[1]
|
李太福, 姚立忠, 易军, 胡文金, 苏盈盈, 贾威.强跟踪平方根UKFNN的铝电解槽工耗动态演化模型.自动化学报, 2014, 40(3):522-530 http://www.aas.net.cn/CN/abstract/abstract18318.shtmlLi Tai-Fu, Yao Li-Zhong, Yi Jun, Hu Wen-Jin, Su Ying-Ying, Jia Wei. An improved UKFNN based on square root filter and strong tracking filter for dynamic evolutionary modeling of aluminum reduction cell. Acta Automatica Sinica, 2014, 40(3):522-530 http://www.aas.net.cn/CN/abstract/abstract18318.shtml
|
[2]
|
姜玉敬.近30年世界铝电解工业的发展与启示.世界有色金属, 2007, (11):15-18 http://www.cnki.com.cn/Article/CJFDTOTAL-COLO200711004.htmJiang Yu-Jing. Development of global aluminum electrolysis industry in the last 30 years and its enlightenment. World Nonferrous Metals, 2007, (11):15-18 http://www.cnki.com.cn/Article/CJFDTOTAL-COLO200711004.htm
|
[3]
|
王佐邦, 李呈明, 贺文毅.铝电解生产过程中氧化铝浓度的控制.有色金属设计, 2018, 45(2):101-103 doi: 10.3969/j.issn.1004-2660.2018.02.027Wang Zuo-Bang, Li Cheng-Ming, He Wen-Yi. Control of alumina concentration in aluminum electrolysis production. Nonferrous Metals Design, 2018, 45(2):101-103 doi: 10.3969/j.issn.1004-2660.2018.02.027
|
[4]
|
胡红武, 曹曦.大型铝电解槽技术升级改造与应用.轻金属, 2017, (5):18-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKW20172017070500015084Hu Hong-Wu, Cao Xi. Technology upgrading and application of high amperage aluminum reduction pots. Light Metals, 2017, (5):18-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKW20172017070500015084
|
[5]
|
邓文强. NEUI600kA超大容量铝电解槽技术应用与行业进步.世界有色金属, 2018, (8):44-45 http://d.old.wanfangdata.com.cn/Periodical/sjysjs201808027Deng Wen-Qiang. Technology application and industry progress of NEUI600kA large capacity aluminum reduction potcell. World Nonferrous Metals, 2018, (8):44-45 http://d.old.wanfangdata.com.cn/Periodical/sjysjs201808027
|
[6]
|
Zhan S Q, Li M, Zhou J M, Yang J H, Zhou Y W. CFD simulation of dissolution process of alumina in an aluminum reduction cell with two-particle phase population balance model. Applied Thermal Engineering, 2014, 73(1):805-818 doi: 10.1016/j.applthermaleng.2014.08.040
|
[7]
|
Li J, Liu Y X, Huang Y Z, Wang H Z, Han N, Yang X R. Bath temperature model for point-feeding aluminium reduction cells. Transactions of Nonferrous Metals Society of China, 1994, 4(1):26-32 http://www.cnki.com.cn/Article/CJFDTotal-ZYSY401.004.htm
|
[8]
|
Boadu K D, Omani F K. Adaptive control of feed in the hall-héroult cell using a neural network. JOM, 2010, 62(2):32-36 doi: 10.1007/s11837-010-0028-4
|
[9]
|
郭俊, 桂卫华, 文新海.铝电解生产过程的多目标优化.中南大学学报(自然科学版), 2012, 43(2):548-553 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201202025Guo Jun, Gui Wei-Hua, Wen Xin-Hai. Multi-objective optimization for aluminum electrolysis production process. Journal of Central South University (Science and Technology), 2012, 43(2):548-553 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201202025
|
[10]
|
Saenz de Ugarte B, Hajji A, Pellerin R, Artiba A. Development and integration of a reactive real-time decision support system in the aluminum industry. Engineering Applications of Artificial Intelligence, 2009, 22(6):897-905 doi: 10.1016/j.engappai.2008.10.021
|
[11]
|
Kolås S. Defining and verifying the "correlation line" in aluminum electrolysis. JOM, 2007, 59(5):55-60 doi: 10.1007/s11837-007-0066-8
|
[12]
|
Kolås S, Støre T. Bath temperature and AlF3 control of an aluminium electrolysis cell. Control Engineering Practice, 2009, 17(9):1035-1043 doi: 10.1016/j.conengprac.2009.03.008
|
[13]
|
Stam M A, Taylor M P, Chen J J J, Mulder A, Rodrigo R. Development of a multivariate process control strategy for aluminium reduction cells. In: Proceedings of the 2009 Minerals, Metals and Materials Society. California, USA: Springer, 2009. 311-315
|
[14]
|
Majid N A A, Taylor M P, Chen J J J, Stam M A, Mulder A, Young B R. Aluminium process fault detection by multiway principal component analysis. Control Engineering Practice, 2011, 19(4):367-379 http://www.sciencedirect.com/science/article/pii/S0967066110002650
|
[15]
|
沈宁.我国铝电解氧化铝浓度控制的进展.轻金属, 1998, (6):25-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460276Shen Ning. Progress in the control of aluminum electrolytic alumina concentration in China. Light Metals, 1998, (6):25-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460276
|
[16]
|
王迎春, 耿长福, 吴宏鑫.一种自适应模糊控制器及其在电解铝过程控制中的应用.航天控制, 2001, (4):22-28 doi: 10.3969/j.issn.1006-3242.2001.04.004Wang Ying-Chun, Geng Chang-Fu, Wu Hong-Xin. An adaptive fuzzy controller and its application in the process control of aluminum electrolysis. Aerospace Control, 2001, (4):22-28 doi: 10.3969/j.issn.1006-3242.2001.04.004
|
[17]
|
杨振海, 孙淑萍, 邱竹贤.中国铝电解槽计算机控制技术发展的回顾与展望.东北大学学报(自然科学版), 1999, 20(3):283-285 doi: 10.3321/j.issn:1005-3026.1999.03.017Yang Zhen-Hai, Sun Shu-Ping, Qiu Zhu-Xian. Review and prospect of computer control system for aluminum smelters in China. Journal of Northeast University (Natural Science), 1999, 20(3):283-285 doi: 10.3321/j.issn:1005-3026.1999.03.017
|
[18]
|
周铁托, 殷恩生, 刘永刚, 杨之旭.铝电解槽计算机控制技术综合评述(上).轻金属, 1998, (4):35-38 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460256Zhou Tie-Tuo, Yin En-Sheng, Liu Yong-Gang, Yang Zhi-Xu. A comprehensive review of computer control technology for aluminum reduction Cell. Light Metals, 1998, (4):35-38 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800460256
|
[19]
|
邹忠, 张红亮, 陆宏军.铝电解过程中氧化铝浓度的控制.矿冶工程, 2004, 24(5):49-52, 56 doi: 10.3969/j.issn.0253-6099.2004.05.014Zou Zhong, Zhang Hong-Liang, Lu Hong-Jun. Control of alumina concentration in aluminum electrolysis. Mining and Metallurgical Engineering, 2004, 24(5):49-52, 56 doi: 10.3969/j.issn.0253-6099.2004.05.014
|
[20]
|
崔桂梅, 杨海靳, 刘丕亮, 于凯.基于数据的铝电解槽氧化铝浓度预测.计算机仿真, 2018, 35(2):305-309 doi: 10.3969/j.issn.1006-9348.2018.02.065Cui Gui-Mei, Yang Hai-Jin, Liu Pi-Liang, Yu Kai. Prediction of alumina density in aluminum electrolysis based on data. Computer Simulation, 2018, 35(2):305-309 doi: 10.3969/j.issn.1006-9348.2018.02.065
|
[21]
|
林景栋, 李岭, 张鹏.基于正交变换的氧化铝浓度预测.武汉工程大学学报, 2010, 32(9):9-13 doi: 10.3969/j.issn.1674-2869.2010.09.003Lin Jing-Dong, Li Ling, Zhang Peng. Research of predicting alumina concentration based on orthogonal transformation. Journal of Wuhan Institute of Technology, 2010, 32(9):9-13 doi: 10.3969/j.issn.1674-2869.2010.09.003
|
[22]
|
任晓宁, 曾水平.基于最小二乘法的氧化铝浓度模型参数估算.冶金自动化, 2012, (S2):136-138 http://d.old.wanfangdata.com.cn/Conference/7731684Ren Xiao-Ning, Zeng Shui-Ping. Parameter estimation of alumina concentration model based on least square method. Metallurgical Industry Automation, 2012, (S2):136-138 http://d.old.wanfangdata.com.cn/Conference/7731684
|
[23]
|
Aalbu J. Adaptive control of alumina reduction cells with pointfeeders. IFAC Proceedings Volumes, 1987, 20(8):199-201 doi: 10.1016/S1474-6670(17)59092-8
|
[24]
|
Yi J, Huang D, Fu S Y, He H B, Li T F. Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process. IEEE Transactions on Industrial Electronics, 2016, 63(4):2488-2500 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c085fcc0720c629fdb93d9f8f75dd428
|
[25]
|
Cheung C Y, Menictas C, Bao J, Skyllas-Kazacos M, Welch B J. Spatial thermal condition in aluminum reduction cells under influences of electrolyte flow. Chemical Engineering Research and Design, 2015, 100:1-14 doi: 10.1016/j.cherd.2015.04.034
|
[26]
|
陈婷, 康自华, 曹斌.基于统计过程控制方法的铝电解生产工艺优化.有色冶金设计与研究, 2018, 39(3):14-19 doi: 10.3969/j.issn.1004-4345.2018.03.004Chen Ting, Kang Zi-Hua, Cao Bin. Optimization of aluminum electrolysis production process and energy efficiency by statistical process control method. Nonferrous Metals Engineering and Research, 2018, 39(3):14-19 doi: 10.3969/j.issn.1004-4345.2018.03.004
|
[27]
|
Li H S, Jiang C W. Development and application of soft sensor model for heterogeneous information of aluminum reduction cells. Control Engineering Practice, 2011, 19(10):1109-1115 doi: 10.1016/j.conengprac.2011.05.010
|
[28]
|
Yue W C, Chen X F, Gui W H, Xie Y F, Zhang H L. A knowledge reasoning fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition. Frontiers of Chemical Science and Engineering, 2017, 11(3):414-428 doi: 10.1007/s11705-017-1663-x
|
[29]
|
Cui J R, Xing B B, Zhang Y M, Yin Y X, Wang Z Q, Huang R Y, et al. Design and implementation of online measuring instrument for aluminum electrolytic anode current distribution. In: Proceedings of the 2015 IEEE International Conference on Information and Automation. Lijiang, China: IEEE, 2015. 1877-1881
|
[30]
|
Yang S, Zou Z, Li J, Zhang H L. Online anode current signal in aluminum reduction cells:measurements and prospects. JOM, 2016, 68(2):623-634 doi: 10.1007/s11837-015-1738-4
|
[31]
|
Cheung C Y, Menictas C, Bao J, Skyllas-Kazacos M, Welch B J. Characterization of individual anode current signals in aluminum reduction cells. Industrial and Engineering Chemistry Research, 2013, 52(28):9632-9644 doi: 10.1021/ie400296u
|
[32]
|
Yao Y, Cheung C Y, Bao J, Skyllas-Kazacos M, Welch B J, Akhmetov S. Detection of local cell conditions based on individual anode current measurements. Light Metals 2016. Cham: Springer, 2016. 595-600
|
[33]
|
Cheung C Y, Menictas C, Bao J, Skyllas-Kazacos M, Welch B J. Spatial temperature profiles in an aluminum reduction cell under different anode current distributions. AIChE Journal, 2013, 59(5):1544-1556 doi: 10.1002/aic.13942
|
[34]
|
Dion L, Kiss L I, Poncsák S, Lagacé C L. Simulator of non-homogenous alumina and current distribution in an aluminum electrolysis cell to predict low-voltage anode effects. Metallurgical and Materials Transactions B, 2018, 49(2):737-755 doi: 10.1007/s11663-018-1174-2
|
[35]
|
李界家, 柴天佑.辨识及故障检测技术在铝电解生产过程中的应用.自动化学报, 1998, 24(2):275-277 http://www.aas.net.cn/CN/abstract/abstract16853.shtmlLi Jie-Jia, Chai Tian-You. Applications of identification and fault detection techniques to aluminum electrolysis process. Acta Automatica Sinica, 1998, 24(2):275-277 http://www.aas.net.cn/CN/abstract/abstract16853.shtml
|
[36]
|
李劼, 丁凤其, 李民军, 肖劲, 邹忠.预焙铝电解槽阳极效应的智能预报方法.中南大学学报, 2001, 32(1):29-32 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200101008Li Jie, Ding Feng-Qi, Li Min-Jun, Xiao Jin, Zou Zhong. An intelligent prediction method for anode effect of prebaked aluminum reduction cell. Journal of Central South University of Technology, 2001, 32(1):29-32 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200101008
|
[37]
|
Vogt H, Thonstad J. The voltage of alumina reduction cells prior to the anode effect. Journal of Applied Electrochemistry, 2002, 32(3):241-249 doi: 10.1023/A:1015533928104
|
[38]
|
Yi J, Huang D, Fu S Y, He H B, Li T F. Optimized relative transformation matrix using bacterial foraging algorithm for process fault detection. IEEE Transactions on Industrial Electronics, 2016, 63(4):2595-2605 doi: 10.1109/TIE.2016.2515057
|
[39]
|
Song W, Liu Y, Li J H. Mining high utility itemsets by dynamically pruning the tree structure. Applied Intelligence, 2014, 40(1):29-43 http://dl.acm.org/citation.cfm?id=2583617
|
[40]
|
Chen Z G, Li Y G, Chen X F, Yang C H, Gui W H. Semantic network based on intuitionistic fuzzy directed hyper-graphs and application to aluminum electrolysis cell condition identification. IEEE Access, 2017, 5:20145-20156 doi: 10.1109/ACCESS.2017.2752200
|
[41]
|
Majid N A A, Taylor M P, Chen J J J, Young B R. Multivariate statistical monitoring of the aluminium smelting process. Computers and Chemical Engineering, 2011, 35(11):2457-2468 doi: 10.1016/j.compchemeng.2011.03.001
|
[42]
|
Majid N A A, Taylor M P, Chen J J J, Stam M A, Mulder A, Young B R. Aluminium process fault detection by multiway principal component analysis. Control Engineering Practice, 2011, 19(4):367-379 doi: 10.1016/j.conengprac.2010.12.005
|
[43]
|
Del Campo J J, Sancho J P. Low bath ratio operation in side breaking v. s. s. pots. Aluminium, 1994, 70(9-10):587-589
|
[44]
|
Desclaux P. AlF_3 additions based on bath temperature measurements. In: Proceedings of the 1987 Minerals, Metals and Materials Society. Warrendale, USA: Springer, 1987. 309-313
|
[45]
|
Wilson M J. Practical considerations used in the development of a method for calculating aluminium fluoride additions based on cell temperature. In: Proceedings of the 1992 Minerals, Metals and Materials Society. Warrendale, USA: Springer, 1992. 375-378
|
[46]
|
Rieck T, Iffert M, White P, Rodrigo R, Kelchtermans R. Increased current efficiency and reduced energy consumption at the TRIMET smelter Essen using 9 box matrix control. In: Proceedings of the 2016 Essential Readings in Light Metals. Cham: Springer, 2016. 817-824
|
[47]
|
李民军.大型预焙铝电解槽模糊专家控制器及新颖热平衡控制模型的研究[博士学位论文], 中南大学, 中国, 1999.Li Min-Jun. Study on fuzzy expert controller and novel heat balance control model for large pre-baked aluminum reduction cell[Ph.D. dissertation], Central South University, China, 1999.
|
[48]
|
Hyland M M, Patterson E C, Stevens-McFadden F, Welch B J. Aluminium fluoride consumption and control in smelting cells. Scandinavian Journal of Metallurgy, 2001, 30(6):404-414 doi: 10.1034/j.1600-0692.2001.300609.x
|
[49]
|
Drengstig T, Ljungquist D, Foss B A. On the AlF_3 and temperature control of an aluminum electrolysis cell. IEEE Transactions on Control Systems Technology, 1998, 6(2):157-171 doi: 10.1109/87.664183
|
[50]
|
Huang Y B, Qu X D, Zhou J M. Coupled heat/mass-balance model for analyzing correlation between excess AlF_3 concentration and aluminum electrolyte temperature. Transactions of Nonferrous Metals Society of China, 2009, 19(3):724-729 doi: 10.1016/S1003-6326(08)60340-4
|
[51]
|
Zeng S P, Li J H, Wei Y Q, Cao D Y. Calculation and control of equivalent superheat for 300kA prebake aluminum electrolysis. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Ji'nan, China: IEEE, 2010. 4755-4760
|
[52]
|
Friedrich B, Arnold A, Kryukov V, Ermushina E. Electrolyte superheat during electrolytic production of Al. In: Proceedings of the 2007 European Metallurgical Conference. Dusseldorf, Germany: GOMB, 2007. 1-12
|
[53]
|
Zeng S P, Yi W C. Design and application of multidimensional decision system for aluminum electrolysis. In: Proceedings of the 2015 IEEE International Conference on Information and Automation. Lijiang, China: IEEE, 2015. 1808-1811
|
[54]
|
Zeng S P, Cui F W. Dynamic decision model for amount of AlF_3 addition in industrial aluminum electrolysis. In: Proceedings of the 3rd International Conference on Mechatronics, Robotics and Automation. Shenzhen, China: Atlantis Press, 2015. 787-791
|
[55]
|
Chen X F, Ying X W, Huang K K. Identification of superheat of aluminum electrolytic cell based on computer vision and expert rule. In: Proceedings of the 2017 Chinese Automation Congress. Ji'nan, China: IEEE, 2017. 4705-4710
|
[56]
|
Yang J S, Yu H, Chen X F. Soft measuring model of superheat degree in the aluminum electrolysis production. In: Proceedings of the 2017 Chinese Automation Congress. Ji'nan, China: IEEE, 2017. 160-166
|
[57]
|
Liu Y S, Xia S Y, Yu H. Prediction of aluminum electrolysis superheat based on relative density noise filtering random forest. In: Proceedings of the 2017 Chinese Automation Congress. Ji'nan, China: IEEE, 2017. 323-328
|
[58]
|
Taylor M P, Chen J J J. Advances in process control for aluminium smelters. Materials and Manufacturing Processes, 2007, 22(7-8):947-957 doi: 10.1080/10426910701454139
|