2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于显著图的可变模板形态学去雾方法

董辉 张斌

董辉, 张斌. 基于显著图的可变模板形态学去雾方法. 自动化学报, 2019, 45(5): 877-887. doi: 10.16383/j.aas.2018.c170607
引用本文: 董辉, 张斌. 基于显著图的可变模板形态学去雾方法. 自动化学报, 2019, 45(5): 877-887. doi: 10.16383/j.aas.2018.c170607
DONG Hui, ZHANG Bin. Image Haze Removal with Salience Map and Morphological Adaptive Filtering. ACTA AUTOMATICA SINICA, 2019, 45(5): 877-887. doi: 10.16383/j.aas.2018.c170607
Citation: DONG Hui, ZHANG Bin. Image Haze Removal with Salience Map and Morphological Adaptive Filtering. ACTA AUTOMATICA SINICA, 2019, 45(5): 877-887. doi: 10.16383/j.aas.2018.c170607

基于显著图的可变模板形态学去雾方法

doi: 10.16383/j.aas.2018.c170607
基金项目: 

国家自然科学基金 61603291

详细信息
    作者简介:

    董辉   西安交通大学软件学院硕士研究生.主要研究方向为计算机视觉.E-mail:donghuid@stu.xjtu.edu.cn

    通讯作者:

    张斌   西安交通大学软件学院副教授.主要研究方向为图像处理和计算机视觉.本文通信作者.E-mail:bzhang82@mail.xjtu.edu.cn

Image Haze Removal with Salience Map and Morphological Adaptive Filtering

Funds: 

National Natural Science Foundation of China 61603291

More Information
    Author Bio:

    Master student at the School of Software, Xi0an Jiaotong University. His main research interest is computer vision

    Corresponding author: ZHANG Bin Associate professor at the School of Software, Xi0an Jiaotong University. His research interest covers computer vision and image processing. Corresponding author of this paper
  • 摘要: 针对暗通道先验去雾中存在的光晕现象和天空区域颜色失真现象,提出了一种基于自适应可变形结构元(Adaptive deformable structuring element,ADSE)中值滤波结合灰度形态学重构精细化透射率的方法.该方法利用透射率与图像细纹理结构的无关性,由有雾图像的灰度图计算显著图(Salience map,SM),将SM作为导向图计算ADSE,用生成的ADSE对最小颜色通道图像进行自适应中值滤波运算;其次,以粗估计暗通道图像为标记图像,以自适应中值滤波后的图像作为模板图像进行灰度形态学重构运算,获得精细化暗通道图像,继而得到精细化透射率;最后,针对天空区域,引入最优化透射率方法,对天空和非天空区域做统一的运算得到最终透射率,完成图像去雾.本文算法对真实场景具有很好的去雾效果,同时,基于形态学的运算易于并行化和硬件实现.
    1)  本文责任编委 桑农
  • 图  1  有雾图像模型

    Fig.  1  Haze imaging model

    图  2  暗通道计算

    Fig.  2  Calculation of dark channel

    图  3  不同邻域大小对去雾的影响

    Fig.  3  Haze removal results by different patch sizes

    图  4  DCP + GIF方法使用不同大小邻域的去雾效果

    Fig.  4  Haze removal results by DCP+GIF with different patch sizes

    图  5  使用DCP去雾后天空区域的颜色失真现象

    Fig.  5  Haze removal results with large sky region

    图  6  本文去雾算法流程

    Fig.  6  Flowchart of our proposed algorithm

    图  7  本文去雾算法中间过程

    Fig.  7  Flowchart of proposed haze removal procedure

    图  8  去雾效果对比

    Fig.  8  Haze removal results

    图  9  自适应滤波结果

    Fig.  9  Adaptive filtering results

    图  10  使用自适应中值滤波和形态学重构实现的去雾结果

    Fig.  10  ADSE filter and morphological reconstruction results

    图  11  各透射率结果

    Fig.  11  Transmissions

    图  12  真实图像不同去雾算法效果对比

    Fig.  12  Comparison with other methods

    图  13  合成图像不同去雾算法效果对比

    Fig.  13  Results on synthetic images based on stereo images

    表  1  不同算法去雾结果定量评价指标值

    Table  1  Results of MSE and SSIM on the synthetic images

    指标图像 [11] [23] [20]本文
    MSEdolls0.08760.09870.05980.0562
    moebius0.10330.09680.0795 0.0817
    cones0.08800.07490.0563 0.0770
    books0.10430.15170.0485 0.0906
    trees0.11830.17260.12440.0848
    buildings0.22130.15580.10540.1030
    mountain0.06290.14480.08220.0596
    woods0.22030.15560.16790.1498
    SSIMdolls0.90910.90420.92930.9366
    moebius0.87640.90170.9168 0.8908
    cones0.90510.9518 0.94940.9116
    books0.86590.83380.9436 0.8793
    trees0.83320.85850.87310.8998
    buildings0.66150.85360.78470.8541
    mountain0.92250.84490.90190.9240
    woods0.84690.91560.86550.9384
    下载: 导出CSV

    表  2  不同算法去雾运算时间(s)

    Table  2  Computing times on the haze images (s)

    图像文献[11]文献[23]文献[20]本文
    dolls1.4143.2631.30913.971
    moebius1.4412.7691.18414.014
    cones1.3793.0431.25713.976
    books1.4033.1031.25913.894
    trees1.3563.0421.19813.819
    buildings2.9942.8991.20114.173
    mountain1.0092.5410.8739.705
    woods2.9703.6791.43421.412
    下载: 导出CSV
  • [1] Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48 (3): 233-254 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b619651bb1a84a4d7a31d397fb0f9386
    [2] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2341-2353 doi: 10.1109/TPAMI.2010.168
    [3] 吴迪, 朱青松.图像去雾的最新研究进展.自动化学报, 2015, 41 (2): 221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtml

    Wu Di, Zhu Qing-Song. The latest research progress of image dehazing. Acta Automatica Sinica, 2015, 41 (2): 221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtml
    [4] Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9 (5): 889-896 doi: 10.1109/83.841534
    [5] McCann J. Lessons learned from Mondrians applied to real images and color gamuts. In: Proceedings of the IS & T/SID 7th Color and Imaging Conference. Scottsdale, USA, 1999. 1-8 https://www.researchgate.net/publication/221501975_Lessons_Learned_from_Mondrians_Applied_to_Real_Images_and_Color_Gamuts
    [6] Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA: IEEE, 2001. I-325-I-332 https://www.researchgate.net/publication/3940554_Instant_dehazing_of_images_using_polarization
    [7] Kopf J, Neubert B, Chen B, Cohen M, Cohen-Or D, Deussen O, et al. Deep photo: model-based photograph enhancement and viewing. ACM Transactions on Graphics, 2008, 27 (5): Article No. 116 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210187593/
    [8] Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (6): 713-724 doi: 10.1109/TPAMI.2003.1201821
    [9] Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA: IEEE, 2000. 598-605 https://www.researchgate.net/publication/3854198_Chromatic_framework_for_vision_in_bad_weather
    [10] Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 820-827
    [11] Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 2015, 24 (11): 3522-3533 doi: 10.1109/TIP.2015.2446191
    [12] Li Z G, Zheng J H. Edge-preserving decomposition-based single image haze removal. IEEE Transactions on Image Processing, 2015, 24 (12): 5432-5441 doi: 10.1109/TIP.2015.2482903
    [13] Caraffa L, Tarel J P. Markov random field model for single image defogging. In: Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (Ⅳ). Gold Coast, QLD, Australia: IEEE, 2013. 994-999 https://www.researchgate.net/publication/261225195_Markov_Random_Field_Model_for_Single_Image_Defogging
    [14] 刘海波, 杨杰, 吴正平, 张庆年, 邓勇.基于暗通道先验和Retinex理论的快速单幅图像去雾方法.自动化学报, 2015, 41 (7): 1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtml

    Liu Hai-Bo, Yang Jie, Wu Zheng-Ping, Zhang Qing-Nian, Deng Yong. A fast single image dehazing method based on dark channel prior and Retinex theory. Acta Automatica Sinica, 2015, 41 (7): 1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtml
    [15] Chen J, Chau L P. Heavy haze removal in a learning framework. In: Proceedings of the 2015 IEEE International Symposium on Circuits and Systems. Lisbon, Portugal: IEEE, 2015. 1590-1593
    [16] Tang K T, Yang J C, Wang J. Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 2995-3002 https://www.researchgate.net/publication/286594615_Investigating_Haze-Relevant_Features_in_a_Learning_Framework_for_Image_Dehazing
    [17] Choi L, You J, Bovik A C. Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Transactions on Image Processing, 2015, 24 (11): 3888-3901 doi: 10.1109/TIP.2015.2456502
    [18] Cai B L, Xu X M, Jia K, Qing C M, Tao D C. DehazeNet: an end-to-end system for single image haze removal. IEEE Transactions on Image Processing, 2016, 25 (11): 5187-5198 doi: 10.1109/TIP.2016.2598681
    [19] 陈书贞, 任占广, 练秋生.基于改进暗通道和导向滤波的单幅图像去雾算法.自动化学报, 2016, 42 (3): 455-465 http://www.aas.net.cn/CN/abstract/abstract18833.shtml

    Chen Shu-Zhen, Ren Zhan-Guang, Lian Qiu-Sheng. Single image dehazing algorithm based on improved dark channel prior and guided filter. Acta Automatica Sinica, 2016, 42 (3): 455-465 http://www.aas.net.cn/CN/abstract/abstract18833.shtml
    [20] He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397-1409 doi: 10.1109/TPAMI.2012.213
    [21] Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208 https://www.researchgate.net/publication/221110862_Fast_Visibility_Restoration_from_a_Single_Color_or_Gray_Level_Image
    [22] Kim J H, Jang W D, Sim J Y, Kim C S. Optimized contrast enhancement for real-time image and video dehazing. Journal of Visual Communication and Image Representation, 2013, 24 (3): 410-425 doi: 10.1016/j.jvcir.2013.02.004
    [23] Meng G F, Wang Y, Duan J Y, Xiang S M, Pan C H. Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013. 617-624 https://www.researchgate.net/publication/262356211_Efficient_Image_Dehazing_with_Boundary_Constraint_and_Contextual_Regularization
    [24] Levin A, Lischinski D, Weiss Y. A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (2): 228-242 doi: 10.1109/TPAMI.2007.1177
    [25] Xiao C X, Liu M, Xiao D L, Dong Z, Ma K L. Fast closed-form matting using a hierarchical data structure. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 (1): 49-62 doi: 10.1109/TCSVT.2013.2276153
    [26] Huang S C, Chen B H, Cheng Y J. An efficient visibility enhancement algorithm for road scenes captured by intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2321-2332 doi: 10.1109/TITS.2014.2314696
    [27] Li X Y, Gu Y, Hu S M, Martin R R. Mixed-domain edge-aware image manipulation. IEEE Transactions on Image Processing, 2013, 22 (5): 1915-1925 doi: 10.1109/TIP.2013.2237922
    [28] Huang S C, Chen B H, Wang W J. Visibility restoration of single hazy images captured in real-world weather conditions. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24 (10): 1814-1824 doi: 10.1109/TCSVT.2014.2317854
    [29] Lai Y H, Chen Y L, Chiou C J, Hsu C T. Single-image dehazing via optimal transmission map under scene priors. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25 (1): 1-14 doi: 10.1109/TCSVT.2014.2329381
    [30] Li Z G, Zheng J H, Zhu Z J, Yao W, Wu S Q. Weighted guided image filtering. IEEE Transactions on Image Processing, 2015, 24 (1): 120-129 doi: 10.1109/TIP.2014.2371234
    [31] Curic V, Hendriks C L, BorgeforsG. Salience adaptive structuring elements. IEEE Journal of Selected Topics in Signal Processing, 2012, 6 (7): 809-819 doi: 10.1109/JSTSP.2012.2207371
    [32] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13 (4): 600-612 doi: 10.1109/TIP.2003.819861
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  2174
  • HTML全文浏览量:  346
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02
  • 录用日期:  2018-03-06
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回