-
摘要: 微零件的姿态测量对微装配具有重要的作用.但对于微球零件,其姿态的精确测量存在困难,影响了装配精度.针对带有微孔的微球,本文提出了一种基于单目显微视觉的微球姿态高精度测量方法.设计了一种由粗到精的微孔检测算法,实现了高精度的微孔定位.通过对相机光轴方向的标定,在相机运动后对微球图像坐标进行补偿,提高了在相机坐标系下的微球定位精度.通过对微球和微孔的精确定位,计算出微球球心与微孔圆心的空间相对位置,实现了相机坐标系下高精度的微球姿态测量.同时,根据标定出的相机坐标系与调整平台坐标系之间的旋转关系,将微球姿态转换到调整平台坐标系.实验结果表明,最大姿态测量误差0.3度,验证了本文方法的有效性.Abstract: Pose measurement for micro-components is very important to micro assembly. But it is quite difficult to measure the pose of a micro sphere with high precision, which impacts the assembly accuracy. An accurate pose measurement method for sphere with micro hole is proposed. A coarse-to-fine detection method is designed for the micro-hole on the micro-sphere. It realizes the high precision location of the micro-hole. The direction of the microscopic camera's optical axis is calibrated. It is used to compensate the micro-sphere's image coordinates after the microscopic camera moves in order to improve the location accuracy of the micro-sphere in the camera's frame. The relative position between the center of sphere and the center of hole can be easily derived from the accurately located micro-sphere and micro-hole. Then the pose of micro-sphere can be gotten. Meanwhile, the pose of micro-sphere can be transformed from the camera's frame into the frame of adjusting platform according to the calibrated rotation relationship between the two frames. The maximum error in pose measurements is 0.3 degree. Experimental results verify the effectiveness of the proposed method.
-
-
表 1 在坐标系{C}中的微球姿态向量
Table 1 The pose vector of micro-sphere in {C}
编号 1 2 3 4 5 ∆xc 0.0350 0.0362 0.0366 0.0370 0.0375 ∆yc 0.0186 0.0254 0.0320 0.0378 0.0439 ∆zc -0.9992 -0.9990 -0.9988 -0.9985 -0.9983 表 2 绕YW轴旋转的实验结果
Table 2 The results of rotating along with YW axis
绕XW, YW旋转角(度) 编号 真实值 测量值 1 0, -3 -0.04, -3.0 2 0, -2 -0.02, -2.0 3 0, -1 -0.04, -1.0 4 0, 1 0.06, 1.1 5 0, 2 -0.00, 2.2 6 0, 3 0.12, 3.1 表 3 绕XW轴旋转的实验结果
Table 3 The results of rotating along with XW axis
绕XW, YW旋转角(度) 编号 真实值 测量值 1 -5, 0 -4.9, -0.03 2 -4, 0 -3.9, 0.02 3 -3, 0 -2.9, -0.01 4 -2, 0 -2.0, -0.02 5 -1, 0 -1.0, -0.05 6 1, 0 1.0, -0.02 7 2, 0 2.0, -0.04 8 3, 0 3.0, 0.01 9 4, 0 3.9, 0.01 10 5, 0 4.9, -0.03 表 4 同时绕XW、YW轴旋转的实验结果
Table 4 The results of rotating along with XW, YW axis, simultaneously
绕XW, YW旋转角(度) 编号 真实值 测量值 1 -5, -3 -4.8, -3.1 2 -3, -2 -3.0, -2.1 3 -1, -1 -1.0, -1.1 4 1, 1 1.0, 0.9 5 3, 2 3.0, 1.8 6 5, 3 4.8, 2.8 -
[1] Liu S, Xu D, Zhang D, Zhang Z. High precision automatic assembly based on microscopic vision and force information. IEEE Transactions on Automation Science and Engineering, 2016, 13(1):382-393 doi: 10.1109/TASE.2014.2332543 [2] Liu S, Xu D, Liu F, Zhang D, Zhang Z. Relative pose estimation for alignment of long cylindrical components based on microscopic vision. IEEE/ASME Transactions on Mechatronics, 2016, 21(3), 1388-1398 doi: 10.1109/TMECH.2015.2506906 [3] Jin P, Matikainen P, Srinivasa S S. Sensor fusion for fiducial tags: highly robust pose estimation from single frame RGBD. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017. 5770-5776 [4] Zheng W, Yan B, Wang Z. Multi-sensor fusion based pose estimation for unmanned aerial vehicles on ships. In: Proceedings of the 2016 IEEE International Conference on Information and Automation. Ningbo, China: IEEE, 2016. 648-653 [5] Chen Y, Fu M, Yang Y, Song W. A method of head pose estimation based on active shape model and stereo vision. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014. 8277-8282 [6] Su J, Huang X, Wang M. Pose detection of partly covered target in micro-vision system. In: Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012. 4721-4725 [7] Zhang P, Xu D, Wu B. Pose estimation for plane based on monocular microscope vision system. In: Proceedings of the 32nd Chinese Control Conference. Xi'an, China: IEEE, 2013. 5687-5692 [8] Jiang C, Mills J K. Planar cell orientation control system using a rotating electric field. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2350-2358 doi: 10.1109/TMECH.2014.2377116 [9] Liu S, Li Y, Xing D, Xu D, Su H. An efficient insertion control method for precision assembly of cylindrical components. IEEE Transactions on Industrial Electronics, 2017, 64(12):9355-9365 doi: 10.1109/TIE.2017.2711551 [10] Park H, Park J, Lee D H, Park J H, Baeg M H, Bae J H. Compliance-based robotic peg-in-hole assembly strategy without force feedback. IEEE Transactions on Industrial Electronics, 2017, 64(8):6299-6309 doi: 10.1109/TIE.2017.2682002 [11] Das A N, Popa D O. Precision evaluation of modular multiscale robots for peg-in-hole microassembly tasks. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011. 1699-1704 [12] 史亚莉, 张正涛, 徐德.跨尺度微管微球三维半自动装配点胶系统.光学精密工程, 2015, 23(11):3121-3128 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201511016Shi Ya-li, Zhang Zheng-tao, Xu De. 3D semi-automatic assembly and dispensing system for trans-scale parts of micro-tube and micro-sphere. Optics and Precision Engineering, 2015, 23(11):3121-3128 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201511016 [13] Li F, Xu D, Zhang Z, Shi Y, Shen F. Pose measuring and aligning of a micro glass tube and a hole on the micro sphere. International Journal of Precision Engineering and Manufacturing, 2014, 15(12):2483-2491 doi: 10.1007/s12541-014-0618-0 期刊类型引用(8)
1. 董良振,田建艳,杨胜强,陈海滨. 基于光照校正和图像融合的零件表面图像增强. 计算机工程. 2024(06): 245-254 . 百度学术
2. 王琛,张凌云,刘波,张航. 基于无人机图像的城市道路停车巡检方法. 交通信息与安全. 2024(04): 90-101 . 百度学术
3. 徐少平,林珍玉,陈孝国,李芬,杨晓辉. 采用多通道浅层CNN构建的多降噪器最优组合模型. 自动化学报. 2022(11): 2797-2811 . 本站查看
4. 苏素平,李虹,孙志毅,孙前来,王银. 无人机图像的输电线断股检测方法研究. 太原科技大学学报. 2021(01): 32-36 . 百度学术
5. 索岩,崔智勇. 基于中国剩余定理的高动态图像可逆数据隐藏. 计算机仿真. 2021(01): 167-171 . 百度学术
6. 张媛媛,张红英. 结合饱和度调节的单曝光HDR图像生成方法. 吉林大学学报(理学版). 2021(02): 309-318 . 百度学术
7. 曹义亲,何恬,刘龙标. 基于改进LSD直线检测算法的钢轨表面边界提取. 华东交通大学学报. 2021(03): 95-101 . 百度学术
8. 吴卓钊,范科峰,莫玮. 多尺度权重评估的MSRCR混合曝光成像算法. 计算机工程与应用. 2021(17): 224-229 . 百度学术
其他类型引用(14)
-