2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有混合数据输入的自适应模糊神经推理系统

张宇献 郭佳强 钱小毅 王建辉

张宇献, 郭佳强, 钱小毅, 王建辉. 有混合数据输入的自适应模糊神经推理系统. 自动化学报, 2019, 45(9): 1743-1755. doi: 10.16383/j.aas.2018.c170698
引用本文: 张宇献, 郭佳强, 钱小毅, 王建辉. 有混合数据输入的自适应模糊神经推理系统. 自动化学报, 2019, 45(9): 1743-1755. doi: 10.16383/j.aas.2018.c170698
ZHANG Yu-Xian, GUO Jia-Qiang, QIAN Xiao-Yi, WANG Jian-Hui. An Adaptive Network-based Fuzzy Inference System with Mixed Data Inputs. ACTA AUTOMATICA SINICA, 2019, 45(9): 1743-1755. doi: 10.16383/j.aas.2018.c170698
Citation: ZHANG Yu-Xian, GUO Jia-Qiang, QIAN Xiao-Yi, WANG Jian-Hui. An Adaptive Network-based Fuzzy Inference System with Mixed Data Inputs. ACTA AUTOMATICA SINICA, 2019, 45(9): 1743-1755. doi: 10.16383/j.aas.2018.c170698

有混合数据输入的自适应模糊神经推理系统

doi: 10.16383/j.aas.2018.c170698
基金项目: 

辽宁省教育厅项目 LQGD2017035

辽宁省自然科学基金 2015020064

国家自然科学基金 61102124

详细信息
    作者简介:

    郭佳强 沈阳工业大学信息科学与工程学院硕士研究生.主要研究方向为智能控制, 复杂系统建模.E-mail:guo_dataworld@163.com

    钱小毅 沈阳工业大学电气工程学院博士研究生.主要研究方向为智能优化, 复杂机电装备的故障诊断.E-mail:qianxiaoyi123@163.com

    王建辉 博士, 东北大学信息科学与工程学院教授.主要研究方向为智能控制, 复杂系统建模, 康复机器人.E-mail:wangjianhui@ise.neu.ediu.cn

    通讯作者:

    张宇献 沈阳工业大学电气工程学院副教授.2007年获得东北大学控制理论与控制工程专业博士学位.主要研究方向为智能控制, 复杂系统建模, 智能优化.本文通信作者.E-mail:yuxian524524@163.com

An Adaptive Network-based Fuzzy Inference System with Mixed Data Inputs

Funds: 

Educational Commission of Liaoning Province LQGD2017035

Natural Science Foundation of Liaoning Province 2015020064

National Natural Science Foundation of China 61102124

More Information
    Author Bio:

    Master student at the School of Information Science and Engineering, Shenyang University of Technology. His research interest covers intelligent control and complex system modeling

    Ph.D. candidate at the School of Electrical Engineering, Shenyang University of Technology. His research interest covers intelligent optimization and fault diagnosis for complex mechanical and electrical equipment

    Ph.D. professor at the College of Information Science and Engineering, Northeastern University. Her research interest covers intelligent control, complex system modeling and rehabilitation robot

    Corresponding author: ZHANG Yu-Xian Associate professor at the School of Electrical Engineering, Shenyang University of Technology. He received his Ph. D. degree from Northeastern University in 2007. His research interest covers intelligent control, complex system modeling and intelligent optimization. Corresponding author of this paper
  • 摘要: 现有数据建模方法大多依赖于定量的数值信息,而对于数值与分类混合输入的数据建模问题往往根据分类变量组合建立多个子模型,当有多个分类变量输入时易出现子模型数据分布不均匀、训练耗时长等问题.针对上述问题,提出一种具有混合数据输入的自适应模糊神经推理系统模型,在自适应模糊推理系统的基础上,引入激励强度转移矩阵和结论影响矩阵,采用基于高氏距离的减法聚类辨识模型结构,通过混合学习算法训练模型参数,使数值与分类混合数据对模糊规则的前后件参数同时产生作用,共同影响模型输出.仿真实验分析了分类数据对模型规则后件的作用以及结构辨识算法对模糊规则数的影响,与其他几种混合数据建模方法对比表明本文所提出的模型具有较高的预测精度和计算效率.
    1)  本文责任编委 刘艳军
  • 图  1  MDI-ANFIS结构

    Fig.  1  Structure of MDI-ANFIS

    图  2  样本平均规则后件输出

    Fig.  2  Average consequent output of samples

    图  3  模型训练误差对比

    Fig.  3  Comparison of model training error

    图  4  模型预测结果对比

    Fig.  4  Comparison of model prediction

    图  5  聚类结果对比图

    Fig.  5  Comparison of clustering results

    图  6  模型训练误差

    Fig.  6  Model training error

    图  7  MDI-ANFIS模型预测对比

    Fig.  7  Prediction results comparison of MDI-ANFIS

    表  1  MDI-ANFIS混合学习算法

    Table  1  Hybrid learning algorithm of MDI-ANFIS

    参数集 算法
    Pc, Pi LSE
    Pt LSE
    Pp BP
    下载: 导出CSV

    表  2  两种算法的平均规则后件影响和误差

    Table  2  Average consequent influences and errors of two algorithms

    组号 样本点个数 平均规则后件值 预测误差
    C-ANFIS MDI-ANFIS C-ANFIS MDI-ANFIS
    1 200 19.659 17.735 2.040 1.519
    2 200 18.905 36.270 1.690 1.463
    3 200 21.323 27.297 2.980 1.881
    4 400 34.202 66.760 3.230 1.604
    5 400 14.050 39.905 2.330 2.145
    6 400 16.385 35.070 2.510 2.002
    7 500 18.901 17.804 3.680 2.194
    8 600 21.659 30.857 2.290 2.395
    9 600 16.299 22.267 2.800 2.242
    10 600 18.426 34.818 3.730 2.187
    平均值 410 19.981 32.878 2.728 1.963
    下载: 导出CSV

    表  3  结构辨识性能对比

    Table  3  Performance comparison of structure identification

    组号 样本点个数 规则数 预测误差
    SC GDSC SC GDSC
    1 100 50 13 0.452 0.356
    2 100 32 14 0.575 0.466
    3 200 37 21 0.517 0.709
    4 200 25 14 0.908 0.613
    5 300 40 18 0.586 0.690
    6 300 34 16 0.661 0.705
    7 400 31 16 0.642 0.459
    8 400 32 14 0.630 0.747
    9 500 30 13 0.788 0.836
    10 506 30 14 0.726 0.827
    平均值 300 34 15 0.648 0.641
    下载: 导出CSV

    表  4  UCI数据集模型误差对比

    Table  4  Model error comparison on UCI dataset

    数据集 样本
    个数
    混合属性
    (N, C)
    预测误差 误差降低率
    ANFIS N-ANFIS F-ANFIS S-MLP C-ANFIS MDI-ANFIS ANFIS N-ANFIS F-ANFIS S-MLP C-ANFIS
    Abalone 4 177 7, 1 2.608 1.842 1.997 3.985 2.632 1.951 0.336 -0.056 0.023 1.04 0.349
    Boston
    Housing
    506 11, 2 0.779 0.631 0.657 7.096 0.824 0.638 0.221 -0.011 0.029 10.1 0.291
    Auto
    MPG
    398 4, 3 2.072 0.912 0.871 6.969 0.963 0.605 2.42 0.507 0.439 10.5 0.591
    Servo 167 2, 2 1.012 0.060 0.051 3.119 0.362 0.025 39.4 1.40 1.04 123 13.4
    TAE 151 1, 4 2.972 0.196 0.385 0.849 0.192 0.225 12.2 -0.128 0.711 2.77 -0.146
    Zoo 101 1, 15 1.276 0.062 0.059 2.542 0.126 0.072 16.7 -0.138 -0.181 34.3 0.750
    Heart
    Disease
    303 6, 7 0.255 0.073 0.062 1.483 0.108 0.086 1.96 -0.151 -0.279 16.2 0.255
    平均值 - - 1.568 0.539 0.583 3.720 0.744 0.515 10.462 0.203 0.255 28.273 2.213
    下载: 导出CSV
  • [1] Alexander F J, Hoisie A, Szalay A. Big data. Computing in Science & Engineering, 2011, 13(6):10-13 http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201601001
    [2] Provost F, Fawcett T. Data science and its relationship to big data and data-driven decision making. Big Data, 2013, 1(1):51-59 https://www.ncbi.nlm.nih.gov/pubmed/27447038
    [3] Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107 doi: 10.1109/TKDE.2013.109
    [4] 陈晋音, 何辉豪.基于密度的聚类中心自动确定的混合属性数据聚类算法研究.自动化学报, 2015, 41(10):1798-1813 http://www.aas.net.cn/CN/abstract/abstract18754.shtml

    Chen Jin-Yin, He Hui-Hao. Research on density-based clustering algorithm for mixed data with determine cluster centers automatically. Acta Automatica Sinica, 2015, 41(10):1798-1813 http://www.aas.net.cn/CN/abstract/abstract18754.shtml
    [5] Jacobs R A, Jordan M I, Nowlan S J, Hinton G E. Adaptive mixtures of local experts. Neural Computation, 1991, 3(1):79-87 doi: 10.1162-neco.1991.3.1.79/
    [6] Lee K W, Lee T. Design of neural networks for multi-value regression. In:Proceedings of the 2001 International Joint Conference on Neural Networks. Washington DC, USA:IEEE, 2001. 93-98 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0705.1309
    [7] Brouwer R K. A feed-forward network for input that is both categorical and quantitative. Neural Networks, 2002, 15(7):881-890 doi: 10.1016/S0893-6080(02)00090-4
    [8] Brouwer R K. A hybrid neural network for input that is both categorical and quantitative. International Journal of Intelligent Systems, 2004, 19(10):979-1001 doi: 10.1002/int.20032
    [9] Rey-del-Castillo P, Cardeñosa J. Fuzzy min-max neural networks for categorical data:application to missing data imputation. Neural Computing and Applications, 2012, 21(6):1349-1362 doi: 10.1007/s00521-011-0574-x
    [10] Hsu C C. Generalizing self-organizing map for categorical data. IEEE Transactions on Neural Networks, 2006, 17(2):294-304 doi: 10.1109/TNN.2005.863415
    [11] 张宇献, 彭辉灯, 王建辉.基于异构值差度量的SOM混合属性数据聚类算法.仪器仪表学报, 2016, 37(11):2555-2562 doi: 10.3969/j.issn.0254-3087.2016.11.019

    Zhang Yu-Xian, Peng Hui-Deng, Wang Jian-Hui. Self-organizing mapping clustering algorithm based on heterogeneous value difference metric for mixed attribute data. Chinese Journal of Scientific Instrument, 2016, 37(11):2555-2562 doi: 10.3969/j.issn.0254-3087.2016.11.019
    [12] Liu M, Dong M Y, Wu C. A new ANFIS for parameter prediction with numeric and categorical inputs. IEEE Transactions on Automation Science and Engineering, 2010, 7(3):645-653 doi: 10.1109/TASE.2010.2045499
    [13] Jang J S R. ANFIS:adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3):665-685 doi: 10.1109/21.256541
    [14] Abdelrahim E M, Yahagi T. A new transformed input-domain ANFIS for highly nonlinear system modeling and prediction. In:Proceedings of the 2001 Canadian Conference on Electrical and Computer Engineering. Toronto, Canada:IEEE, 2001. 655-660 https://ieeexplore.ieee.org/document/933761
    [15] Mar J, Lin F J. An ANFIS controller for the car-following collision prevention system. IEEE Transactions on Vehicular Technology, 2001, 50(4):1106-1113 doi: 10.1109/25.938584
    [16] Lima C A M, Coelho A L V, Von Zuben F J. Fuzzy systems design via ensembles of ANFIS. In:Proceedings of the 2002 IEEE International Conference on Fuzzy Systems. Honolulu, USA:IEEE, 2002. 506-511 https://ieeexplore.ieee.org/document/1005042
    [17] Paramasivam S, Arumugan R, Umamaheswari B, Vijayan S, Balamurugan S, Venkatesan G. Accurate rotor position estimation for switched reluctance motor using ANFIS. In:Proceedings of the 2001 Conference on Convergent Technologies for the Asia-Pacific Region. Bangalore, India:IEEE, 2003. 1493-1497 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1273168
    [18] Lih W C, Bukkapatnam S T S, Rao P, Chandrasekharan N, Komanduri R. Adaptive neuro-fuzzy inference system modeling of MRR and WIWNU in CMP process with sparse experimental data. IEEE Transactions on Automation Science and Engineering, 2008, 5(1):71-83 doi: 10.1109/TASE.2007.911683
    [19] Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems:Applications in Engineering and Technology, 1994, 2(3):267-278 https://dl.acm.org/citation.cfm?id=2656640
    [20] Tuerhong G, Kim S B. Gower distance-based multivariate control charts for a mixture of continuous and categorical variables. Expert Systems with Applications, 2014, 41(4):1701-1707 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efe4850a38e280a7baffd18ce342e4e3
    [21] 曾珂, 张乃尧, 徐文立.线性T-S模糊系统作为通用逼近器的充分条件.自动化学报, 2001, 27(5):606-612 http://d.old.wanfangdata.com.cn/Periodical/zdhxb200105002

    Zeng Ke, Zhang Nai-Yao, Xu Wen-Li. Sufficient condition for linear T-S fuzzy systems as universal approximators. Acta Automatica Sinica, 2001, 27(5):606-612 http://d.old.wanfangdata.com.cn/Periodical/zdhxb200105002
    [22] 刘慧林, 冯汝鹏, 胡瑞栋, 刘春华.模糊系统作为通用逼近器的10年历程.控制与决策, 2004, 19(4):367-371 doi: 10.3321/j.issn:1001-0920.2004.04.002

    Liu Hui-Lin, Feng Ru-Peng, Hu Rui-Dong, Liu Chun-Hua. Decennary development of fuzzy systems as universal approximators. Control and Decision, 2004, 19(4):367-371 doi: 10.3321/j.issn:1001-0920.2004.04.002
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2083
  • HTML全文浏览量:  298
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-11
  • 录用日期:  2018-02-26
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回