2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Smith预估控制结构的二自由度PID控制

尹成强 高洁 孙群 赵颖

沈江, 余海燕, 徐曼. 实体异构性下证据链融合推理的多属性群决策. 自动化学报, 2015, 41(4): 832-842. doi: 10.16383/j.aas.2015.c140650
引用本文: 尹成强, 高洁, 孙群, 赵颖. 基于改进Smith预估控制结构的二自由度PID控制. 自动化学报, 2020, 46(6): 1274-1282. doi: 10.16383/j.aas.2018.c170596
SHEN Jiang, YU Hai-Yan, XU Man. Heterogeneous Evidence Chains Based Fusion Reasoning for Multi-attribute Group Decision Making. ACTA AUTOMATICA SINICA, 2015, 41(4): 832-842. doi: 10.16383/j.aas.2015.c140650
Citation: YIN Cheng-Qiang, GAO Jie, SUN Qun, ZHAO Ying. Two Degree of Freedom PID Control Based on Modified Smith Predictor Control Structure. ACTA AUTOMATICA SINICA, 2020, 46(6): 1274-1282. doi: 10.16383/j.aas.2018.c170596

基于改进Smith预估控制结构的二自由度PID控制

doi: 10.16383/j.aas.2018.c170596
基金项目: 

国家自然科学基金 61703192

山东省重点研发计划 2016GNC112014

山东省高等学校科技计划 J15LB09

详细信息
    作者简介:

    高洁  聊城大学机械与汽车工程学院副教授.主要研究方向为交通控制与交通规划. E-mail: gaojie7983@163.com

    孙群  聊城大学机械与汽车工程学院教授.主要研究方向为机器人技术, 测量与控制. E-mail: sunxiaoqun97@163.com

    赵颖  聊城大学机械与汽车工程学院教授.主要研究方向为机器视觉, 机器人技术. E-mail: zhaoying@lcu.edu.cn

    通讯作者:

    尹成强  聊城大学机械与汽车工程学院副教授.主要研究方向为过程控制与计算机控制.本文通信作者.E-mail: shtjycq@163.com

Two Degree of Freedom PID Control Based on Modified Smith Predictor Control Structure

Funds: 

National Natural Science Foundation of China 61703192

Shandong Province Key Technologies Research and Development Program 2016GNC112014

Science and Technology Funds of Shandong Education Department J15LB09

More Information
    Author Bio:

    GAO Jie   Associate professor at the School of Mechanical and Automobile Engineering, Liaocheng University. Her research interest covers traffic control and transportation planning

    SUN Qun   Professor at the School of Mechanical and Automobile Engineering, Liaocheng University. His research interest covers robotics, measurement, and control

    ZHAO Ying    Professor at the School of Mechanical and Automobile Engineering, Liaocheng University. Her research interest covers machine vision and robotics

    Corresponding author: YIN Cheng-Qiang Associate professor at the School of Mechanical and Automobile Engineering, Liaocheng University. His research interest covers process control and computer control. Corresponding author of this paper
  • 摘要: 针对工业过程中的二阶不稳定时滞过程, 基于改进史密斯预估控制结构提出了一种简单的两自由度控制方案.设定值跟踪控制器和扰动抑制控制器采用同一设计程序, 并基于内模控制原理提出了控制器解析设计方案.设定值跟踪控制器和抗扰动控制器可分别通过单性能参数独立调节和优化, 每个控制器都具有PID形式, 给出了控制器调整参数的选择范围和扰动抑制闭环保证鲁棒稳定性的条件.仿真实例验证了提出方法对于近期其他方法的优越性.
    Recommended by Associate Editor SUN Jian

  • 本文责任编委 孙健
  • 图  1  改进Smith控制结构

    Fig.  1  Modified Smith predictor structure

    图  2  内模控制结构

    Fig.  2  IMC control structure

    图  3  单位反馈控制结构

    Fig.  3  Feedback control structure

    图  4  例1标称系统阶跃响应

    Fig.  4  Step responses for Example 1 (normal)

    图  5  例1标称系统控制响应

    Fig.  5  Control signals for Example 1 (normal)

    图  6  例1扰动系统阶跃响应

    Fig.  6  Step responses for Example 1 (perturbed)

    图  7  例1扰动系统控制响应

    Fig.  7  Control signals for Example 1 (perturbed)

    图  8  例2标称系统阶跃响应

    Fig.  8  Step responses for Example 2 (normal)

    图  9  例2扰动系统阶跃响应

    Fig.  9  Step responses for Example 2 (perturbed)

    图  10  例3标称系统阶跃响应

    Fig.  10  Step responses for Example 3 (normal)

    图  11  例3标称系统控制响应

    Fig.  11  Control signals for Example 3 (normal)

    图  12  例3扰动系统阶跃响应

    Fig.  12  Step responses for Example 3 (perturbed)

    图  13  例3扰动系统控制响应

    Fig.  13  Control signals for Example 3 (perturbed)

    图  14  例1~3本文方法灵敏度函数幅值

    Fig.  14  Magnitude plots of the proposed sensitivity function for Examples 1~3

    表  1  例1的性能指标

    Table  1  Performance measures for Example 1

    方法${IAE}$${ITAE}$${OV}$$PV$
    标称响应
    本文方法1.402.581.001.0091
    Kumar方法[32]1.413.131.051.1042
    Ghousiya方法[33]1.523.141.011.0226
    扰动响应
    本文方法1.757.751.021.4168
    Kumar方法[32]3.0131.091.051.9253
    Ghousiya方法[33]2.9027.291.086.2813
    下载: 导出CSV

    表  2  例2的性能指标

    Table  2  Performance measures for Example 2

    方法${IAE}$${ITAE}$${OV}$$PV$
    标称响应
    本文方法3.5710.941.001.0144
    Ajmerin方法[25]3.7112.151.001.0083
    Wang方法[28]3.7512.511.001.0052
    扰动响应
    本文方法4.3736.801.011.590
    Ajmerin方法[25]4.6741.291.011.535
    Wang方法[28]4.7044.701.001.381
    下载: 导出CSV

    表  3  例3的性能指标

    Table  3  Performance measures for Example 3

    方法${IAE}$${ITAE}$${OV}$$PV$
    标称响应
    本文方法1.713.471.001.0121
    Ajmerin方法[25]1.232.131.011.0230
    Vanavil方法[34]1.753.881.001.0034
    扰动响应
    本文方法2.0411.821.021.4628
    Ajmerin方法[25]1.7013.361.041.5220
    Vanavil方法[34]2.5124.771.021.6185
    下载: 导出CSV
  • [1] Liu T, Gao F R. Enhanced IMC design of load disturbance rejection for integrating and unstable processes with slow dynamics. ISA Transactions, 2011, 50(2): 239-248 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e1fec3de2fdfed6d47fd8bb1bfdf491
    [2] Vanavil B, Chaitanya K K, Rao A S. Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity. International Journal of Systems Science, 2015, 46(8): 1349-1366 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00207721.2013.822124
    [3] Seer Q H, Nandong J. Stabilization and PID tuning algorithms for second-order unstable processes with time-delays. ISA Transactions, 2017, 67: 233-245 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f176a0d140e7a7608a85c23a181ba10
    [4] Zhang G Q, Zhang X K, Zhang W D. Robust controller synthesis for high order unstable processes with time delay using mirror mapping technique. ISA Transactions, 2015, 59: 10-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ac171a7294c271e0940654622fe040b
    [5] Zhang G Q, Zhang X K, Guan W. Stability analysis and design of integrating unstable delay processes using the mirror-mapping technique. Journal of Process Control, 2014, 24(7): 1038-1045 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32f9ba608ac7f42bb9c2e9bc7d4a9edc
    [6] 肖强, 谢巍.针对时滞系统的一般化内模控制方法.自动化学报, 2011, 37(4): 464-470 doi: 10.3724/SP.J.1004.2011.00464

    Xiao Qiang, Xie Wei. A GIMC architecture for timed- delay systems. Acta Automatica Sinica, 2011, 37(4): 464-470 doi: 10.3724/SP.J.1004.2011.00464
    [7] Wang Q G, Hang C C, Yang X P. Single-loop controller design via IMC principles. Automatica, 2001, 37(12): 2041- 2048 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029982756/
    [8] Skogestad S. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 2003, 13(4): 291-309 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5e047a5c6dc4e7cd03e154e9ab666e46
    [9] Vanavil B, Anusha A V N L, Perumalsamy M, Seshagiri Rao A S. Enhanced IMC-PID controller design with lead lag filter for unstable and integrating processes with time delay. Chemical Engineering Communications, 2014, 201(11): 1468-1496 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00986445.2013.818983
    [10] Begum K G, Rao A S, Radhakrishnan T K. Maximum sensitivity based analytical tuning rules for PID controllers for unstable dead time processes. Chemical Engineering Research and Design, 2016, 109: 593-606 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d63e6a66a07fd73c35c40ed92ef1986f
    [11] 汤赵建, 蒋北艳, 靳其兵.基于稳定裕度的新型IMC-PID整定方法.北京化工大学学报(自然科学版), 2017, 44(5): 105-110 http://d.old.wanfangdata.com.cn/Periodical/bjhgdxxb201705017

    Tang Zhao-Jian, Jiang Bei-Yan, Jin Qi-Bing. A novel IMP-PID tuning method based on stability margin. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(5): 105-110 http://d.old.wanfangdata.com.cn/Periodical/bjhgdxxb201705017
    [12] Das S, Pan I. On the mixed H2/H loop-shaping tradeoffs in fractional-order control of the AVR system. IEEE Transactions on Industrial Informatics, 2014, 10(4): 1982-1991 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6813659
    [13] Zeng G Q, Chen J, Dai Y X, Li L M, Zheng C W, Chen M R. Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing, 2015, 160: 173-184 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c2e4cf641143068fb90d95742a859d40
    [14] Zeng G Q, Chen J, Chen M R, Dai Y X, Li L M, Lu K D, et al. Design of multivariable PID controllers using real-coded population-based extremal optimization. Neurocomputing, 2015, 151(p3): 1343-1353 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6ee227533eb1898f319add1076ab4df
    [15] Srivastava S, Pandit V S. A 2-Dof LQR based PID controller for integrating processes considering robustness/perf- ormance tradeoff. ISA Transactions, 2017, 71: 426-439 http://www.ncbi.nlm.nih.gov/pubmed/28941953
    [16] 黄德先, 江永亨, 金以慧.炼油工业过程控制的研究现状、问题与展望.自动化学报, 2017, 43(6): 902-916 doi: 10.16383/j.aas.2017.c170157

    Huang De-Xian, Jiang Yong-Heng, Jin Yi-Hui. Present research situation, major bottlenecks, and prospect of refinery industry process control. Acta Automatica Sinica, 2017, 43(6): 902-916 doi: 10.16383/j.aas.2017.c170157
    [17] 许锋, 魏小丽, 任丽红, 罗雄麟.基于多变量广义预测控制的不稳定系统控制结构选择方法.自动化学报, 2013, 39(9): 1547-1551 doi: 10.3724/SP.J.1004.2013.01547

    Xu Feng, Wei Xiao-Li, Ren Li-Hong, Luo Xiong-Lin. A control structure selection method based on multivariable generalized predictive control for unstable processes. Acta Automatica Sinica, 2013, 39(9): 1547-1551 doi: 10.3724/SP.J.1004.2013.01547
    [18] Zhang W D, Gu D Y, Wang W, Xu X M. Quantitative performance design of a modified Smith predictor for unstable processes with time delay. Industrial and Engineering Chemistry Research, 2004, 43(1): 56-62 doi: 10.1021/ie020732v
    [19] Rao A S, Chidambaram M. Analytical design of modified Smith predictor in a two-degrees-of-freedom control scheme for second order unstable processes with time delay. ISA Transactions, 2008, 47(4): 407-419 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6435258c4dd7966c63beeec35e8db89d
    [20] Mataušek M R, Ribic A I. Control of stable, integrating and unstable processes by the modified Smith predictor. Journal of Process Control, 2012, 22(1): 338-343 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b870f9103807aad1e7bf1b806c1d4427
    [21] Tan W, Marquez H J, Chen T W. IMC design for unstable processes with time delays. Journal of Process Control, 2003, 13(3): 203-213 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66f4025470065e24910842db889a173f
    [22] 刘涛, 张卫东, 顾诞英.化工不稳定时滞过程鲁棒控制的解析设计.控制与决策, 2005, 20(5): 575-578 http://d.old.wanfangdata.com.cn/Periodical/kzyjc200505021

    Liu Tao, Zhang Wei-Dong, Gu Dan-Ying. Analytical design of robust control for unstable chemical and industrial processes with time delay. Control and Decision, 2005, 20(5): 575-578 http://d.old.wanfangdata.com.cn/Periodical/kzyjc200505021
    [23] 李敏, 王琪, 靳其兵.不稳定时滞对象的最优鲁棒二自由度控制器解析设计.信息与控制, 2016, 45(3): 313-319 http://d.old.wanfangdata.com.cn/Periodical/xxykz201603009

    Li Min, Wang Qi, Jin Qi-Bing. Analytical design of optimal robust two-degree-of-freedom controller for unstable processes with time delays. Information and Control, 2016, 45(3): 313-319 http://d.old.wanfangdata.com.cn/Periodical/xxykz201603009
    [24] 张井岗, 秦娜娜.串级不稳定时滞过程的内模控制器设计.电子科技大学学报, 2017, 46(1): 38-45 http://d.old.wanfangdata.com.cn/Periodical/dzkjdxxb201701007

    Zhang Jing-Gang, Qin Na-Na. Design method of IMC controllers for unstable cascade processes with time delay. Journal of University of Electronic Science and Technology of China, 2017, 46(1): 38-45 http://d.old.wanfangdata.com.cn/Periodical/dzkjdxxb201701007
    [25] Ajmerin M, Ali A. Two degree of freedom control scheme for unstable processes with small time delay. ISA Transactions, 2015, 56: 308-326 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9931740737a8f15b4459b0b2ae4575dc
    [26] Padhy P K, Majhi S. Relay based PI-PD design for stable and unstable FOPDT processes. Computers and Chemical Engineering, 2006, 30(5): 790-796 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bda09cc6bb838ac1f3f64fb41ed23eb2
    [27] Vijayan V, Panda R C. Design of PID controllers in double feedback loops for SISO systems with set-point filters. ISA Transactions, 2012, 51(4): 514-521 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=444f11695ce4d7cd29885d7f30eb8784
    [28] Wang Q, Lu C H, Pan W. IMC PID controller tuning for stable and unstable processes with time delay. Chemical Engineering Research and Design, 2016, 105: 120-129 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb-e202001009
    [29] Shamsuzzoha M, Lee M Y. Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delay. Chemical Engineering Science, 2008, 63 (10): 2717-273 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=222edd6e81fe5983e2d98f50d5d7756c
    [30] Wang Q G, Lee T H, He J B. Internal stability of interconnected systems. IEEE Transactions on Automatic Control, 1999, 44(3): 593-596 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e990bea0df126be8bf195b52d94ed9a5
    [31] Morari M, Zafiriou E. Robust Process Control. Englewood Cliffs: Prentice Hall, 1989.
    [32] Kumar D B, Padma S R. Tuning of IMC based PID controllers for integrating systems with time delay. ISA Transactions, 2016, 63: 242-255 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a77656da8528daf16c67ce90d58bc992
    [33] Ghousiya B K, Rao A S, Radhakrishnan T K. Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays. ISA Transactions, 2017, 68: 223-234 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a0b2f8c7401d9fdd9546386d956a774b
    [34] Vanavil B, Rao A S. Improved performance with PID filter controllers for unstable processes involving time delays. In: Proceedings of the 2011 International Conference on Process Automation, Control, and Computing. New York, USA: IEEE, 2011. 1-6
  • 期刊类型引用(14)

    1. 杜星瀚,曹轩玮,刘奇. 一阶纯滞后系统的改进Smith-IFT控制. 制造业自动化. 2025(02): 19-26 . 百度学术
    2. 朱其新,王嘉祺,朱永红. 基于全部参数自适应Smith预估补偿的永磁同步电机滑模前馈控制及扰动抑制. 兵工学报. 2024(02): 417-428 . 百度学术
    3. 王忠明,吴国庆,茅靖峰,胡坤. 基于ISOA的微织构机床伺服前馈补偿控制. 机械设计与制造. 2024(04): 172-176+180 . 百度学术
    4. 苗河泉,刁培松,徐广飞,宋志才,姚文燕,魏懋健,王文君. 基于改进史密斯预估控制的电液转向时滞补偿研究. 农机化研究. 2023(07): 232-237 . 百度学术
    5. 林立,杨德航,王业钧,李亚楠,王翔. 车用IPMSM二自由度MTPA控制研究. 邵阳学院学报(自然科学版). 2023(02): 37-44 . 百度学术
    6. 周翔,马占东,国凯,刘晓菲,马宝庆. 复合材料高温力学性能自动化测试关键技术研究与系统设计. 纤维复合材料. 2023(03): 49-58 . 百度学术
    7. 黄新成,简炜,陈宇峰,张金亮,彭国生,李艺仁. 基于二自由度PI控制的PMSM的参数整定研究. 电气传动. 2022(02): 25-31 . 百度学术
    8. 刘青震,汪思源,王靖,王文标. 针对大时滞过程下的改进内模控制方法研究. 控制工程. 2022(01): 137-142 . 百度学术
    9. 杜祎君,成咪,任振涛. 串级不稳定时滞过程的二自由度Smith预估控制. 太原科技大学学报. 2022(02): 129-135 . 百度学术
    10. 臧春华,张帅杰,苏宝玉. 基于误差性能最优的史密斯预估器. 自动化与仪器仪表. 2022(03): 16-21 . 百度学术
    11. 郑健,马平,赵俊达. 基于模糊自整定的矿用压滤机液压控制方法. 煤炭工程. 2022(S1): 176-180 . 百度学术
    12. 王文标,刘青震,汪思源,任冠企. 针对大滞后系统的改进内模控制算法研究. 计算机仿真. 2021(03): 186-189+238 . 百度学术
    13. 陈巍文,蒋薇,徐柳斌,张关淼. Smith预估主汽温度控制在RB试验中的应用. 浙江电力. 2021(04): 115-119 . 百度学术
    14. 郭建豪,刘鑫屏. SA-PSO锅炉燃烧控制系统二自由度PID参数整定. 中国测试. 2020(07): 141-145+168 . 百度学术

    其他类型引用(15)

  • 加载中
  • 图(14) / 表(3)
    计量
    • 文章访问数:  1424
    • HTML全文浏览量:  264
    • PDF下载量:  289
    • 被引次数: 29
    出版历程
    • 收稿日期:  2017-10-26
    • 录用日期:  2018-03-16
    • 刊出日期:  2020-07-10

    目录

      /

      返回文章
      返回