 8(4):49 doi: 10.3390/fi8040049 [142] Atzori L, Iera A, Morabito G, Nitti M. The social internet of things (SIoT)-when social networks meet the internet of things:concept, architecture and network characterization. Computer Networks, 2012, 56(16):3594-3608 doi: 10.1016/j.comnet.2012.07.010 [143] 王飞跃, 王晓, 袁勇, 王涛, 林懿伦.社会计算与计算社会:智慧社会的基础与必然.科学通报, 2015, 60(5-6):460-469 http://d.old.wanfangdata.com.cn/Periodical/fzxtyfzxkx200404002Wang Fei-Yue, Wang Xiao, Yuan Yong, Wang Tao, Lin YiLun. Social computing and computational societies:the foundation and consequence of smart societies. Chinese Science Bulletin, 2015, 60(5-6):460-469 http://d.old.wanfangdata.com.cn/Periodical/fzxtyfzxkx200404002 [144] Chen Z K, Ling R C, Huang C M, Zhu X. A scheme of access service recommendation for the social internet of things. International Journal of Communication Systems, 2016, 29(4):694-706 doi: 10.1002/dac.v29.4 [145] Shen H Y, Liu J W, Chen K, Liu J W, Moyer S. SCPS:a social-aware distributed cyber-physical human-centric search engine. IEEE Transactions on Computers, 2015, 64(2):518-532 doi: 10.1109/TC.2013.211 [146] Ahmad A, Paul A, Rathore M M, Chang H. Smart cyber society:integration of capillary devices with high usability based on cyber-physical system. Future Generation Computer Systems, 2016, 56:493-503 doi: 10.1016/j.future.2015.08.004 [147] Ding K, Jiang P Y. Social Sensors (S2ensors):a kind of hardware-software-integrated mediators for social manufacturing systems under mass individualization. Chinese Journal of Mechanical Engineering, 2017, 30(5):1150-1161 doi: 10.1007/s10033-017-0167-4 [148] Milgram S. The small world problem. Psychology Today, 1967, 2(1):60-67 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1305.0513 [149] 姚锡凡, 张剑铭, Lin Ying-Zi.智慧制造系统的基础理论与技术体系.系统工程理论与实践, 2016, 36(10):2699-2711 doi: 10.12011/1000-6788(2016)10-2699-13Yao Xi-Fan, Zhang Jian-Ming, Lin Ying-Zi. The basic theory and technical framework for wisdom manufacturing systems. Systems Engineering Theory and Practice, 2016, 36(10):2699-2711 doi: 10.12011/1000-6788(2016)10-2699-13 [150] Szolnoki A, Xie N G, Ye Y, Perc M. Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas. Physical Review E, 2013, 87(4):042805 doi: 10.1103/PhysRevE.87.042805 [151] Ang J H, Goh C, Li Y. Smart design for ships in a smart product through-life and industry 4.0 environment. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2016. 5301-5308 [152] Lou S H, Feng Y X, Tian G D, Lv Z H, Li Z W, Tan J R. A cyber-physical system for product conceptual design based on an intelligent psycho-physiological approach. IEEE Access, 2017, 5:5378-5387 doi: 10.1109/ACCESS.2017.2686986 [153] Galambos P, Csapó A, Zentay P, Fülöp I M, Haidegger T, Baranyi P, et al. Design, programming and orchestration of heterogeneous manufacturing systems through VRpowered remote collaboration. Robotics and ComputerIntegrated Manufacturing, 2015, 33:68-77 doi: 10.1016/j.rcim.2014.08.012 [154] Berg L P, Vance J M. An industry case study:investigating early design decision making in virtual reality. Journal of Computing and Information Science in Engineering, 2016, 17(1):011001 doi: 10.1115/1.4034267 [155] Carulli M, Bordegoni M, Cugini U. An approach for capturing the voice of the customer based on virtual prototyping. Journal of Intelligent Manufacturing, 2013, 24(5):887-903 doi: 10.1007/s10845-012-0662-5 [156] Doshi A, Smith R T, Thomas B H, Bouras C. Use of projector based augmented reality to improve manual spotwelding precision and accuracy for automotive manufacturing. The International Journal of Advanced Manufacturing Technology, 2017, 89(5-8):1279-1293 doi: 10.1007/s00170-016-9164-5 [157] Cheng F T, Tieng H, Yang H C, Hung M H, Lin Y C, Wei C F, et al. Industry 4.1 for wheel machining automation. IEEE Robotics and Automation Letters, 2016, 1(1):332-339 doi: 10.1109/LRA.2016.2517208 [158] Putman N M, Maturana F, Barton K, Tilbury D M. Virtual fusion:a hybrid environment for improved commissioning in manufacturing systems. International Journal of Production Research, 2017, 55(21):6254-6265 doi: 10.1080/00207543.2017.1334974 [159] Mourtzis D, Vlachou A, Zogopoulos V. Cloud-based augmented reality remote maintenance through shop-floor monitoring:a product-service system approach. Journal of Manufacturing Science and Engineering, 2017, 139(6):061011 doi: 10.1115/1.4035721 [160] Liu C, Cao S, Tse W, Xu X. Augmented reality-assisted intelligent window for cyber-physical machine tools. Journal of Manufacturing Systems, 2017, 44:280-286 doi: 10.1016/j.jmsy.2017.04.008 [161] Turner C J, Hutabarat W, Oyekan J, Tiwari A. Discrete event simulation and virtual reality use in industry:new opportunities and future trends. IEEE Transactions on Human-Machine Systems, 2016, 46(6):882-894 doi: 10.1109/THMS.2016.2596099 [162] Fainshmidt S, Frazier M L. What facilitates dynamic capabilities? The role of organizational climate for trust. Long Range Planning, 2017, 50(5):550-566 doi: 10.1016/j.lrp.2016.05.005 [163] Luo N, Zhang M L, Hu M, Wang Y. How community interactions contribute to harmonious community relationships and customers0 identiflcation in online brand community. International Journal of Information Management, 2016, 36(5):673-685 doi: 10.1016/j.ijinfomgt.2016.04.016 [164] Wang B, Childerhouse P, Kang Y F, Huo B F, Mathrani S. Enablers of supply chain integration:interpersonal and interorganizational relationship perspectives. Industrial Management and Data Systems, 2016, 116(4):838-855 doi: 10.1108/IMDS-09-2015-0403 [165] Pticek M, Podobnik V, Jezic G. Beyond the internet of things: the social networking of machines. International Journal of Distributed Sensor Networks, 2016, 2016: Article ID 8178417 [166] Ding K, Jiang P Y, Su S L. RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks. Robotics and Computer-Integrated Manufacturing, 2018, 49:120-133 doi: 10.1016/j.rcim.2017.06.009 [167] Leng J W, Jiang P Y. Mining and matching relationships from interaction contexts in a social manufacturing paradigm. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(2):276-288 https://ieeexplore.ieee.org/abstract/document/7747452 [168] Chen L J, Feldmann A, Tang O. The relationship between disclosures of corporate social performance and flnancial performance:evidences from GRI reports in manufacturing industry. International Journal of Production Economics, 2015, 170:445-456 doi: 10.1016/j.ijpe.2015.04.004 [169] Jiang P Y, Ding K, Leng J W. Towards a cyberphysical-social-connected and service-oriented manufacturing paradigm:social manufacturing. Manufacturing Letters, 2016, 7:15-21 doi: 10.1016/j.mfglet.2015.12.002 [170] Ye J M. Optimization path of industrial real estate development under the mass entrepreneurship and innovation environment. Boletin Tecnico, 2017, 55(14):231-235 http://boletintecnico.com/index.php/bt/article/view/1353 [171] Yoo B, Ko H, Chun S. Prosumption perspectives on additive manufacturing:reconflguration of consumer products with 3D printing. Rapid Prototyping Journal, 2016, 22(4):691-705 doi: 10.1108/RPJ-01-2015-0004 [172] Yang C, Lan S L, Shen W M, Huang G Q, Wang X B, Lin T Y. Towards product customization and personalization in IoT-enabled cloud manufacturing. Cluster Computing, 2017, 20(2):1717-1730 doi: 10.1007/s10586-017-0767-x [173] Patel P, Intizar Ali M, Sheth A. On using the intelligent edge for IoT analytics. IEEE Intelligent Systems, 2017, 32(5):64-69 doi: 10.1109/MIS.2017.3711653 [174] Thames L, Schaefer D. Software-deflned cloud manufacturing for industry 4.0. Procedia CIRP, 2016, 52:12-17 doi: 10.1016/j.procir.2016.07.041 [175] Calvo I, López F, Zulueta E, GonzÁlez-Nalda P. Towards a methodology to build virtual reality manufacturing systems based on free open software technologies. International Journal on Interactive Design and Manufacturing, 2017, 11(3):569-580 doi: 10.1007/s12008-016-0311-x [176] Weber A. GE "predix" the future of manufacturing. Assembly, 2017, 60(3):GE70-GE76 [177] Trappey A J C, Trappey C V, Govindarajan U H, Sun J J, Chuang A C. A review of technology standards and patent portfolios for enabling cyber-physical systems in advanced manufacturing. IEEE Access, 2016, 4:7356-7382 doi: 10.1109/ACCESS.2016.2619360 [178] Jirkovsky V, Obitko M, Marik V. Understanding data heterogeneity in the context of cyber-physical systems integration. IEEE Transactions on Industrial Informatics, 2017, 13(2):660-667 doi: 10.1109/TII.2016.2596101 [179] Guan Y Q, Ji Z J, Zhang L, Wang L. Controllability of heterogeneous multi-agent systems under directed and weighted topology. International Journal of Control, 2016, 89(5):1009-1024 doi: 10.1080/00207179.2015.1110756 [180] Sztipanovits J, Koutsoukos X, Karsai G, Kottenstette N, Antsaklis P, Gupta V, et al. Toward a science of cyberphysical system integration. Proceedings of the IEEE, 2012, 100(1):29-44 https://www.researchgate.net/publication/220473367_Toward_a_Science_of_Cyber-Physical_System_Integration?citationList=incoming [181] Chen T S, Du Z D, Sun N H, Wang J, Wu C Y, Chen Y J, et al. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems. Salt Lake City, UT, USA: ACM, 2014. 269-284 https://www.researchgate.net/publication/261845797_DianNao_A_Small-Footprint_High-Throughput_Accelerator_for_Ubiquitous_Machine-Learning [182] Luo T, Liu S L, Li L, Wang Y Q, Zhang S J, Chen T S, et al. DaDianNao:a neural network supercomputer. IEEE Transactions on Computers, 2017, 66(1):73-88 https://www.researchgate.net/publication/303695762_DaDianNao_A_Neural_Network_Supercomputer [183] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, et al. TrueNorth:design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10):1537-1557 doi: 10.1109/TCAD.2015.2474396 [184] Cavallo F, Semeraro F, Fiorini L, Magyar G, Sin·cÁk P, Dario P. Emotion modelling for social robotics applications:a review. Journal of Bionic Engineering, 2018, 15(2):185-203 doi: 10.1007/s42235-018-0015-y [185] Hui T K L, Sherratt R S. Towards disappearing user interfaces for ubiquitous computing:human enhancement from sixth sense to super senses. Journal of Ambient Intelligence and Humanized Computing, 2017, 8(3):449-465 doi: 10.1007/s12652-016-0409-9 [186] Tian Y H, Chen X L, Xiong H K, Li H L, Dai L R, Chen J, et al. Towards human-like and transhuman perception in AI 2.0:a review. Frontiers of Information Technology and Electronic Engineering, 2017, 18(1):58-67 doi: 10.1631/FITEE.1601804 [187] Bu T Z, Xiao T X, Yang Z W, Liu G X, Fu X P, Nie J H, et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing. Advanced Materials, 2018, 30(16):1800066 doi: 10.1002/adma.v30.16 [188] Persaud K C. Towards bionic noses. Sensor Review, 2017, 37(2):165-171 doi: 10.1108/SR-10-2016-0238 [189] 邓良辰, 刘艳丽, 余贻鑫, 柏天缘.考虑故障处理全过程的配电网信息物理系统可靠性评估.电力自动化设备, 2017, 37(12):22-29 http://d.old.wanfangdata.com.cn/Periodical/dlzdhsb201712005Deng Liang-Chen, Liu Yan-Li, Yu Yi-Xin, Bai Tian-Yuan. Reliability assessment of distribution network CPS considering whole fault processing. Electric Power Automation Equipment, 2017, 37(12):22-29 http://d.old.wanfangdata.com.cn/Periodical/dlzdhsb201712005 [190] Sajid A, Abbas H, Saleem K. Cloud-assisted IoT-based SCADA systems security:a review of the state of the art and future challenges. IEEE Access, 2016, 4:1375-1384 doi: 10.1109/ACCESS.2016.2549047 [191] Styugin M. Establishing systems secure from research with implementation in encryption algorithms. International Journal of Network Security, 2018, 20(1):35-40 http://ijns.femto.com.tw/contents/ijns-v20-n1/ijns-2018-v20-n1-p35-40.pdf [192] Coutinho M, de Oliveira Albuquerque R, Borges F, Villalba L J G, Kim T H. Learning perfectly secure cryptography to protect communications with adversarial neural cryptography. Sensors, 2018, 18(5):1306 doi: 10.3390/s18051306 [193] Lee W, Kim N. Security policy scheme for an e-cient security architecture in software-deflned networking. Information, 2017, 8:65 doi: 10.3390/info8020065 [194] Khan M A, Salah K. IoT security:review, blockchain solutions, and open challenges. Future Generation Computer Systems, 2018, 82:395-411 doi: 10.1016/j.future.2017.11.022 [195] De Graaf M M A. An ethical evaluation of human-robot relationships. International Journal of Social Robotics, 2016, 8(4):589-598 doi: 10.1007/s12369-016-0368-5 [196] Pagallo U. When morals ain0t enough:robots, ethics, and the rules of the law. Minds and Machines, 2017, 27(4):625-638 doi: 10.1007/s11023-017-9418-5 期刊类型引用(24)
1. 余越凡,赵志群. 面向现场工程师培养的人本学习工厂构建. 高等工程教育研究. 2025(01): 133-138 . 百度学术
2. 韦宁燕,韦洪浪. 基于CC1101的无线评分系统设计. 现代电子技术. 2025(04): 24-29 . 百度学术
3. 王秉,周佳胜,史志勇. 数智赋能安全态势感知与塑造模型. 图书馆论坛. 2024(08): 1-7 . 百度学术
4. 何思楠,柳先辉,张国成,赵卫东. 网络协同制造资源虚实映射方法. 计算机集成制造系统. 2024(11): 4021-4029 . 百度学术
5. 邬樱,李爱群. “城市-建筑-人”耦合视角下数字孪生技术应用与分圈层场景构建. 工业建筑. 2023(04): 180-189 . 百度学术
6. 赖琛,郑柏超,陈志鹏,王海风. 虚假数据注入攻击下基于扩张观测器的滑模控制研究. 南京信息工程大学学报(自然科学版). 2023(04): 468-477 . 百度学术
7. 王红卫,李珏,刘建国,樊瑛,马靓,霍红,刘作仪,丁烈云. 人机融合复杂社会系统研究. 中国管理科学. 2023(07): 1-21 . 百度学术
8. 刘泉,李昊,钱征寒. 三元融合智慧城市的发展趋势解读. 上海城市规划. 2023(04): 70-77 . 百度学术
9. 汪际峰,吴小辰,林火华,梁锦照,宋禹飞. 数字电网的概念、特征与架构. 南方电网技术. 2023(12): 36-41+89 . 百度学术
10. 马南峰,姚锡凡,王柯赛. 面向未来互联网的智慧制造研究现状与展望. 中国科学:技术科学. 2022(01): 55-75 . 百度学术
11. 姚锡凡,黄宇,黄岩松,麦海锋,杨尔辅,于洪年. 自主智能制造:社会—信息—物理交互、参考体系架构与运作机制. 计算机集成制造系统. 2022(02): 325-338 . 百度学术
12. 刘钧文,钟德星,邵会凯,刘成城. 基于边缘计算的紧致化掌纹识别系统. 中国科学:技术科学. 2022(05): 704-712 . 百度学术
13. 姚锡凡,马南峰,张存吉,周佳军. 以人为本的智能制造:演进与展望. 机械工程学报. 2022(18): 2-15 . 百度学术
14. 马南峰,姚锡凡,陈飞翔,俞鸿均,王柯赛. 面向工业5.0的人本智造. 机械工程学报. 2022(18): 88-102 . 百度学术
15. 蒋白桦,吕雪峰,刘玉龙. 基于智能体的石化智能工厂信息物理系统实现研究. 化工学报. 2021(03): 1575-1584 . 百度学术
16. 许士林,张富强,刘鹏. 一种面向数控加工装备的信息-物理交互建模与集成方法. 装备制造技术. 2021(03): 82-88 . 百度学术
17. 王柏村,易兵,刘振宇,周源,周艳红. HCPS视角下智能制造的发展与研究. 计算机集成制造系统. 2021(10): 2749-2761 . 百度学术
18. 张建波,王宇,聂雪军,吴国庆,刘久军,严俊. 智慧渔业时代的深远海养殖平台控制系统. 物联网学报. 2021(04): 120-136 . 百度学术
19. 黄荣,吕尚彬. 智能时代媒体泛化机制研究. 当代传播. 2020(01): 38-42 . 百度学术
20. 肖祥武,王丰,王晓辉,周宏贵,张辽. 面向工业互联网的智慧电厂仿生体系架构及信息物理系统. 电工技术学报. 2020(23): 4898-4911 . 百度学术
21. 姚锡凡,景轩,张剑铭,刘敏,周佳军. 走向新工业革命的智能制造. 计算机集成制造系统. 2020(09): 2299-2320 . 百度学术
22. 方修睦,杨大易,周志刚,刘京. 智慧供热的内涵及目标. 煤气与热力. 2019(07): 1-7+41 . 百度学术
23. 姚锡凡,景轩,周佳军,LIN Yingzi. 走向新一代可持续制造——包容性制造. 计算机集成制造系统. 2019(10): 2419-2432 . 百度学术
24. 杨林瑶,陈思远,王晓,张俊,王成红. 数字孪生与平行系统:发展现状、对比及展望. 自动化学报. 2019(11): 2001-2031 . 本站查看
其他类型引用(12)
-