2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单目显微视觉的微球姿态测量方法

李迎 张大朋 刘希龙 徐德

项盛文, 范红旗, 付强. 模式失配条件下连续时间控制系统的零控脱靶量估计误差分布. 自动化学报, 2018, 44(10): 1824-1832. doi: 10.16383/j.aas.2018.c170251
引用本文: 李迎, 张大朋, 刘希龙, 徐德. 基于单目显微视觉的微球姿态测量方法. 自动化学报, 2019, 45(7): 1281-1289. doi: 10.16383/j.aas.2018.c180009
XIANG Sheng-Wen, FAN Hong-Qi, FU Qiang. Distribution of Zero-effort Miss Distance Estimation Errors in Continuous-time Controlled System With Mode Mismatch. ACTA AUTOMATICA SINICA, 2018, 44(10): 1824-1832. doi: 10.16383/j.aas.2018.c170251
Citation: LI Ying, ZHANG Da-Peng, LIU Xi-Long, XU De. A Pose Measurement Method for Micro Sphere Based on Monocular Microscopic Vision. ACTA AUTOMATICA SINICA, 2019, 45(7): 1281-1289. doi: 10.16383/j.aas.2018.c180009

基于单目显微视觉的微球姿态测量方法

doi: 10.16383/j.aas.2018.c180009
基金项目: 

国家自然科学基金 61673382

科学挑战专题 TZ2018006-0204-02

国家自然科学基金 61733004

国家自然科学基金 61673383

详细信息
    作者简介:

    李迎  中国科学院自动化研究所硕士研究生.2016年获得华北电力大学(保定)学士学位.主要研究方向为视觉测量, 视觉控制, 微装配与机器学习.E-mail:liying2016@ia.ac.cn

    张大朋  中国科学院自动化研究所副研究员.2003年、2006年获得河北工业大学学士和硕士学位.2011年获得北京航空航天大学博士学位.主要研究方向为视觉控制, 微装配, 医疗机器人.E-mail:dapeng.zhang@ia.ac.cn

    刘希龙  中国科学院自动化研究所副研究员.2009年获得北京交通大学学士学位.2014年获得中国科学院自动化研究所博士学位.主要研究方向为图像处理, 视觉测量, 服务机器人.E-mail:xilong.liu@ia.ac.cn

    通讯作者:

    徐德  中国科学院自动化研究所研究员.1985年、1990年获得山东工业大学学士、硕士学位.2001年获得浙江大学博士学位.主要研究方向为机器人视觉测量, 视觉控制, 智能控制, 视觉定位, 显微视觉, 微装配.本文通信作者. E-mail:de.xu@ia.ac.cn

A Pose Measurement Method for Micro Sphere Based on Monocular Microscopic Vision

Funds: 

National Natural Science Foundation of China 61673382

Science Challenge Project TZ2018006-0204-02

National Natural Science Foundation of China 61733004

National Natural Science Foundation of China 61673383

More Information
    Author Bio:

     Master student at the Institute of Automation, Chinese Academy of Sciences (IACAS). He received his bachelor degree from North China Electric Power University (Baoding) in 2016. His research interest covers visual measurement, visual control, micro-assembly, and machine learning

     Associate professor at the Institute of Automation, Chinese Academy of Sciences (IACAS). He received his bachelor and master degrees from the Hebei University of Technology in 2003 and 2006, respectively, and Ph. D. degree from the Beihang University in 2011. His reaearch interest covers visual control, micro-assembly, and medical robot

     Associate professor at the Institute of Automation, Chinese Academy of Sciences (IACAS). He received his bachelor degree from Beijing Jiaotong University in 2009 and his Ph. D. degree from Institute of Automation, Chinese Academy of Sciences (IACAS) in 2014. His reaearch interest covers image processing, visual measurement, and service robot

    Corresponding author: XU De  Professor at the Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree and master degree from Shandong University of Technology in 1985 and 1990, respectively, and received his Ph. D. degree from Zhejiang University in 2001. His research interest covers robotics and automation such as visual measurement, visual control, intelligent control, visual positioning, microscopic vision, and microassembly. Corresponding author of this paper
  • 摘要: 微零件的姿态测量对微装配具有重要的作用.但对于微球零件,其姿态的精确测量存在困难,影响了装配精度.针对带有微孔的微球,本文提出了一种基于单目显微视觉的微球姿态高精度测量方法.设计了一种由粗到精的微孔检测算法,实现了高精度的微孔定位.通过对相机光轴方向的标定,在相机运动后对微球图像坐标进行补偿,提高了在相机坐标系下的微球定位精度.通过对微球和微孔的精确定位,计算出微球球心与微孔圆心的空间相对位置,实现了相机坐标系下高精度的微球姿态测量.同时,根据标定出的相机坐标系与调整平台坐标系之间的旋转关系,将微球姿态转换到调整平台坐标系.实验结果表明,最大姿态测量误差0.3度,验证了本文方法的有效性.

  • 本文责任编委 董峰
  • 图  1  微球零件示意图

    Fig.  1  Micro-sphere component

    图  2  实验系统示意图

    Fig.  2  Experiment system

    图  3  实验系统坐标系

    Fig.  3  Coordinates of experiment system

    图  4  相机聚焦示意图

    Fig.  4  Camera focusing

    图  5  微球上的微孔

    Fig.  5  The micro-hole on the micro-sphere

    图  6  微孔、微球定位流程图

    Fig.  6  Location flow chart of micro-hole and micro-sphere

    图  7  微孔边缘的精确提取示意图

    Fig.  7  Precision extraction of micro-hole edge

    图  8  实验系统

    Fig.  8  The real experiment system

    图  9  微孔边缘点提取结果

    Fig.  9  The edge extraction result of micro-hole

    图  10  微孔精确定位结果

    Fig.  10  The precision location result of micro-hole

    图  11  微球精确定位结果

    Fig.  11  The precision location result of micro-sphere

    图  12  在坐标系{C}中的微球姿态向量

    Fig.  12  The pose vector of micro-sphere in {C}

    图  13  YW轴旋转后的姿态向量

    Fig.  13  The pose vector after rotating along with YW axis

    图  14  XW轴旋转后的姿态向量

    Fig.  14  The pose vector after rotating along with XW axis

    图  15  同时绕XWYW轴旋转后的姿态向量

    Fig.  15  The pose vector after rotating along with XW and YW axis, simultaneously

    表  1  在坐标系{C}中的微球姿态向量

    Table  1  The pose vector of micro-sphere in {C}

    编号 1 2 3 4 5
    xc 0.0350 0.0362 0.0366 0.0370 0.0375
    yc 0.0186 0.0254 0.0320 0.0378 0.0439
    zc -0.9992 -0.9990 -0.9988 -0.9985 -0.9983
    下载: 导出CSV

    表  2  YW轴旋转的实验结果

    Table  2  The results of rotating along with YW axis

    XW, YW旋转角(度)
    编号 真实值 测量值
    1 0, -3 -0.04, -3.0
    2 0, -2 -0.02, -2.0
    3 0, -1 -0.04, -1.0
    4 0, 1 0.06, 1.1
    5 0, 2 -0.00, 2.2
    6 0, 3 0.12, 3.1
    下载: 导出CSV

    表  3  XW轴旋转的实验结果

    Table  3  The results of rotating along with XW axis

    XW, YW旋转角(度)
    编号 真实值 测量值
    1 -5, 0 -4.9, -0.03
    2 -4, 0 -3.9, 0.02
    3 -3, 0 -2.9, -0.01
    4 -2, 0 -2.0, -0.02
    5 -1, 0 -1.0, -0.05
    6 1, 0 1.0, -0.02
    7 2, 0 2.0, -0.04
    8 3, 0 3.0, 0.01
    9 4, 0 3.9, 0.01
    10 5, 0 4.9, -0.03
    下载: 导出CSV

    表  4  同时绕XWYW轴旋转的实验结果

    Table  4  The results of rotating along with XW, YW axis, simultaneously

    XW, YW旋转角(度)
    编号 真实值 测量值
    1 -5, -3 -4.8, -3.1
    2 -3, -2 -3.0, -2.1
    3 -1, -1 -1.0, -1.1
    4 1, 1 1.0, 0.9
    5 3, 2 3.0, 1.8
    6 5, 3 4.8, 2.8
    下载: 导出CSV
  • [1] Liu S, Xu D, Zhang D, Zhang Z. High precision automatic assembly based on microscopic vision and force information. IEEE Transactions on Automation Science and Engineering, 2016, 13(1):382-393 doi: 10.1109/TASE.2014.2332543
    [2] Liu S, Xu D, Liu F, Zhang D, Zhang Z. Relative pose estimation for alignment of long cylindrical components based on microscopic vision. IEEE/ASME Transactions on Mechatronics, 2016, 21(3), 1388-1398 doi: 10.1109/TMECH.2015.2506906
    [3] Jin P, Matikainen P, Srinivasa S S. Sensor fusion for fiducial tags: highly robust pose estimation from single frame RGBD. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017. 5770-5776
    [4] Zheng W, Yan B, Wang Z. Multi-sensor fusion based pose estimation for unmanned aerial vehicles on ships. In: Proceedings of the 2016 IEEE International Conference on Information and Automation. Ningbo, China: IEEE, 2016. 648-653
    [5] Chen Y, Fu M, Yang Y, Song W. A method of head pose estimation based on active shape model and stereo vision. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014. 8277-8282
    [6] Su J, Huang X, Wang M. Pose detection of partly covered target in micro-vision system. In: Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012. 4721-4725
    [7] Zhang P, Xu D, Wu B. Pose estimation for plane based on monocular microscope vision system. In: Proceedings of the 32nd Chinese Control Conference. Xi'an, China: IEEE, 2013. 5687-5692
    [8] Jiang C, Mills J K. Planar cell orientation control system using a rotating electric field. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2350-2358 doi: 10.1109/TMECH.2014.2377116
    [9] Liu S, Li Y, Xing D, Xu D, Su H. An efficient insertion control method for precision assembly of cylindrical components. IEEE Transactions on Industrial Electronics, 2017, 64(12):9355-9365 doi: 10.1109/TIE.2017.2711551
    [10] Park H, Park J, Lee D H, Park J H, Baeg M H, Bae J H. Compliance-based robotic peg-in-hole assembly strategy without force feedback. IEEE Transactions on Industrial Electronics, 2017, 64(8):6299-6309 doi: 10.1109/TIE.2017.2682002
    [11] Das A N, Popa D O. Precision evaluation of modular multiscale robots for peg-in-hole microassembly tasks. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011. 1699-1704
    [12] 史亚莉, 张正涛, 徐德.跨尺度微管微球三维半自动装配点胶系统.光学精密工程, 2015, 23(11):3121-3128 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201511016

    Shi Ya-li, Zhang Zheng-tao, Xu De. 3D semi-automatic assembly and dispensing system for trans-scale parts of micro-tube and micro-sphere. Optics and Precision Engineering, 2015, 23(11):3121-3128 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201511016
    [13] Li F, Xu D, Zhang Z, Shi Y, Shen F. Pose measuring and aligning of a micro glass tube and a hole on the micro sphere. International Journal of Precision Engineering and Manufacturing, 2014, 15(12):2483-2491 doi: 10.1007/s12541-014-0618-0
  • 期刊类型引用(8)

    1. 董良振,田建艳,杨胜强,陈海滨. 基于光照校正和图像融合的零件表面图像增强. 计算机工程. 2024(06): 245-254 . 百度学术
    2. 王琛,张凌云,刘波,张航. 基于无人机图像的城市道路停车巡检方法. 交通信息与安全. 2024(04): 90-101 . 百度学术
    3. 徐少平,林珍玉,陈孝国,李芬,杨晓辉. 采用多通道浅层CNN构建的多降噪器最优组合模型. 自动化学报. 2022(11): 2797-2811 . 本站查看
    4. 苏素平,李虹,孙志毅,孙前来,王银. 无人机图像的输电线断股检测方法研究. 太原科技大学学报. 2021(01): 32-36 . 百度学术
    5. 索岩,崔智勇. 基于中国剩余定理的高动态图像可逆数据隐藏. 计算机仿真. 2021(01): 167-171 . 百度学术
    6. 张媛媛,张红英. 结合饱和度调节的单曝光HDR图像生成方法. 吉林大学学报(理学版). 2021(02): 309-318 . 百度学术
    7. 曹义亲,何恬,刘龙标. 基于改进LSD直线检测算法的钢轨表面边界提取. 华东交通大学学报. 2021(03): 95-101 . 百度学术
    8. 吴卓钊,范科峰,莫玮. 多尺度权重评估的MSRCR混合曝光成像算法. 计算机工程与应用. 2021(17): 224-229 . 百度学术

    其他类型引用(14)

  • 加载中
  • 图(15) / 表(4)
    计量
    • 文章访问数:  1888
    • HTML全文浏览量:  519
    • PDF下载量:  426
    • 被引次数: 22
    出版历程
    • 收稿日期:  2018-01-08
    • 录用日期:  2018-04-04
    • 刊出日期:  2019-07-20

    目录

      /

      返回文章
      返回