[1]
|
柴天佑.工业过程控制系统研究现状与发展方向.中国科学:信息科学, 2016, 46(8):1003-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608005.htmChai Tian-You. Industrial process control systems:research status and development direction. Scientia Sinica:Informationis, 2016, 46(8):1003-1015 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608005.htm
|
[2]
|
柴天佑.复杂工业过程运行优化与反馈控制.自动化学报, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtmlChai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11):1744-1757 http://www.aas.net.cn/CN/abstract/abstract18214.shtml
|
[3]
|
Zhang Y L, Dudzic M S. TIndustrial application of multivariate SPC to continuous caster start-up operations for breakout prevention. Control Engineering Practice, 2006, 14(11):1357-1375 doi: 10.1016/j.conengprac.2005.09.007
|
[4]
|
Zhang Y L, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies:from continuous to transitional operations. Journal of Process Control, 2006, 16(8):819-829 doi: 10.1016/j.jprocont.2006.03.005
|
[5]
|
Isermann R, Ballé P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Engineering Practice, 1997, 5(5):709-719 doi: 10.1016/S0967-0661(97)00053-1
|
[6]
|
Patton R J, Chen J. Observer-based fault detection and isolation:robustness and applications. Control Engineering Practice, 1997, 5(5):671-682 doi: 10.1016/S0967-0661(97)00049-X
|
[7]
|
周东华, 胡艳艳.动态系统的故障诊断技术.自动化学报, 2009, 35(6):748-758 http://www.aas.net.cn/CN/abstract/abstract13336.shtmlZhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6):748-758 http://www.aas.net.cn/CN/abstract/abstract13336.shtml
|
[8]
|
Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Transactions on Cybernetics, 2014, 44(8):1446-1458 doi: 10.1109/TCYB.2013.2286209
|
[9]
|
Wang H M, Yang G H, Ye D. Fault detection and isolation for affine fuzzy systems with sensor faults. IEEE Transactions on Fuzzy Systems, 2016, 24(5):1058-1071 doi: 10.1109/TFUZZ.2015.2501414
|
[10]
|
周东华, Ding X.容错控制理论及其应用.自动化学报, 2000, 26(6):788-797 http://www.aas.net.cn/CN/abstract/abstract14710.shtmlZhou Dong-Hua, Ding X. Theory and applications of fault tolerant control. Acta Automatica Sinica, 2000, 26(6):788-797 http://www.aas.net.cn/CN/abstract/abstract14710.shtml
|
[11]
|
Li Y X, Yang G H. Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica, 2016, 72:177-185 doi: 10.1016/j.automatica.2016.06.008
|
[12]
|
Zhang J X, Yang G H. Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions. IEEE Transactions on Automatic Control, 2017, 62(12):6529-6535 doi: 10.1109/TAC.2017.2705033
|
[13]
|
Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2):220-234 doi: 10.1016/j.arcontrol.2012.09.004
|
[14]
|
Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1):95-114 doi: 10.1016/S0169-7439(00)00062-9
|
[15]
|
Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8):1813-1831 doi: 10.1002/(ISSN)1547-5905
|
[16]
|
Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring. Automatica, 2009, 45(7):1593-1600 doi: 10.1016/j.automatica.2009.02.027
|
[17]
|
Zhao C H, Gao F R. Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis. IEEE Transactions on Control Systems Technology, 2016, 24(3):928-939 doi: 10.1109/TCST.2015.2464331
|
[18]
|
Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4):969-976 doi: 10.1002/(ISSN)1547-5905
|
[19]
|
Lee J M, Qin S J, Lee I B. Fault detection and diagnosis of multivariate processes based on modified independent component analysis. AIChE Journal, 2006, 52(10):3501-3514 doi: 10.1002/(ISSN)1547-5905
|
[20]
|
Kano M, Hasebe S, Hashimoto I, Ohno H. Evolution of multivariate statistical process control:application of independent component analysis and external analysis. Computers and Chemical Engineering, 2004, 28(6-7):1157-1166 doi: 10.1016/j.compchemeng.2003.09.011
|
[21]
|
Liu Q, Chai T Y, Qin S J. Fault diagnosis of continuous annealing processes using a reconstruction-based method. Control Engineering Practice, 2012, 20(5):511-518 doi: 10.1016/j.conengprac.2012.01.005
|
[22]
|
Zhao C H, Sun Y X. Subspace decomposition approach of fault deviations and its application to fault reconstruction. Control Engineering Practice, 2013, 21(10):1396-1409 doi: 10.1016/j.conengprac.2013.06.008
|
[23]
|
Jiang Q C, Yan X F, Huang B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference. IEEE Transactions on Industrial Electronics, 2016, 63(1):377-386 doi: 10.1109/TIE.2015.2466557
|
[24]
|
Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring. Journal of Chemometrics, 2001, 15(9):715-742 doi: 10.1002/(ISSN)1099-128X
|
[25]
|
Cherry G A, Qin S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172 doi: 10.1109/TSM.2006.873524
|
[26]
|
Zhu J L, Ge Z Q, Song Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data. IEEE Transactions on Industrial Informatics, 2017, 13(4):1877-1885 doi: 10.1109/TII.2017.2658732
|
[27]
|
Ge Z Q, Chen J H. Plant-wide industrial process monitoring:a distributed modeling framework. IEEE Transactions on Industrial Informatics, 2016, 12(1):310-321 doi: 10.1109/TII.2015.2509247
|
[28]
|
Liu Q, Qin S J, Chai T Y. Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA. IEEE Transactions on Automation Science and Engineering, 2013, 10(3):687-698 doi: 10.1109/TASE.2012.2230628
|
[29]
|
Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):97-108 doi: 10.1016/0169-7439(95)00043-7
|
[30]
|
Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37(1):41-59 doi: 10.1080/00401706.1995.10485888
|
[31]
|
Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9):728-741 doi: 10.1016/j.jprocont.2007.02.005
|
[32]
|
Zhao C H, Wang W, Qin Y, Gao F R. Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring. Industrial and Engineering Chemistry Research, 2015, 54(12):3154-3166 doi: 10.1021/ie504380c
|
[33]
|
Zhao C H, Gao F R. Statistical modeling and online fault detection for multiphase batch processes with analysis of between-phase relative changes. Chemometrics and Intelligent Laboratory Systems, 2014, 130:58-67 doi: 10.1016/j.chemolab.2013.09.003
|
[34]
|
Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130:135-150 doi: 10.1016/j.chemolab.2013.10.014
|
[35]
|
Kassidas A, MacGregor J F, Taylor P A. Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 1998, 44(4):864-875 doi: 10.1002/(ISSN)1547-5905
|
[36]
|
MacGregor J F, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE Journal, 1994, 40(5):826-838 doi: 10.1002/(ISSN)1547-5905
|
[37]
|
Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 2002, 16(3):119-128 doi: 10.1002/(ISSN)1099-128X
|
[38]
|
Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring. Automatica, 2010, 46(1):204-210 doi: 10.1016/j.automatica.2009.10.030
|
[39]
|
Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1):168-178 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f04d2e43492464d020b4fc1e4c9d8979
|
[40]
|
Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2):496-504 doi: 10.1002/aic.v59.2
|
[41]
|
Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014, 61(11):6429-6437 doi: 10.1109/TIE.2014.2303781
|
[42]
|
Peng K X, Zhang K, Li G, Zhou D H. Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control Engineering Practice, 2013, 21(4):360-369 doi: 10.1016/j.conengprac.2012.11.013
|
[43]
|
Li G, Qin S J, Zhou D H. Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models. Industrial and Engineering Chemistry Research, 2010, 49(19):9175-9183 doi: 10.1021/ie901939n
|
[44]
|
Zhao C H, Sun Y X. Multispace total projection to latent structures and its application to online process monitoring. IEEE Transactions on Control Systems Technology, 2014, 22(3):868-883 doi: 10.1109/TCST.2013.2264723
|
[45]
|
Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4):2239-2247 doi: 10.1109/TII.2012.2214394
|
[46]
|
Peng K X, Zhang K, You B, Dong J. Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process. IET Control Theory and Applications, 2015, 9(7):1135-1145 doi: 10.1049/iet-cta.2014.0732
|
[47]
|
彭开香, 马亮, 张凯.复杂工业过程质量相关的故障检测与诊断技术综述.自动化学报, 2017, 43(3):349-365 http://www.aas.net.cn/CN/abstract/abstract19014.shtmlPeng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes. Acta Automatica Sinica, 2017, 43(3):349-365 http://www.aas.net.cn/CN/abstract/abstract19014.shtml
|
[48]
|
Zhu Q Q, Liu Q, Qin S J. Concurrent quality and process monitoring with canonical correlation analysis. Journal of Process Control, 2017, 60:95-103 doi: 10.1016/j.jprocont.2017.06.017
|
[49]
|
Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):179-196 doi: 10.1016/0169-7439(95)00076-3
|
[50]
|
Negiz A, Çinar A. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 1997, 43(8):2002-2020 doi: 10.1002/(ISSN)1547-5905
|
[51]
|
Simoglou A, Martin E B, Morris A J. Statistical performance monitoring of dynamic multivariate processes using state space modelling. Computers and Chemical Engineering, 2002, 26(6):909-920 doi: 10.1016/S0098-1354(02)00012-1
|
[52]
|
Wang J, Qin S J. A new subspace identification approach based on principal component analysis. Journal of Process Control, 2002, 12(8):841-855 doi: 10.1016/S0959-1524(02)00016-1
|
[53]
|
Ding S X, Zhang P, Naik A, Ding E L, Huang B. Subspace method aided data-driven design of fault detection and isolation systems. Journal of Process Control, 2009, 19(9):1496-1510 doi: 10.1016/j.jprocont.2009.07.005
|
[54]
|
Li W H, Qin S J. Consistent dynamic PCA based on errors-in-variables subspace identification. Journal of Process Control, 2001, 11(6):661-678 doi: 10.1016/S0959-1524(00)00041-X
|
[55]
|
Li G, Qin S J, Zhou D H. A new method of dynamic latent-variable modeling for process monitoring. IEEE Transactions on Industrial Electronics, 2014, 61(11):6438-6445 doi: 10.1109/TIE.2014.2301761
|
[56]
|
Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67:1-11 doi: 10.1016/j.jprocont.2017.05.002
|
[57]
|
Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks. Computers and Chemical Engineering, 1992, 16(4):379-391 doi: 10.1016/0098-1354(92)80055-E
|
[58]
|
Lindgren F, Geladi P, Wold S. The kernel algorithm for PLS. Journal of Chemometrics, 1993, 7(1):45-59 doi: 10.1002/(ISSN)1099-128X
|
[59]
|
Zhu Q Q, Liu Q, Qin S J. Quality-relevant fault detection of nonlinear processes based on kernel concurrent canonical correlation analysis. In: Proceedings of the 2017 American Control Conference (ACC). Seattle, USA: IEEE, 2017. 24-26
|
[60]
|
Yoo C K, Lee J M, Vanrolleghem P A, Lee I B. On-line monitoring of batch processes using multiway independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2):151-163 doi: 10.1016/j.chemolab.2004.02.002
|
[61]
|
Pan Y J, Yang C J, An R Q, Sun Y X. Fault detection with improved principal component pursuit method. Chemometrics and Intelligent Laboratory Systems, 2016, 157:111-119 doi: 10.1016/j.chemolab.2016.07.003
|
[62]
|
樊继聪, 王友清, 秦泗钊.联合指标独立成分分析在多变量过程故障诊断中的应用.自动化学报, 2013, 39(5):494-501 http://www.aas.net.cn/CN/abstract/abstract17927.shtmlFan Ji-Cong, Wang You-Qing, Qin S Joe. Combined indices for ICA and their applications to multivariate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5):494-501 http://www.aas.net.cn/CN/abstract/abstract17927.shtml
|
[63]
|
Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Transactions on Control Systems Technology, 1996, 4(4):443-451 doi: 10.1109/87.508893
|
[64]
|
Luo J H, Bixby A, Pattipati K, Qiao L, Kawamoto M, Chigusa S. An interacting multiple model approach to model-based prognostics. In: Proceedings of the 2003 IEEE International Conference on Systems, Man, and Cybernetics. Conference Theme-System Security and Assurance (Cat. No.03CH37483). Washington, USA: IEEE, 2003. 189-194
|
[65]
|
Yan J H, Koç M, Lee J. A prognostic algorithm for machine performance assessment and its application. Production Planning and Control, 2004, 15(8):796-801 doi: 10.1080/09537280412331309208
|
[66]
|
Garga A K, McClintic K T, Campbell R L, Yang C C, Lebold M S, Hay T A, et al. Hybrid reasoning for prognostic learning in CBM systems. In: Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542). Big Sky, USA: IEEE, 2001. 2957-2969
|
[67]
|
高金吉.装备系统故障自愈原理研究.中国工程科学, 2005, 7(5):43-48 doi: 10.3969/j.issn.1009-1742.2005.05.007Gao Jin-Ji. Research on the fault self-recovery principle of equipment system. Engineering Science, 2005, 7(5):43-48 doi: 10.3969/j.issn.1009-1742.2005.05.007
|
[68]
|
王庆锋, 高金吉, 袁庆斌, 江志农.主风机静叶可调执行机构自愈化智能电液控制系统.机械工程学报, 2016, 52(20):185-192 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201620024Wang Qing-Feng, Gao Jin-Ji, Yuan Qing-Bin, Jiang Zhi-Nong. Research and application of self-recovery smart electro-hydraulic control system on axial-blower static blade adjustable actuator. Journal of Mechanical Engineering, 2016, 52(20):185-192 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201620024
|
[69]
|
Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3):264-275 doi: 10.1016/j.conengprac.2010.05.002
|
[70]
|
Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3):1703-1715 doi: 10.1109/TIE.2014.2349479
|
[71]
|
Qin S J. Process data analytics in the era of big data. AIChE Journal, 2014, 60(9):3092-3100 doi: 10.1002/aic.v60.9
|
[72]
|
刘强, 秦泗钊.过程工业大数据建模研究展望.自动化学报, 2016, 42(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtmlLiu Qiang, Qin S Joe. Perspectives on big data modeling of process industries. Acta Automatica Sinica, 2016, 42(2):161-171 http://www.aas.net.cn/CN/abstract/abstract18807.shtml
|
[73]
|
Kaspar M H, Ray W H. Dynamic PLS modelling for process control. Chemical Engineering Science, 1993, 48(20):3447-3461 doi: 10.1016/0009-2509(93)85001-6
|
[74]
|
Lakshminarayanan S, Shah S L, Nandakumar K. Modeling and control of multivariable processes:dynamic PLS approach. AIChE Journal, 1997, 43(9):2307-2322 doi: 10.1002/(ISSN)1547-5905
|
[75]
|
Li G, Liu B S, Qin S J, Zhou D H. Quality relevant data-driven modeling and monitoring of multivariate dynamic processes:the dynamic T-PLS approach. IEEE Transactions on Neural Networks, 2011, 22(12):2262-2271 doi: 10.1109/TNN.2011.2165853
|
[76]
|
Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68:64-72 doi: 10.1016/j.jprocont.2018.04.006
|
[77]
|
Dong Y N, Qin S J. Dynamic latent variable analytics for process operations and control. Computers and Chemical Engineering, 2018, 114(9):69-80 https://www.sciencedirect.com/science/article/pii/S0098135417303848#!
|
[78]
|
Liu Q, Qin S J, Chai T Y. Unevenly sampled dynamic data modeling and monitoring with an industrial application. IEEE Transactions on Industrial Informatics, 2017, 13(5):2203-2213 doi: 10.1109/TII.2017.2700520
|
[79]
|
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers and Chemical Engineering, 2009, 33(4):795-814 doi: 10.1016/j.compchemeng.2008.12.012
|
[80]
|
Singhal A, Seborg D E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process. Journal of Process Control, 2006, 16(6):601-613 doi: 10.1016/j.jprocont.2005.10.005
|
[81]
|
Li G, Qin S J, Ji Y D, Zhou D H. Reconstruction based fault prognosis for continuous processes. Control Engineering Practice, 2010, 18(10):1211-1219 doi: 10.1016/j.conengprac.2010.05.012
|
[82]
|
Wang K, Chen J H, Song Z H. Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme. IEEE Transactions on Control Systems Technology, 2017, DOI: 10.1109/TCST.2017.2765621
|
[83]
|
McNabb C A, Qin S J. Fault diagnosis in the feedback-invariant subspace of closed-loop systems. Industrial and Engineering Chemistry Research, 2005, 44(8):2359-2368 doi: 10.1021/ie049570o
|
[84]
|
Peng Z K, Lang Z Q, Wolters C, Billings S A, Worden K. Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis. Mechanical Systems and Signal Processing, 2011, 25(3):1045-1061 doi: 10.1016/j.ymssp.2010.09.014
|
[85]
|
Lang Z Q, Billings S A. Energy transfer properties of non-linear systems in the frequency domain. International Journal of Control, 2005, 78(5):345-362 doi: 10.1080/00207170500095759
|
[86]
|
孙鹏, 柴天佑, 周晓杰, 岳恒.氧化铝回转窑烧成带火焰图像识别系统.化工学报, 2008, 59(7):1839-1842 doi: 10.3321/j.issn:0438-1157.2008.07.043Sun Peng, Chai Tian-You, Zhou Xiao-Jie, Yue Heng. Flame image recognition system for alumina rotary kiln burning zone. Journal of Chemical Industry and Engineering (China), 2008, 59(7):1839-1842 doi: 10.3321/j.issn:0438-1157.2008.07.043
|
[87]
|
Lu T C, Chang C C. Color image retrieval technique based on color features and image bitmap. Information Processing and Management, 2007, 43(2):461-472 doi: 10.1016/j.ipm.2006.07.014
|
[88]
|
Zadeh L A. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 1968, 23(2):421-427 doi: 10.1016/0022-247X(68)90078-4
|
[89]
|
Tahani H, Keller J M. Information fusion in computer vision using the fuzzy integral. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(3):733-741 doi: 10.1109/21.57289
|
[90]
|
Keogh E, Kasetty S. On the need for time series data mining benchmarks:a survey and empirical demonstration. Data Mining and Knowledge Discovery, 2003, 7(4):349-371 doi: 10.1023/A:1024988512476
|
[91]
|
Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, et al. Addressing big data time series: mining trillions of time series subsequences under dynamic time warping. ACM Transactions on Knowledge Discovery from Data, 2013, 7(3): Article No.10
|
[92]
|
Yuan Q L, Lennox B. Control performance assessment for multivariable systems based on a modified relative variance technique. Journal of Process Control, 2009, 19(3):489-497 doi: 10.1016/j.jprocont.2008.05.005
|
[93]
|
Yu J, Qin S J. MIMO control performance monitoring using left/right diagonal interactors. Journal of Process Control, 2009, 19(8):1267-1276 doi: 10.1016/j.jprocont.2009.02.002
|
[94]
|
Lee K H, Tamayo E C, Huang B. Industrial implementation of controller performance analysis technology. Control Engineering Practice, 2010, 18(2):147-158 doi: 10.1016/j.conengprac.2009.09.011
|
[95]
|
Liu Y, Wang F L, Chang Y Q. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes. Journal of Process Control, 2016, 39:11-20 doi: 10.1016/j.jprocont.2015.12.008
|
[96]
|
Liu Y, Wang F L, Chang Y Q, Ma R C. Operating optimality assessment and nonoptimal cause identification for non-Gaussian multimode processes with transitions. Chemical Engineering Science, 2015, 137:106-118 doi: 10.1016/j.ces.2015.06.016
|
[97]
|
Skogestad S. Plantwide control:the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5):487-507 doi: 10.1016/S0959-1524(00)00023-8
|
[98]
|
Jäschke J, Cao Y, Kariwala V. Self-optimizing control-a survey. Annual Reviews in Control, 2017, 43:199-223 doi: 10.1016/j.arcontrol.2017.03.001
|
[99]
|
叶凌箭, 关宏伟.金氰化浸出过程的自优化控制.控制与决策, 2017, 32(3):481-486 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703013Ye Ling-Jian, Guan Hong-Wei. Self-optimizing control of gold cyanidation leaching process. Control and Decision, 2017, 32(3):481-486 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703013
|
[100]
|
叶凌箭, 宋执环, 马修水.间歇过程的批间自优化控制.化工学报, 2015, 66(7):2573-2580 http://d.old.wanfangdata.com.cn/Periodical/hgxb201507028Ye Ling-Jian, Song Zhi-Huan, Ma Xiu-Shui. Batch-to-batch self-optimizing control for batch processes. CIESC Journal, 2015, 66(7):2573-2580 http://d.old.wanfangdata.com.cn/Periodical/hgxb201507028
|
[101]
|
李康, 王福利, 何大阔, 贾润达.基于数据的湿法冶金全流程操作量优化设定补偿方法.自动化学报, 2017, 43(6):1047-1055 http://www.aas.net.cn/CN/abstract/abstract19080.shtmlLi Kang, Wang Fu-Li, He Da-Kuo, Jia Run-Da. A data-based compensation method for optimal setting of hydrometallurgical process. Acta Automatica Sinica, 2017, 43(6):1047-1055 http://www.aas.net.cn/CN/abstract/abstract19080.shtml
|
[102]
|
Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107 doi: 10.1109/TKDE.2013.109
|
[103]
|
Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232):1012-1014 doi: 10.1038/nature07634
|
[104]
|
Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design and Implementation. San Francisco, USA: ACM, 2004. 137-150
|
[105]
|
Zhang Y F, Gao Q X, Gao L X, Wang C R. PrIter:a distributed framework for prioritizing iterative computations. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(9):1884-1893 doi: 10.1109/TPDS.2012.272
|
[106]
|
Mackey L, Talwalkar A, Jordan M I. Divide-and-conquer matrix factorization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain: ACM, 2011. 1134-1142
|
[107]
|
Zhao W Z, Ma H F, He Q. Parallel K-means clustering based on MapReduce. In: Proceedings of the 1st International Conference on Cloud Computing. Beijing, China: IEEE, 2009. 674-679
|
[108]
|
Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, 2(1):1-127 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1206.5538
|
[109]
|
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
|