Analysis of Two-level Polling System Characteristics of Exhaustive Service and Asymmetrically Gated Service
-
摘要: 区分优先级的轮询服务一直是研究人员讨论并探索的热点,本文则是采用了对称性与非对称性相结合的区分优先级的两级轮询服务模型.系统依托并行方式的处理模式,既提高了轮询系统的利用率,也降低服务器在查询转换期间所耗费的时间.并且运用马尔科夫链和概率母函数的方法建立了轮询系统的数学模型,通过对数学模型的解析精确地给出了两级非对称服务系统平均排队队长及查询周期的表达式.同时,根据系统终端循环周期的二阶特性量近似相等的方法,针对两级非对称模型给出了一种平均等待时间的近似解析式.Abstract: Prioritized polling services have been the hot topics discussed and explored by researchers. In this paper, a two level polling hybrid service model based on symmetry and asymmetry is adopted. The system relies on a parallel processing mode, which not only improves the utilization rate of the polling system but also reduces the time spent by the server during query conversion. The mathematical model of the polling system is established by using the Markov chain and probability function. By analyzing the mathematical model, the expressions of the average queue length and the query period of the two-level asymmetric service system are given. At the same time, according to the method that the second-order characteristics of system cycle are approximately equal, an approximate analytical expression of average waiting time is given for the two-level asymmetric model.
-
Key words:
- Asymmetry /
- priority /
- queue length /
- waiting time
1) 本文责任编委 张俊 -
表 1 服务模型的基础参数
Table 1 Basic parameters of the service model
$ i $ $ \lambda _{i} $ $ \beta _{i} $ $ \gamma _{i} $ $ \lambda _{h} $ $ \beta _{h} $ 队列号 普通队列到达率 普通队列服务时间 普通队列转换时间 中心队列到达率 中心队列服务时间 1 0.001 4 2 0.01 1 2 0.003 4 3 0.01 1 3 0.006 3 1 0.01 1 4 0.04 2 1 0.01 1 5 0.01 1 1 0.01 1 表 2 两种模型理论值与实验值的对比
Table 2 Comparison between theoretical values and experimental values of two models
参数 队列号 非对称门限 两级优先级非对称模型 $ \lambda_1 =0.005 $, $\lambda_{{2}} =0.005 $
$ \lambda_{{3}} =0.01$, $ \lambda_{{4}} =0.01$
$ \lambda_{{5}} =0.01$, $ \lambda_{{h}} =0.01$
$ {{\beta}} _1 =4 $, $ {{\beta}} _2 =4$
$ {{\beta}} _3 =3 $, $ {{\beta}} _4 =2$
$ {{\beta}} _5 =1 $, $ {{\beta}} _h =1$
$ {{\gamma}} _1 =2 $, $ {{\gamma}} _2 =2$
$ {{\gamma}} _3 =1 $, $ {{\gamma}} _4 =1$, $ {{\gamma}} _5 =1 $$ i $ $ g_{i} (i) $ $ {\bar{W}} _{i} $ $ g_{i} (i) $ $ {\bar{W}} _{i} $ 理论值 实验值 理论值 实验值 理论值 实验值 理论值 实验值 1 0.0389 0.0389 3.6330 3.6329 0.0393 0.0393 4.5265 4.5194 2 0.0389 0.0380 3.6330 3.6313 0.0393 0.0402 4.5265 4.5230 3 0.0778 0.0771 3.6735 3.6752 0.0787 0.0783 4.5657 4.601 4 0.0778 0.0780 3.6330 3.6386 0.0787 0.0786 4.5214 4.5284 5 0.0778 0.0786 3.5925 3.5914 0.0787 0.0795 4.4771 4.4696 -
[1] Wang X M, Du L J, Zhang Y, Zhao X Z, Cheng X Z, Tao Y L. Priority queue based polling mechanism on seismic equipment cluster monitoring. Cluster Computing, 2017, 20(1):661-619 doi: 10.1007/s10586-017-0730-x [2] Boon M A A, van der Mei R D, Winands E M M. Applications of polling systems. Surveys in Operations Research and Management Science, 2011, 16(2):67-82 doi: 10.1016/j.sorms.2011.01.001 [3] Boxma O J, Kella O, Kosiński K M. Queue lengths and workloads in polling systems. Operations Research Letters, 2011, 39(6):401-405 doi: 10.1016/j.orl.2011.10.006 [4] Chu Y Q, Liu Z M. The impact of priority policy in a two-queue markovian polling system with multi-class priorities. In: Proceedings of the 12th International Conference on Queueing Theory and Network Applications. Qinhuangdao, China: Springer, 2017. 282-296 [5] 木文浩, 保利勇, 丁洪伟, 赵一帆.离散时间闸门式多级门限服务的两级优先级轮询排队系统分析.电子学报, 2018, 46(2):276-280 doi: 10.3969/j.issn.0372-2112.2018.02.003Mu Wen-Hao, Bao Li-Yong, Ding Hong-Wei, Zhao Yi-Fan. An exact analysis of discrete time two-level priority polling system based on multi-times gated service policy. Acta Electronica Sinica, 2018, 46(2):276-280 doi: 10.3969/j.issn.0372-2112.2018.02.003 [6] 官铮, 杨志军, 何敏, 钱文华.依托站点状态的两级轮询控制系统时延特性分析.自动化学报, 2016, 42(8):1207-1214 http://www.aas.net.cn/CN/abstract/abstract18910.shtmlGuan Zheng, Yang Zhi-Jun, He Min, Qian Wen-Hua. Study on the delay performance of station dependent two-level polling systems. Acta Automatica Sinica, 2016, 42(8):1207-1214 http://www.aas.net.cn/CN/abstract/abstract18910.shtml [7] Boon M A A, Adan I J B F, Boxma O J. A polling model with multiple priority levels. Performance Evaluation, 2010, 67(6):468-484 doi: 10.1016/j.peva.2010.01.002 [8] 赵东风.令牌网络中非对称性问题研究.通信学报, 1998, 19(1):75-80 http://d.old.wanfangdata.com.cn/Periodical/txxb199801013Zhao Dong-Feng. Study on asymmetric scheme for token bus and token ring networks. Journal of China Institute of Communications, 1998, 19(1):75-80 http://d.old.wanfangdata.com.cn/Periodical/txxb199801013 [9] 杨志军, 丁洪伟, 陈传龙.完全服务和门限服务两级轮询系统E(x)特性分析.电子学报, 2014, 42(4):774-778 doi: 10.3969/j.issn.0372-2112.2014.04.023Yang Zhi-Jun, Ding Hong-Wei, Chen Chuan-Long. Research on E(x) characteristics of two-class polling system of exhaustive-gated service. Acta Electronica Sinica, 2014, 42(4):774-778 doi: 10.3969/j.issn.0372-2112.2014.04.023 [10] 杨志军, 赵东风, 丁洪伟, 赵一帆.两级优先级控制轮询系统研究.电子学报, 2009, 37(7):1452-1456 doi: 10.3321/j.issn:0372-2112.2009.07.011Yang Zhi-Jun, Zhao Dong-Feng, Ding Hong-Wei, Zhao Yi-Fan. Research on two-class priority based polling system. Acta Electronica Sinica, 2009, 37(7):1452-1456 doi: 10.3321/j.issn:0372-2112.2009.07.011 [11] Siddiqui S, Ghani S. Towards dynamic polling: survey and analysis of channel polling mechanisms for wireless sensor networks. In: Proceedings of the 2016 International Conference on Intelligent Systems Engineering. Islamabad, Pakistan: IEEE, 2016. 356-363 [12] Rehman M U, Drieberg M, Badruddin N. Probabilistic polling MAC protocol with unslotted CSMA for wireless sensor networks (WSNs). In: Proceedings of the 20145th International Conference on Intelligent and Advanced Systems. Kuala Lumpur, Malaysia: IEEE, 2014. 1-5 [13] 赵东风, 郑苏民.查询式完全服务排队模型分析.电子学报, 1994, 22(5):102-107 doi: 10.3321/j.issn:0372-2112.1994.05.019Zhao Dong-Feng, Zheng Su-Min. Analysis of a polling model with exhaustive service. Acta Electronica Sinica, 1994, 22(5):102-107 doi: 10.3321/j.issn:0372-2112.1994.05.019 [14] 何敏, 官铮, 保利勇, 葛建洪.无线传感器网轮询接入控制平均查询周期分析.仪器仪表学报, 2016, 37(11):2637-2644 doi: 10.3969/j.issn.0254-3087.2016.11.029He Min, Guan Zheng, Bao Li-Yong, Ge Jian-Hong. Mean cyclic period analysis of polling access control for wireless sensor networks. Chinese Journal of Scientific Instrument, 2016, 37(11):2637-2644 doi: 10.3969/j.issn.0254-3087.2016.11.029 [15] Siddiqui S, Ghani S, Khan A A. ADP-MAC:an adaptive and dynamic polling-based mac protocol for wireless sensor networks. IEEE Sensors Journal, 2018, 18(2):860-874 doi: 10.1109/JSEN.2017.2771397 [16] Kim J, Kim B. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial & Management Optimization, 2015, 11(3):763-777