2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数据驱动的工业过程运行监控与自优化研究展望

刘强 卓洁 郎自强 秦泗钊

刘强, 卓洁, 郎自强, 秦泗钊. 数据驱动的工业过程运行监控与自优化研究展望. 自动化学报, 2018, 44(11): 1944-1956. doi: 10.16383/j.aas.2018.c180207
引用本文: 刘强, 卓洁, 郎自强, 秦泗钊. 数据驱动的工业过程运行监控与自优化研究展望. 自动化学报, 2018, 44(11): 1944-1956. doi: 10.16383/j.aas.2018.c180207
LIU Qiang, ZHUO Jie, LANG Zi-Qiang, QIN S. Joe. Perspectives on Data-driven Operation Monitoring and Self-optimization of Industrial Processes. ACTA AUTOMATICA SINICA, 2018, 44(11): 1944-1956. doi: 10.16383/j.aas.2018.c180207
Citation: LIU Qiang, ZHUO Jie, LANG Zi-Qiang, QIN S. Joe. Perspectives on Data-driven Operation Monitoring and Self-optimization of Industrial Processes. ACTA AUTOMATICA SINICA, 2018, 44(11): 1944-1956. doi: 10.16383/j.aas.2018.c180207

数据驱动的工业过程运行监控与自优化研究展望

doi: 10.16383/j.aas.2018.c180207
基金项目: 

国家自然科学基金 61573022

国家自然科学基金 61490701

国家自然科学基金 61673097

中央高校基本科研业务费 N160804002

国家自然科学基金 61490704

中央高校基本科研业务费 N160801001

详细信息
    作者简介:

    卓洁  东北大学硕士研究生.主要研究方向为工业过程统计过程监控与故障诊断.E-mail:zhuojie1996@126.com

    郎自强  英国谢菲尔德大学教授.主要研究方向为非线性系统建模, 分析和设计, 工程系统健康监测与故障诊断.E-mail:z.lang@sheffield.ac.uk

    秦泗钊  美国南加州大学教授, IEEE Fellow, IFACFellow, AIChE Fellow.主要研究方向为统计过程监控, 故障诊断, 模型预测控制, 系统辨识, 建筑能源优化与控制性能监控.E-mail:sqin@usc.edu

    通讯作者:

    刘强东北大学副教授.2014~2016年间于美国南加州大学化工系从事博士后研究.主要研究方向为数据驱动的建模, 过程监控与故障诊断.本文通信作者.E-mail:liuq@mail.neu.edu.cn

Perspectives on Data-driven Operation Monitoring and Self-optimization of Industrial Processes

Funds: 

National Natural Science Foundation of China 61573022

National Natural Science Foundation of China 61490701

National Natural Science Foundation of China 61673097

the Fundamental Research Funds for the Central Universities N160804002

National Natural Science Foundation of China 61490704

the Fundamental Research Funds for the Central Universities N160801001

More Information
    Author Bio:

      Master student at Northeastern University, China. Her research interest covers statistical process monitoring, fault diagnosis of complex industrial processes

      Professor at the University of Sheffield, UK. His research interest covers nonlinear system modeling, analysis and design, health monitoring and fault diagnosis of engineering system

      Professor at the University of Southern California, USA. IEEE Fellow, IFAC Fellow and AIChE Fellow. His research interest covers statistical process monitoring, fault diagnosis, model predictive control, system identification, building energy optimization, and control performance monitoring

    Corresponding author: LIU Qiang  Associate professor at Northeastern University, China. He was a Research Fellow at University of Southern California during the year of 2014 to 2016. His research interest covers data-driven process modeling, monitoring, and fault diagnosis of complex industrial processes. Corresponding author of this paper
  • 摘要: 现代工业过程向大规模、连续化、集成化方向发展,有必要对生产全流程运行的决策、协同控制、底层控制进行有效监控,也是当前国际控制领域的研究热点.本文首先分析了工业过程全流程运行监控的内涵与行业现状;其次,阐述了基于模型的控制系统故障诊断与容错控制方法,以及数据驱动的异常工况诊断与自愈控制方法的研究现状,并指明了信息物理系统(Cyber-physical systems,CPS)时代智能安全运行监控与自优化的发展机遇;最后,论述了工业过程运行监控与自优化研究的新方向和最新进展,包括:1)数据驱动的决策、协同控制、底层控制多层面联合监控;2)基于机理、数据、知识多源动态信息融合的异常工况诊断;3)专家知识与控制手段相结合的协同层自愈控制;4)数据驱动的运行动态性能分析与自优化;5)支撑运行监控与自优化系统的实现技术.
    1)  本文责任编委 谢永芳
  • 图  1  工业过程运行监控系统的作用

    Fig.  1  Role of operational monitoring system

    图  2  复杂工业过程智能化安全运行监控与自优化系统的架构

    Fig.  2  Intelligent operational monitoring and self-optimization of complex industrial processes

  • [1] 柴天佑.工业过程控制系统研究现状与发展方向.中国科学:信息科学, 2016, 46(8):1003-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608005.htm

    Chai Tian-You. Industrial process control systems:research status and development direction. Scientia Sinica:Informationis, 2016, 46(8):1003-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608005.htm
    [2] 柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml

    Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml
    [3] Zhang Y L, Dudzic M S. TIndustrial application of multivariate SPC to continuous caster start-up operations for breakout prevention. Control Engineering Practice, 2006, 14(11):1357-1375 doi: 10.1016/j.conengprac.2005.09.007
    [4] Zhang Y L, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies:from continuous to transitional operations. Journal of Process Control, 2006, 16(8):819-829 doi: 10.1016/j.jprocont.2006.03.005
    [5] Isermann R, Ballé P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Engineering Practice, 1997, 5(5):709-719 doi: 10.1016/S0967-0661(97)00053-1
    [6] Patton R J, Chen J. Observer-based fault detection and isolation:robustness and applications. Control Engineering Practice, 1997, 5(5):671-682 doi: 10.1016/S0967-0661(97)00049-X
    [7] 周东华, 胡艳艳.动态系统的故障诊断技术.自动化学报, 2009, 35(6):748-758 http://www.aas.net.cn/CN/abstract/abstract13336.shtml

    Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6):748-758 http://www.aas.net.cn/CN/abstract/abstract13336.shtml
    [8] Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Transactions on Cybernetics, 2014, 44(8):1446-1458 doi: 10.1109/TCYB.2013.2286209
    [9] Wang H M, Yang G H, Ye D. Fault detection and isolation for affine fuzzy systems with sensor faults. IEEE Transactions on Fuzzy Systems, 2016, 24(5):1058-1071 doi: 10.1109/TFUZZ.2015.2501414
    [10] 周东华, Ding X.容错控制理论及其应用.自动化学报, 2000, 26(6):788-797 http://www.aas.net.cn/CN/abstract/abstract14710.shtml

    Zhou Dong-Hua, Ding X. Theory and applications of fault tolerant control. Acta Automatica Sinica, 2000, 26(6):788-797 http://www.aas.net.cn/CN/abstract/abstract14710.shtml
    [11] Li Y X, Yang G H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica, 2016, 72:177-185 doi: 10.1016/j.automatica.2016.06.008
    [12] Zhang J X, Yang G H. Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions. IEEE Transactions on Automatic Control, 2017, 62(12):6529-6535 doi: 10.1109/TAC.2017.2705033
    [13] Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2):220-234 doi: 10.1016/j.arcontrol.2012.09.004
    [14] Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1):95-114 doi: 10.1016/S0169-7439(00)00062-9
    [15] Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8):1813-1831 doi: 10.1002/(ISSN)1547-5905
    [16] Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45(7):1593-1600 doi: 10.1016/j.automatica.2009.02.027
    [17] Zhao C H, Gao F R. Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis. IEEE Transactions on Control Systems Technology, 2016, 24(3):928-939 doi: 10.1109/TCST.2015.2464331
    [18] Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4):969-976 doi: 10.1002/(ISSN)1547-5905
    [19] Lee J M, Qin S J, Lee I B. Fault detection and diagnosis of multivariate processes based on modified independent component analysis. AIChE Journal, 2006, 52(10):3501-3514 doi: 10.1002/(ISSN)1547-5905
    [20] Kano M, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control:application of independent component analysis and external analysis. Computers and Chemical Engineering, 2004, 28(6-7):1157-1166 doi: 10.1016/j.compchemeng.2003.09.011
    [21] Liu Q, Chai T Y, Qin S J. Fault diagnosis of continuous annealing processes using a reconstruction-based method. Control Engineering Practice, 2012, 20(5):511-518 doi: 10.1016/j.conengprac.2012.01.005
    [22] Zhao C H, Sun Y X. Subspace decomposition approach of fault deviations and its application to fault reconstruction. Control Engineering Practice, 2013, 21(10):1396-1409 doi: 10.1016/j.conengprac.2013.06.008
    [23] Jiang Q C, Yan X F, Huang B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference. IEEE Transactions on Industrial Electronics, 2016, 63(1):377-386 doi: 10.1109/TIE.2015.2466557
    [24] Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring. Journal of Chemometrics, 2001, 15(9):715-742 doi: 10.1002/(ISSN)1099-128X
    [25] Cherry G A, Qin S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172 doi: 10.1109/TSM.2006.873524
    [26] Zhu J L, Ge Z Q, Song Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data. IEEE Transactions on Industrial Informatics, 2017, 13(4):1877-1885 doi: 10.1109/TII.2017.2658732
    [27] Ge Z Q, Chen J H. Plant-wide industrial process monitoring:a distributed modeling framework. IEEE Transactions on Industrial Informatics, 2016, 12(1):310-321 doi: 10.1109/TII.2015.2509247
    [28] Liu Q, Qin S J, Chai T Y. Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA. IEEE Transactions on Automation Science and Engineering, 2013, 10(3):687-698 doi: 10.1109/TASE.2012.2230628
    [29] Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):97-108 doi: 10.1016/0169-7439(95)00043-7
    [30] Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37(1):41-59 doi: 10.1080/00401706.1995.10485888
    [31] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9):728-741 doi: 10.1016/j.jprocont.2007.02.005
    [32] Zhao C H, Wang W, Qin Y, Gao F R. Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring. Industrial and Engineering Chemistry Research, 2015, 54(12):3154-3166 doi: 10.1021/ie504380c
    [33] Zhao C H, Gao F R. Statistical modeling and online fault detection for multiphase batch processes with analysis of between-phase relative changes. Chemometrics and Intelligent Laboratory Systems, 2014, 130:58-67 doi: 10.1016/j.chemolab.2013.09.003
    [34] Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130:135-150 doi: 10.1016/j.chemolab.2013.10.014
    [35] Kassidas A, MacGregor J F, Taylor P A. Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 1998, 44(4):864-875 doi: 10.1002/(ISSN)1547-5905
    [36] MacGregor J F, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 1994, 40(5):826-838 doi: 10.1002/(ISSN)1547-5905
    [37] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 2002, 16(3):119-128 doi: 10.1002/(ISSN)1099-128X
    [38] Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring. Automatica, 2010, 46(1):204-210 doi: 10.1016/j.automatica.2009.10.030
    [39] Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1):168-178 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f04d2e43492464d020b4fc1e4c9d8979
    [40] Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2):496-504 doi: 10.1002/aic.v59.2
    [41] Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014, 61(11):6429-6437 doi: 10.1109/TIE.2014.2303781
    [42] Peng K X, Zhang K, Li G, Zhou D H. Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control Engineering Practice, 2013, 21(4):360-369 doi: 10.1016/j.conengprac.2012.11.013
    [43] Li G, Qin S J, Zhou D H. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models. Industrial and Engineering Chemistry Research, 2010, 49(19):9175-9183 doi: 10.1021/ie901939n
    [44] Zhao C H, Sun Y X. Multispace total projection to latent structures and its application to online process monitoring. IEEE Transactions on Control Systems Technology, 2014, 22(3):868-883 doi: 10.1109/TCST.2013.2264723
    [45] Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4):2239-2247 doi: 10.1109/TII.2012.2214394
    [46] Peng K X, Zhang K, You B, Dong J. Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process. IET Control Theory and Applications, 2015, 9(7):1135-1145 doi: 10.1049/iet-cta.2014.0732
    [47] 彭开香, 马亮, 张凯.复杂工业过程质量相关的故障检测与诊断技术综述.自动化学报, 2017, 43(3):349-365 http://www.aas.net.cn/CN/abstract/abstract19014.shtml

    Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes. Acta Automatica Sinica, 2017, 43(3):349-365 http://www.aas.net.cn/CN/abstract/abstract19014.shtml
    [48] Zhu Q Q, Liu Q, Qin S J. Concurrent quality and process monitoring with canonical correlation analysis. Journal of Process Control, 2017, 60:95-103 doi: 10.1016/j.jprocont.2017.06.017
    [49] Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):179-196 doi: 10.1016/0169-7439(95)00076-3
    [50] Negiz A, Çinar A. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 1997, 43(8):2002-2020 doi: 10.1002/(ISSN)1547-5905
    [51] Simoglou A, Martin E B, Morris A J. Statistical performance monitoring of dynamic multivariate processes using state space modelling. Computers and Chemical Engineering, 2002, 26(6):909-920 doi: 10.1016/S0098-1354(02)00012-1
    [52] Wang J, Qin S J. A new subspace identification approach based on principal component analysis. Journal of Process Control, 2002, 12(8):841-855 doi: 10.1016/S0959-1524(02)00016-1
    [53] Ding S X, Zhang P, Naik A, Ding E L, Huang B. Subspace method aided data-driven design of fault detection and isolation systems. Journal of Process Control, 2009, 19(9):1496-1510 doi: 10.1016/j.jprocont.2009.07.005
    [54] Li W H, Qin S J. Consistent dynamic PCA based on errors-in-variables subspace identification. Journal of Process Control, 2001, 11(6):661-678 doi: 10.1016/S0959-1524(00)00041-X
    [55] Li G, Qin S J, Zhou D H. A new method of dynamic latent-variable modeling for process monitoring. IEEE Transactions on Industrial Electronics, 2014, 61(11):6438-6445 doi: 10.1109/TIE.2014.2301761
    [56] Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67:1-11 doi: 10.1016/j.jprocont.2017.05.002
    [57] Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks. Computers and Chemical Engineering, 1992, 16(4):379-391 doi: 10.1016/0098-1354(92)80055-E
    [58] Lindgren F, Geladi P, Wold S. The kernel algorithm for PLS. Journal of Chemometrics, 1993, 7(1):45-59 doi: 10.1002/(ISSN)1099-128X
    [59] Zhu Q Q, Liu Q, Qin S J. Quality-relevant fault detection of nonlinear processes based on kernel concurrent canonical correlation analysis. In: Proceedings of the 2017 American Control Conference (ACC). Seattle, USA: IEEE, 2017. 24-26
    [60] Yoo C K, Lee J M, Vanrolleghem P A, Lee I B. On-line monitoring of batch processes using multiway independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2):151-163 doi: 10.1016/j.chemolab.2004.02.002
    [61] Pan Y J, Yang C J, An R Q, Sun Y X. Fault detection with improved principal component pursuit method. Chemometrics and Intelligent Laboratory Systems, 2016, 157:111-119 doi: 10.1016/j.chemolab.2016.07.003
    [62] 樊继聪, 王友清, 秦泗钊.联合指标独立成分分析在多变量过程故障诊断中的应用.自动化学报, 2013, 39(5):494-501 http://www.aas.net.cn/CN/abstract/abstract17927.shtml

    Fan Ji-Cong, Wang You-Qing, Qin S Joe. Combined indices for ICA and their applications to multivariate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5):494-501 http://www.aas.net.cn/CN/abstract/abstract17927.shtml
    [63] Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Transactions on Control Systems Technology, 1996, 4(4):443-451 doi: 10.1109/87.508893
    [64] Luo J H, Bixby A, Pattipati K, Qiao L, Kawamoto M, Chigusa S. An interacting multiple model approach to model-based prognostics. In: Proceedings of the 2003 IEEE International Conference on Systems, Man, and Cybernetics. Conference Theme-System Security and Assurance (Cat. No.03CH37483). Washington, USA: IEEE, 2003. 189-194
    [65] Yan J H, Koç M, Lee J. A prognostic algorithm for machine performance assessment and its application. Production Planning and Control, 2004, 15(8):796-801 doi: 10.1080/09537280412331309208
    [66] Garga A K, McClintic K T, Campbell R L, Yang C C, Lebold M S, Hay T A, et al. Hybrid reasoning for prognostic learning in CBM systems. In: Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542). Big Sky, USA: IEEE, 2001. 2957-2969
    [67] 高金吉.装备系统故障自愈原理研究.中国工程科学, 2005, 7(5):43-48 doi: 10.3969/j.issn.1009-1742.2005.05.007

    Gao Jin-Ji. Research on the fault self-recovery principle of equipment system. Engineering Science, 2005, 7(5):43-48 doi: 10.3969/j.issn.1009-1742.2005.05.007
    [68] 王庆锋, 高金吉, 袁庆斌, 江志农.主风机静叶可调执行机构自愈化智能电液控制系统.机械工程学报, 2016, 52(20):185-192 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201620024

    Wang Qing-Feng, Gao Jin-Ji, Yuan Qing-Bin, Jiang Zhi-Nong. Research and application of self-recovery smart electro-hydraulic control system on axial-blower static blade adjustable actuator. Journal of Mechanical Engineering, 2016, 52(20):185-192 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201620024
    [69] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3):264-275 doi: 10.1016/j.conengprac.2010.05.002
    [70] Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715 doi: 10.1109/TIE.2014.2349479
    [71] Qin S J. Process data analytics in the era of big data. AIChE Journal, 2014, 60(9):3092-3100 doi: 10.1002/aic.v60.9
    [72] 刘强, 秦泗钊.过程工业大数据建模研究展望.自动化学报, 2016, 42(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtml

    Liu Qiang, Qin S Joe. Perspectives on big data modeling of process industries. Acta Automatica Sinica, 2016, 42(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtml
    [73] Kaspar M H, Ray W H. Dynamic PLS modelling for process control. Chemical Engineering Science, 1993, 48(20):3447-3461 doi: 10.1016/0009-2509(93)85001-6
    [74] Lakshminarayanan S, Shah S L, Nandakumar K. Modeling and control of multivariable processes:dynamic PLS approach. AIChE Journal, 1997, 43(9):2307-2322 doi: 10.1002/(ISSN)1547-5905
    [75] Li G, Liu B S, Qin S J, Zhou D H. Quality relevant data-driven modeling and monitoring of multivariate dynamic processes:the dynamic T-PLS approach. IEEE Transactions on Neural Networks, 2011, 22(12):2262-2271 doi: 10.1109/TNN.2011.2165853
    [76] Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68:64-72 doi: 10.1016/j.jprocont.2018.04.006
    [77] Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control. Computers and Chemical Engineering, 2018, 114(9):69-80 https://www.sciencedirect.com/science/article/pii/S0098135417303848#!
    [78] Liu Q, Qin S J, Chai T Y. Unevenly sampled dynamic data modeling and monitoring with an industrial application. IEEE Transactions on Industrial Informatics, 2017, 13(5):2203-2213 doi: 10.1109/TII.2017.2700520
    [79] Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers and Chemical Engineering, 2009, 33(4):795-814 doi: 10.1016/j.compchemeng.2008.12.012
    [80] Singhal A, Seborg D E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. Journal of Process Control, 2006, 16(6):601-613 doi: 10.1016/j.jprocont.2005.10.005
    [81] Li G, Qin S J, Ji Y D, Zhou D H. Reconstruction based fault prognosis for continuous processes. Control Engineering Practice, 2010, 18(10):1211-1219 doi: 10.1016/j.conengprac.2010.05.012
    [82] Wang K, Chen J H, Song Z H. Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme. IEEE Transactions on Control Systems Technology, 2017, DOI: 10.1109/TCST.2017.2765621
    [83] McNabb C A, Qin S J. Fault diagnosis in the feedback-invariant subspace of closed-loop systems. Industrial and Engineering Chemistry Research, 2005, 44(8):2359-2368 doi: 10.1021/ie049570o
    [84] Peng Z K, Lang Z Q, Wolters C, Billings S A, Worden K. Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mechanical Systems and Signal Processing, 2011, 25(3):1045-1061 doi: 10.1016/j.ymssp.2010.09.014
    [85] Lang Z Q, Billings S A. Energy transfer properties of non-linear systems in the frequency domain. International Journal of Control, 2005, 78(5):345-362 doi: 10.1080/00207170500095759
    [86] 孙鹏, 柴天佑, 周晓杰, 岳恒.氧化铝回转窑烧成带火焰图像识别系统.化工学报, 2008, 59(7):1839-1842 doi: 10.3321/j.issn:0438-1157.2008.07.043

    Sun Peng, Chai Tian-You, Zhou Xiao-Jie, Yue Heng. Flame image recognition system for alumina rotary kiln burning zone. Journal of Chemical Industry and Engineering (China), 2008, 59(7):1839-1842 doi: 10.3321/j.issn:0438-1157.2008.07.043
    [87] Lu T C, Chang C C. Color image retrieval technique based on color features and image bitmap. Information Processing and Management, 2007, 43(2):461-472 doi: 10.1016/j.ipm.2006.07.014
    [88] Zadeh L A. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 1968, 23(2):421-427 doi: 10.1016/0022-247X(68)90078-4
    [89] Tahani H, Keller J M. Information fusion in computer vision using the fuzzy integral. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(3):733-741 doi: 10.1109/21.57289
    [90] Keogh E, Kasetty S. On the need for time series data mining benchmarks:a survey and empirical demonstration. Data Mining and Knowledge Discovery, 2003, 7(4):349-371 doi: 10.1023/A:1024988512476
    [91] Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, et al. Addressing big data time series: mining trillions of time series subsequences under dynamic time warping. ACM Transactions on Knowledge Discovery from Data, 2013, 7(3): Article No.10
    [92] Yuan Q L, Lennox B. Control performance assessment for multivariable systems based on a modified relative variance technique. Journal of Process Control, 2009, 19(3):489-497 doi: 10.1016/j.jprocont.2008.05.005
    [93] Yu J, Qin S J. MIMO control performance monitoring using left/right diagonal interactors. Journal of Process Control, 2009, 19(8):1267-1276 doi: 10.1016/j.jprocont.2009.02.002
    [94] Lee K H, Tamayo E C, Huang B. Industrial implementation of controller performance analysis technology. Control Engineering Practice, 2010, 18(2):147-158 doi: 10.1016/j.conengprac.2009.09.011
    [95] Liu Y, Wang F L, Chang Y Q. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes. Journal of Process Control, 2016, 39:11-20 doi: 10.1016/j.jprocont.2015.12.008
    [96] Liu Y, Wang F L, Chang Y Q, Ma R C. Operating optimality assessment and nonoptimal cause identification for non-Gaussian multimode processes with transitions. Chemical Engineering Science, 2015, 137:106-118 doi: 10.1016/j.ces.2015.06.016
    [97] Skogestad S. Plantwide control:the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5):487-507 doi: 10.1016/S0959-1524(00)00023-8
    [98] Jäschke J, Cao Y, Kariwala V. Self-optimizing control-a survey. Annual Reviews in Control, 2017, 43:199-223 doi: 10.1016/j.arcontrol.2017.03.001
    [99] 叶凌箭, 关宏伟.金氰化浸出过程的自优化控制.控制与决策, 2017, 32(3):481-486 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703013

    Ye Ling-Jian, Guan Hong-Wei. Self-optimizing control of gold cyanidation leaching process. Control and Decision, 2017, 32(3):481-486 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703013
    [100] 叶凌箭, 宋执环, 马修水.间歇过程的批间自优化控制.化工学报, 2015, 66(7):2573-2580 http://d.old.wanfangdata.com.cn/Periodical/hgxb201507028

    Ye Ling-Jian, Song Zhi-Huan, Ma Xiu-Shui. Batch-to-batch self-optimizing control for batch processes. CIESC Journal, 2015, 66(7):2573-2580 http://d.old.wanfangdata.com.cn/Periodical/hgxb201507028
    [101] 李康, 王福利, 何大阔, 贾润达.基于数据的湿法冶金全流程操作量优化设定补偿方法.自动化学报, 2017, 43(6):1047-1055 http://www.aas.net.cn/CN/abstract/abstract19080.shtml

    Li Kang, Wang Fu-Li, He Da-Kuo, Jia Run-Da. A data-based compensation method for optimal setting of hydrometallurgical process. Acta Automatica Sinica, 2017, 43(6):1047-1055 http://www.aas.net.cn/CN/abstract/abstract19080.shtml
    [102] Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107 doi: 10.1109/TKDE.2013.109
    [103] Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232):1012-1014 doi: 10.1038/nature07634
    [104] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design and Implementation. San Francisco, USA: ACM, 2004. 137-150
    [105] Zhang Y F, Gao Q X, Gao L X, Wang C R. PrIter:a distributed framework for prioritizing iterative computations. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(9):1884-1893 doi: 10.1109/TPDS.2012.272
    [106] Mackey L, Talwalkar A, Jordan M I. Divide-and-conquer matrix factorization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain: ACM, 2011. 1134-1142
    [107] Zhao W Z, Ma H F, He Q. Parallel K-means clustering based on MapReduce. In: Proceedings of the 1st International Conference on Cloud Computing. Beijing, China: IEEE, 2009. 674-679
    [108] Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, 2(1):1-127 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1206.5538
    [109] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
  • 加载中
图(2)
计量
  • 文章访问数:  3270
  • HTML全文浏览量:  675
  • PDF下载量:  1901
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 录用日期:  2018-07-23
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回