2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝电解生产智能优化制造研究综述

桂卫华 岳伟超 谢永芳 张红亮 阳春华

桂卫华, 岳伟超, 谢永芳, 张红亮, 阳春华. 铝电解生产智能优化制造研究综述. 自动化学报, 2018, 44(11): 1957-1970. doi: 10.16383/j.aas.2018.c180198
引用本文: 桂卫华, 岳伟超, 谢永芳, 张红亮, 阳春华. 铝电解生产智能优化制造研究综述. 自动化学报, 2018, 44(11): 1957-1970. doi: 10.16383/j.aas.2018.c180198
GUI Wei-Hua, YUE Wei-Chao, XIE Yong-Fang, ZHANG Hong-Liang, YANG Chun-Hua. A Review of Intelligent Optimal Manufacturing for Aluminum Reduction Production. ACTA AUTOMATICA SINICA, 2018, 44(11): 1957-1970. doi: 10.16383/j.aas.2018.c180198
Citation: GUI Wei-Hua, YUE Wei-Chao, XIE Yong-Fang, ZHANG Hong-Liang, YANG Chun-Hua. A Review of Intelligent Optimal Manufacturing for Aluminum Reduction Production. ACTA AUTOMATICA SINICA, 2018, 44(11): 1957-1970. doi: 10.16383/j.aas.2018.c180198

铝电解生产智能优化制造研究综述

doi: 10.16383/j.aas.2018.c180198
基金项目: 

国家自然科学基金 61751312

国家自然科学基金 61773405

中南大学创新创业师生共创项目 502390003

国家自然科学基金 61621062

国家自然科学基金 61725306

国家自然科学基金 61533020

详细信息
    作者简介:

    桂卫华  中国工程院院士, 中南大学信息科学与工程学院教授.1981年获得中南矿冶学院硕士学位.主要研究方向为工业大系统递阶和分散控制理论及应用, 复杂工业过程建模, 优化与控制应用和知识自动化.E-mail:gwh@csu.edu.cn

    岳伟超  中南大学博士研究生.2011年获得郑州轻工业大学学士学位.主要研究方向为迭代学习控制, 知识自动化, 知识表示与知识推理, 工业大数据.E-mail:yue_weichao@163.com

    张红亮  中南大学冶金与环境学院副教授.2002年获得中南大学学士学位.主要研究方向为有色金属反应器的设计, 诊断与工艺优化的电-磁-流-热-应力场的高效工程化仿, 新型仿真算法的开发, 反应器的物理场测试.E-mail:csu13574831278@csu.edu.cn

    阳春华  中南大学信息科学与工程学院教授.1985年获得中南工业大学学士学位.主要研究方向为复杂工业过程建模与优化, 分析检测与自动化装置, 智能化系统.E-mail:ychh@mail.csu.edu.cn

    通讯作者:

    谢永芳中南大学信息科学与工程学院教授.1993年获得中南工业大学学士学位.主要研究方向为分散控制和鲁棒控制, 过程控制, 工业大数据和知识自动化.本文通信作者.E-mail:yfxie@mail.csu.edu.cn

A Review of Intelligent Optimal Manufacturing for Aluminum Reduction Production

Funds: 

National Natural Science Foundation of China 61751312

National Natural Science Foundation of China 61773405

the Innovation Project of Central South University 502390003

National Natural Science Foundation of China 61621062

National Natural Science Foundation of China 61725306

National Natural Science Foundation of China 61533020

More Information
    Author Bio:

      Academician of the Chinese Academy of Engineering, and professor at the School of Information Science and Engineering, Central South University. He received his master degree from Central South Institute of Mining and Metallurgy in 1981. His research interest covers the theory and application of hierarchical and decentralized control of industrial large systems, complex industrial process modeling, optimization and control applications, and knowledge automation

      Ph. D. candidate at Central South University. He received his bachelor degree from Zheng- zhou University of Light Industry in 2011. His research interest covers iterative learning control, knowledge automation, knowledge representation and knowledge reasoning, and industrial big data

      Associate professor at the School of Metallurgy and Environment, Central South University. He received his bachelor degree from Central South University in 2002. His research interest covers non-ferrous metal reactor design, high efficiency engineering simulation of electromagnetic-fluid-thermal-stress field for diagnosis and process optimization, development of new simulation algorithm, and physical field test of reactor

      Professor at the School of Information Science and Engineering, Central South University. She received her bachelor degree from Central South University of Technology in 1985. Her research interest covers complex industrial process modeling and optimization, analysis, detection and automation, and intelligent system

    Corresponding author: XIE Yong-Fang   Professor at the School of Information Science and Engineering, Central South University. He received his bachelor degree from Central South University of Technology in 1993. His research interest covers decentralized control and robust control, process control, industrial big data, and knowledge automation. Corresponding author of this paper
  • 摘要: 铝电解行业具有战略基础地位,面临着诸多挑战性难题,包括原料来源复杂使得工况难以稳定优化运行、多目标协同优化难度大、控制决策智能化水平和数据利用率低以及铝电解企业在内外环境的不确定性影响下难以实时做出正确决策等.为了解决上述问题,本文提出构建一种集铝电解智能分布式感知系统、系列槽智能协同优化控制系统、大型槽智能优化控制系统、智能安全运行监控系统和虚拟制造系统于一体的铝电解智能优化制造系统的方法.同时提出了铝电解制造系统的未来发展目标和愿景功能,并给出了相关研究方向.最后给出了技术发展规划,提出中短期规划和中长期规划"两步走"战略,并对铝电解生产智能优化制造系统发展前景作出展望.
    1)  本文责任编委 付俊
  • 图  1  铝电解智能优化制造系统

    Fig.  1  Aluminum reduction intelligent optimization manufacturing system

    图  2  铝电解智能优化制造系统技术发展规划

    Fig.  2  Development planning of aluminum reduction intelligent manufacturing system

  • [1] 李太福, 姚立忠, 易军, 胡文金, 苏盈盈, 贾威.强跟踪平方根UKFNN的铝电解槽工耗动态演化模型.自动化学报, 2014, 40(3):522-530 http://www.aas.net.cn/CN/abstract/abstract18318.shtml

    Li Tai-Fu, Yao Li-Zhong, Yi Jun, Hu Wen-Jin, Su Ying-Ying, Jia Wei. An improved UKFNN based on square root filter and strong tracking filter for dynamic evolutionary modeling of aluminum reduction cell. Acta Automatica Sinica, 2014, 40(3):522-530 http://www.aas.net.cn/CN/abstract/abstract18318.shtml
    [2] 姜玉敬.近30年世界铝电解工业的发展与启示.世界有色金属, 2007, (11):15-18 http://www.cnki.com.cn/Article/CJFDTOTAL-COLO200711004.htm

    Jiang Yu-Jing. Development of global aluminum electrolysis industry in the last 30 years and its enlightenment. World Nonferrous Metals, 2007, (11):15-18 http://www.cnki.com.cn/Article/CJFDTOTAL-COLO200711004.htm
    [3] 王佐邦, 李呈明, 贺文毅.铝电解生产过程中氧化铝浓度的控制.有色金属设计, 2018, 45(2):101-103 doi: 10.3969/j.issn.1004-2660.2018.02.027

    Wang Zuo-Bang, Li Cheng-Ming, He Wen-Yi. Control of alumina concentration in aluminum electrolysis production. Nonferrous Metals Design, 2018, 45(2):101-103 doi: 10.3969/j.issn.1004-2660.2018.02.027
    [4] 胡红武, 曹曦.大型铝电解槽技术升级改造与应用.轻金属, 2017, (5):18-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKW20172017070500015084

    Hu Hong-Wu, Cao Xi. Technology upgrading and application of high amperage aluminum reduction pots. Light Metals, 2017, (5):18-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKW20172017070500015084
    [5] 邓文强. NEUI600kA超大容量铝电解槽技术应用与行业进步.世界有色金属, 2018, (8):44-45 http://d.old.wanfangdata.com.cn/Periodical/sjysjs201808027

    Deng Wen-Qiang. Technology application and industry progress of NEUI600kA large capacity aluminum reduction potcell. World Nonferrous Metals, 2018, (8):44-45 http://d.old.wanfangdata.com.cn/Periodical/sjysjs201808027
    [6] Zhan S Q, Li M, Zhou J M, Yang J H, Zhou Y W. CFD simulation of dissolution process of alumina in an aluminum reduction cell with two-particle phase population balance model. Applied Thermal Engineering, 2014, 73(1):805-818 doi: 10.1016/j.applthermaleng.2014.08.040
    [7] Li J, Liu Y X, Huang Y Z, Wang H Z, Han N, Yang X R. Bath temperature model for point-feeding aluminium reduction cells. Transactions of Nonferrous Metals Society of China, 1994, 4(1):26-32 http://www.cnki.com.cn/Article/CJFDTotal-ZYSY401.004.htm
    [8] Boadu K D, Omani F K. Adaptive control of feed in the hall-héroult cell using a neural network. JOM, 2010, 62(2):32-36 doi: 10.1007/s11837-010-0028-4
    [9] 郭俊, 桂卫华, 文新海.铝电解生产过程的多目标优化.中南大学学报(自然科学版), 2012, 43(2):548-553 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201202025

    Guo Jun, Gui Wei-Hua, Wen Xin-Hai. Multi-objective optimization for aluminum electrolysis production process. Journal of Central South University (Science and Technology), 2012, 43(2):548-553 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201202025
    [10] Saenz de Ugarte B, Hajji A, Pellerin R, Artiba A. Development and integration of a reactive real-time decision support system in the aluminum industry. Engineering Applications of Artificial Intelligence, 2009, 22(6):897-905 doi: 10.1016/j.engappai.2008.10.021
    [11] Kolås S. Defining and verifying the "correlation line" in aluminum electrolysis. JOM, 2007, 59(5):55-60 doi: 10.1007/s11837-007-0066-8
    [12] Kolås S, Støre T. Bath temperature and AlF3 control of an aluminium electrolysis cell. Control Engineering Practice, 2009, 17(9):1035-1043 doi: 10.1016/j.conengprac.2009.03.008
    [13] Stam M A, Taylor M P, Chen J J J, Mulder A, Rodrigo R. Development of a multivariate process control strategy for aluminium reduction cells. In: Proceedings of the 2009 Minerals, Metals and Materials Society. California, USA: Springer, 2009. 311-315
    [14] Majid N A A, Taylor M P, Chen J J J, Stam M A, Mulder A, Young B R. Aluminium process fault detection by multiway principal component analysis. Control Engineering Practice, 2011, 19(4):367-379 http://www.sciencedirect.com/science/article/pii/S0967066110002650
    [15] 沈宁.我国铝电解氧化铝浓度控制的进展.轻金属, 1998, (6):25-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460276

    Shen Ning. Progress in the control of aluminum electrolytic alumina concentration in China. Light Metals, 1998, (6):25-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460276
    [16] 王迎春, 耿长福, 吴宏鑫.一种自适应模糊控制器及其在电解铝过程控制中的应用.航天控制, 2001, (4):22-28 doi: 10.3969/j.issn.1006-3242.2001.04.004

    Wang Ying-Chun, Geng Chang-Fu, Wu Hong-Xin. An adaptive fuzzy controller and its application in the process control of aluminum electrolysis. Aerospace Control, 2001, (4):22-28 doi: 10.3969/j.issn.1006-3242.2001.04.004
    [17] 杨振海, 孙淑萍, 邱竹贤.中国铝电解槽计算机控制技术发展的回顾与展望.东北大学学报(自然科学版), 1999, 20(3):283-285 doi: 10.3321/j.issn:1005-3026.1999.03.017

    Yang Zhen-Hai, Sun Shu-Ping, Qiu Zhu-Xian. Review and prospect of computer control system for aluminum smelters in China. Journal of Northeast University (Natural Science), 1999, 20(3):283-285 doi: 10.3321/j.issn:1005-3026.1999.03.017
    [18] 周铁托, 殷恩生, 刘永刚, 杨之旭.铝电解槽计算机控制技术综合评述(上).轻金属, 1998, (4):35-38 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460256

    Zhou Tie-Tuo, Yin En-Sheng, Liu Yong-Gang, Yang Zhi-Xu. A comprehensive review of computer control technology for aluminum reduction Cell. Light Metals, 1998, (4):35-38 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460256
    [19] 邹忠, 张红亮, 陆宏军.铝电解过程中氧化铝浓度的控制.矿冶工程, 2004, 24(5):49-52, 56 doi: 10.3969/j.issn.0253-6099.2004.05.014

    Zou Zhong, Zhang Hong-Liang, Lu Hong-Jun. Control of alumina concentration in aluminum electrolysis. Mining and Metallurgical Engineering, 2004, 24(5):49-52, 56 doi: 10.3969/j.issn.0253-6099.2004.05.014
    [20] 崔桂梅, 杨海靳, 刘丕亮, 于凯.基于数据的铝电解槽氧化铝浓度预测.计算机仿真, 2018, 35(2):305-309 doi: 10.3969/j.issn.1006-9348.2018.02.065

    Cui Gui-Mei, Yang Hai-Jin, Liu Pi-Liang, Yu Kai. Prediction of alumina density in aluminum electrolysis based on data. Computer Simulation, 2018, 35(2):305-309 doi: 10.3969/j.issn.1006-9348.2018.02.065
    [21] 林景栋, 李岭, 张鹏.基于正交变换的氧化铝浓度预测.武汉工程大学学报, 2010, 32(9):9-13 doi: 10.3969/j.issn.1674-2869.2010.09.003

    Lin Jing-Dong, Li Ling, Zhang Peng. Research of predicting alumina concentration based on orthogonal transformation. Journal of Wuhan Institute of Technology, 2010, 32(9):9-13 doi: 10.3969/j.issn.1674-2869.2010.09.003
    [22] 任晓宁, 曾水平.基于最小二乘法的氧化铝浓度模型参数估算.冶金自动化, 2012, (S2):136-138 http://d.old.wanfangdata.com.cn/Conference/7731684

    Ren Xiao-Ning, Zeng Shui-Ping. Parameter estimation of alumina concentration model based on least square method. Metallurgical Industry Automation, 2012, (S2):136-138 http://d.old.wanfangdata.com.cn/Conference/7731684
    [23] Aalbu J. Adaptive control of alumina reduction cells with pointfeeders. IFAC Proceedings Volumes, 1987, 20(8):199-201 doi: 10.1016/S1474-6670(17)59092-8
    [24] Yi J, Huang D, Fu S Y, He H B, Li T F. Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process. IEEE Transactions on Industrial Electronics, 2016, 63(4):2488-2500 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c085fcc0720c629fdb93d9f8f75dd428
    [25] Cheung C Y, Menictas C, Bao J, Skyllas-Kazacos M, Welch B J. Spatial thermal condition in aluminum reduction cells under influences of electrolyte flow. Chemical Engineering Research and Design, 2015, 100:1-14 doi: 10.1016/j.cherd.2015.04.034
    [26] 陈婷, 康自华, 曹斌.基于统计过程控制方法的铝电解生产工艺优化.有色冶金设计与研究, 2018, 39(3):14-19 doi: 10.3969/j.issn.1004-4345.2018.03.004

    Chen Ting, Kang Zi-Hua, Cao Bin. Optimization of aluminum electrolysis production process and energy efficiency by statistical process control method. Nonferrous Metals Engineering and Research, 2018, 39(3):14-19 doi: 10.3969/j.issn.1004-4345.2018.03.004
    [27] Li H S, Jiang C W. Development and application of soft sensor model for heterogeneous information of aluminum reduction cells. Control Engineering Practice, 2011, 19(10):1109-1115 doi: 10.1016/j.conengprac.2011.05.010
    [28] Yue W C, Chen X F, Gui W H, Xie Y F, Zhang H L. A knowledge reasoning fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition. Frontiers of Chemical Science and Engineering, 2017, 11(3):414-428 doi: 10.1007/s11705-017-1663-x
    [29] Cui J R, Xing B B, Zhang Y M, Yin Y X, Wang Z Q, Huang R Y, et al. Design and implementation of online measuring instrument for aluminum electrolytic anode current distribution. In: Proceedings of the 2015 IEEE International Conference on Information and Automation. Lijiang, China: IEEE, 2015. 1877-1881
    [30] Yang S, Zou Z, Li J, Zhang H L. Online anode current signal in aluminum reduction cells:measurements and prospects. JOM, 2016, 68(2):623-634 doi: 10.1007/s11837-015-1738-4
    [31] Cheung C Y, Menictas C, Bao J, Skyllas-Kazacos M, Welch B J. Characterization of individual anode current signals in aluminum reduction cells. Industrial and Engineering Chemistry Research, 2013, 52(28):9632-9644 doi: 10.1021/ie400296u
    [32] Yao Y, Cheung C Y, Bao J, Skyllas-Kazacos M, Welch B J, Akhmetov S. Detection of local cell conditions based on individual anode current measurements. Light Metals 2016. Cham: Springer, 2016. 595-600
    [33] Cheung C Y, Menictas C, Bao J, Skyllas-Kazacos M, Welch B J. Spatial temperature profiles in an aluminum reduction cell under different anode current distributions. AIChE Journal, 2013, 59(5):1544-1556 doi: 10.1002/aic.13942
    [34] Dion L, Kiss L I, Poncsák S, Lagacé C L. Simulator of non-homogenous alumina and current distribution in an aluminum electrolysis cell to predict low-voltage anode effects. Metallurgical and Materials Transactions B, 2018, 49(2):737-755 doi: 10.1007/s11663-018-1174-2
    [35] 李界家, 柴天佑.辨识及故障检测技术在铝电解生产过程中的应用.自动化学报, 1998, 24(2):275-277 http://www.aas.net.cn/CN/abstract/abstract16853.shtml

    Li Jie-Jia, Chai Tian-You. Applications of identification and fault detection techniques to aluminum electrolysis process. Acta Automatica Sinica, 1998, 24(2):275-277 http://www.aas.net.cn/CN/abstract/abstract16853.shtml
    [36] 李劼, 丁凤其, 李民军, 肖劲, 邹忠.预焙铝电解槽阳极效应的智能预报方法.中南大学学报, 2001, 32(1):29-32 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200101008

    Li Jie, Ding Feng-Qi, Li Min-Jun, Xiao Jin, Zou Zhong. An intelligent prediction method for anode effect of prebaked aluminum reduction cell. Journal of Central South University of Technology, 2001, 32(1):29-32 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200101008
    [37] Vogt H, Thonstad J. The voltage of alumina reduction cells prior to the anode effect. Journal of Applied Electrochemistry, 2002, 32(3):241-249 doi: 10.1023/A:1015533928104
    [38] Yi J, Huang D, Fu S Y, He H B, Li T F. Optimized relative transformation matrix using bacterial foraging algorithm for process fault detection. IEEE Transactions on Industrial Electronics, 2016, 63(4):2595-2605 doi: 10.1109/TIE.2016.2515057
    [39] Song W, Liu Y, Li J H. Mining high utility itemsets by dynamically pruning the tree structure. Applied Intelligence, 2014, 40(1):29-43 http://dl.acm.org/citation.cfm?id=2583617
    [40] Chen Z G, Li Y G, Chen X F, Yang C H, Gui W H. Semantic network based on intuitionistic fuzzy directed hyper-graphs and application to aluminum electrolysis cell condition identification. IEEE Access, 2017, 5:20145-20156 doi: 10.1109/ACCESS.2017.2752200
    [41] Majid N A A, Taylor M P, Chen J J J, Young B R. Multivariate statistical monitoring of the aluminium smelting process. Computers and Chemical Engineering, 2011, 35(11):2457-2468 doi: 10.1016/j.compchemeng.2011.03.001
    [42] Majid N A A, Taylor M P, Chen J J J, Stam M A, Mulder A, Young B R. Aluminium process fault detection by multiway principal component analysis. Control Engineering Practice, 2011, 19(4):367-379 doi: 10.1016/j.conengprac.2010.12.005
    [43] Del Campo J J, Sancho J P. Low bath ratio operation in side breaking v. s. s. pots. Aluminium, 1994, 70(9-10):587-589
    [44] Desclaux P. AlF_3 additions based on bath temperature measurements. In: Proceedings of the 1987 Minerals, Metals and Materials Society. Warrendale, USA: Springer, 1987. 309-313
    [45] Wilson M J. Practical considerations used in the development of a method for calculating aluminium fluoride additions based on cell temperature. In: Proceedings of the 1992 Minerals, Metals and Materials Society. Warrendale, USA: Springer, 1992. 375-378
    [46] Rieck T, Iffert M, White P, Rodrigo R, Kelchtermans R. Increased current efficiency and reduced energy consumption at the TRIMET smelter Essen using 9 box matrix control. In: Proceedings of the 2016 Essential Readings in Light Metals. Cham: Springer, 2016. 817-824
    [47] 李民军.大型预焙铝电解槽模糊专家控制器及新颖热平衡控制模型的研究[博士学位论文], 中南大学, 中国, 1999.

    Li Min-Jun. Study on fuzzy expert controller and novel heat balance control model for large pre-baked aluminum reduction cell[Ph.D. dissertation], Central South University, China, 1999.
    [48] Hyland M M, Patterson E C, Stevens-McFadden F, Welch B J. Aluminium fluoride consumption and control in smelting cells. Scandinavian Journal of Metallurgy, 2001, 30(6):404-414 doi: 10.1034/j.1600-0692.2001.300609.x
    [49] Drengstig T, Ljungquist D, Foss B A. On the AlF_3 and temperature control of an aluminum electrolysis cell. IEEE Transactions on Control Systems Technology, 1998, 6(2):157-171 doi: 10.1109/87.664183
    [50] Huang Y B, Qu X D, Zhou J M. Coupled heat/mass-balance model for analyzing correlation between excess AlF_3 concentration and aluminum electrolyte temperature. Transactions of Nonferrous Metals Society of China, 2009, 19(3):724-729 doi: 10.1016/S1003-6326(08)60340-4
    [51] Zeng S P, Li J H, Wei Y Q, Cao D Y. Calculation and control of equivalent superheat for 300kA prebake aluminum electrolysis. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Ji'nan, China: IEEE, 2010. 4755-4760
    [52] Friedrich B, Arnold A, Kryukov V, Ermushina E. Electrolyte superheat during electrolytic production of Al. In: Proceedings of the 2007 European Metallurgical Conference. Dusseldorf, Germany: GOMB, 2007. 1-12
    [53] Zeng S P, Yi W C. Design and application of multidimensional decision system for aluminum electrolysis. In: Proceedings of the 2015 IEEE International Conference on Information and Automation. Lijiang, China: IEEE, 2015. 1808-1811
    [54] Zeng S P, Cui F W. Dynamic decision model for amount of AlF_3 addition in industrial aluminum electrolysis. In: Proceedings of the 3rd International Conference on Mechatronics, Robotics and Automation. Shenzhen, China: Atlantis Press, 2015. 787-791
    [55] Chen X F, Ying X W, Huang K K. Identification of superheat of aluminum electrolytic cell based on computer vision and expert rule. In: Proceedings of the 2017 Chinese Automation Congress. Ji'nan, China: IEEE, 2017. 4705-4710
    [56] Yang J S, Yu H, Chen X F. Soft measuring model of superheat degree in the aluminum electrolysis production. In: Proceedings of the 2017 Chinese Automation Congress. Ji'nan, China: IEEE, 2017. 160-166
    [57] Liu Y S, Xia S Y, Yu H. Prediction of aluminum electrolysis superheat based on relative density noise filtering random forest. In: Proceedings of the 2017 Chinese Automation Congress. Ji'nan, China: IEEE, 2017. 323-328
    [58] Taylor M P, Chen J J J. Advances in process control for aluminium smelters. Materials and Manufacturing Processes, 2007, 22(7-8):947-957 doi: 10.1080/10426910701454139
  • 加载中
图(2)
计量
  • 文章访问数:  1888
  • HTML全文浏览量:  731
  • PDF下载量:  1114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 录用日期:  2018-09-17
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回