2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于T-Spline的全自动几何拓扑修复方法

池宝涛 张见明 鞠传明

池宝涛, 张见明, 鞠传明. 基于T-Spline的全自动几何拓扑修复方法. 自动化学报, 2019, 45(8): 1511-1526. doi: 10.16383/j.aas.2018.c170574
引用本文: 池宝涛, 张见明, 鞠传明. 基于T-Spline的全自动几何拓扑修复方法. 自动化学报, 2019, 45(8): 1511-1526. doi: 10.16383/j.aas.2018.c170574
CHI Bao-Tao, ZHANG Jian-Ming, JU Chuan-Ming. An Automatic Topology Recovery Method Using T-Spline. ACTA AUTOMATICA SINICA, 2019, 45(8): 1511-1526. doi: 10.16383/j.aas.2018.c170574
Citation: CHI Bao-Tao, ZHANG Jian-Ming, JU Chuan-Ming. An Automatic Topology Recovery Method Using T-Spline. ACTA AUTOMATICA SINICA, 2019, 45(8): 1511-1526. doi: 10.16383/j.aas.2018.c170574

基于T-Spline的全自动几何拓扑修复方法

doi: 10.16383/j.aas.2018.c170574
详细信息
    作者简介:

    池宝涛   湖南大学机械与运载工程学院汽车车身先进设计制造国家重点实验室博士研究生.主要研究方向为计算机图形学, CAD/CAE一体化, 全自动几何拓扑修复, 网格自动化生成.E-mail:baotaochi@hnu.edu.cn

    鞠传明  湖南大学机械与运载工程学院汽车车身先进设计制造国家重点实验室博士研究生.主要研究方向为CAD/CAE一体化, 网格自动化生成.E-mail:cmju@hnu.edu.cn

    通讯作者:

    张见明  湖南大学机械与运载工程学院汽车车身先进设计制造国家重点实验室教授.2002年获清华大学工程力学系博士学位.主要研究方向为汽车CAE技术, 完整实体CAE分析, 计算机图形算法与三维可视化, CAE软件开发及其在车身设计中的应用, 数值计算方法(有限元, 边界元, 无网格法, 快速算法, 多尺度分析).本文通信作者.E-mail:zhangjm@hnu.edu.cn

An Automatic Topology Recovery Method Using T-Spline

More Information
    Author Bio:

     Ph. D. candidate at the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University. His research interest covers computer graphics, CAD/CAE integration, automatic topology recovery method, and mesh generation

     Ph. D. candidate at the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University. His research interest covers CAD/ CAE integration and mesh generation

    Corresponding author: ZHANG Jian-Ming  Professor at the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University. He received his Ph. D. degree from Tsinghua University in 2002. His research interest covers CAE technology, complete solid stress analysis, computer graphics, software development and numerical methods such as FEM, BEM, meshless method, FMM, MGA. Corresponding author of this paper
  • 摘要: 从高质量曲面网格生成的需求出发,提出了一种基于T-Spline的全自动几何拓扑修复方法.本文方法创新性主要可归纳为:1)对原有计算机辅助设计(Computer aided design,CAD)几何模型不进行任何修改保留其本真,自动识别CAD几何模型中常见不必要的几何特征,成功解决了CAD几何模型中存在的几何瑕疵,如短边、窄面、退化边、退化面、非连续光滑边界及尖锐特征等,利用新生成的"虚边"、"虚面"处理几何瑕疵,同时通过虚拓扑重构CAD几何模型的B-Rep;2)开发了一套CAD/CAE集成系统,统一了几何模型与计算分析模型,实现计算机辅助工程(Computer aided engineering,CAE)与CAD两者的无缝集成,所有拓扑修复操作及后续CAE分析计算均在同一环境下进行,避免了几何模型在CAE与CAD系统间进行转换时造成的数据丢失.该方法能够对复杂实体实现全自动几何拓扑修复及网格生成,实验表明,在保证不失真的前提下,修复后的几何模型能够生成质量良好的网格且能降低网格的生成规模,验证了本文方法的实用性和有效性,以满足工程实际分析的需要.
    1)  本文责任编委 李成栋
  • 图  1  美国 Sandia 国家实验室数值模拟过程用时数据统计

    Fig.  1  Statistics related to numerical computation from Sandia National Laboratories of USA

    图  2  完整实体CAE分析软件前处理模块框架

    Fig.  2  Preprocessing module of center for complete solid analysis software for engineering structures

    图  3  完整实体CAE分析软件整体框架

    Fig.  3  The software framework of center for complete solid analysis software for engineering structures

    图  4  完整实体CAE分析软件界面

    Fig.  4  The software interface of center for complete solid analysis software for engineering structures

    图  5  NURBS与T-Spline区别

    Fig.  5  The difierence between NURBS and T-Spline

    图  6  钢架焊缝模型中常见的几何噪声

    Fig.  6  Geometric noises of weld in the steel frame

    图  7  汽车桥壳模型中常见的几何噪声

    Fig.  7  Geometric noises in the automobile axle housing

    图  8  CAD模型中常见的非理想几何特征

    Fig.  8  Nonideal geometric features in CAD model

    图  9  退化边、退化面的处理

    Fig.  9  Topology recovery for degenerated edges and degenerated faces

    图  10  非连续光滑边界的处理

    Fig.  10  Topology recovery for fragmentary smooth boundary edges

    图  11  基于面的边界扩展生长法示意图

    Fig.  11  The seeded region growing algorithm images

    图  12  基于相邻面片间公共边界处的光滑度和几何中心处的法矢夹角判断准则示意图

    Fig.  12  The judgment criteria for seeded region growing algorithm images

    图  13  一般非理想几何特征的自动识别

    Fig.  13  Automatic identiflcation for nonideal geometric features

    图  14  Delaunay三角剖分的重要特性

    Fig.  14  The most important characteristic of Delaunay triangulation

    图  15  Delaunay三角化过程

    Fig.  15  The process of Delaunay triangulation

    图  16  基于三角形重心构建的K-d树

    Fig.  16  Construct the K-d tree based on triangle center

    图  17  临近单元的搜索路径

    Fig.  17  The search path for flnding the target triangle

    图  18  验证改进目标单元快速搜索算法效率算例

    Fig.  18  An example to verify the e–ciency of target cell searching algorithm

    图  19  Delaunay三角网格曲面的重新参数化

    Fig.  19  Reparameterization of Delaunay triangulation

    图  20  三角网格的映射示意图

    Fig.  20  Reparameterization map for a triangle

    图  21  自适应T-Spline曲面重建流程

    Fig.  21  The flowchart of automatic T-Spline surface reconstruction algorithm

    图  22  自适应T-Spline曲面重建实例

    Fig.  22  An example of automatic T-Spline surface reconstruction algorithm

    图  23  T-Spline局部节点插入算法实例

    Fig.  23  An example of T-Spline local reflnement algorithm

    图  24  任意自由边界或含空洞的非理想几何特征

    Fig.  24  Nonideal geometric features with complex boundary or holes

    图  25  任意自由边界的非理想几何特征自动修复

    Fig.  25  Topology recovery for nonideal geometric features with arbitrary boundary

    图  26  三角形及四边形网格的质量因子

    Fig.  26  The quality factor of triangular and quadrilateral mesh generation

    图  27  汽车桥壳模型全自动几何拓扑修复

    Fig.  27  The results of automobile axle housing model after automatic topology recovery

    图  28  钢架焊缝模型全自动几何拓扑修复

    Fig.  28  The results of steel frame model after automatic topology recovery

    表  1  本文改进快速搜索方法与传统搜索方法数据对比

    Table  1  Comparison between traditional method and our method

    方法随机点数量搜索耗时(s)
    传统搜索方法628 61196.28
    本文改进方法628 6114.69
    下载: 导出CSV

    表  2  自适应T-Spline拟合曲面误差及网格质量评价

    Table  2  Relevant experimental data of T-Spline fltting for automatic surface reconstruction

    算例$E_{ m}$ ($10^{-5}$ mm)RMSE ($10^{-5}$ mm)$a_{\min}$$a_{\rm aver}$
    拟合曲面1.280.960.8620.978
    下载: 导出CSV

    表  3  T-Spline局部节点插入算法拟合曲面误差及网格质量评价

    Table  3  Relevant experimental data of T-Spline fltting by the local reflnement algorithm

    局部节点插入$E_{m}$($10^{-5}$ mm)RMSE($10^{-5}$ mm)$a_{\rm min}$$a_{\rm aver}$
    横向节点插入3.321.630.8750.937
    纵向节点插入2.871.390.9130.961
    双向节点插入2.711.150.9360.975
    下载: 导出CSV

    表  4  任意自由边界非理想几何特征的拟合曲面误差及网格质量评价

    Table  4  Relevant experimental data of T-Spline fltting for nonideal geometric features with arbitrary boundary

    算例$E_{m}$($10^{-5}$ mm)RMSE($10^{-5}$ mm)$a_{\rm min}$$a_{\rm aver}$
    拟合曲面2.931.260.8370.935
    下载: 导出CSV

    表  5  汽车桥壳模型拟合曲面误差及网格质量评价

    Table  5  Relevant experimental data of T-Spline fltting for automobile axle housing model

    算例$E_{m}$($10^{-3}$ mm)RMSE($10^{-3}$ mm)$a_{\min}$$a_{\rm aver}$
    汽车桥壳模型7.962.570.6720.916
    下载: 导出CSV

    表  6  汽车桥壳模型拓扑修复前后数据对比

    Table  6  Relevant experimental data of automatic topology recovery for automobile axle housing model

    汽车桥壳模型曲面数量曲线数量顶点数量
    修复前241969724
    修复后92392276
    下载: 导出CSV

    表  7  钢架焊缝模型拟合曲面误差及网格质量评价

    Table  7  Relevant experimental data of T-Spline fltting for steel frame model

    算例$E_{m}$($10^{-4}$ mm)RMSE($10^{-4}$ mm)$a_{\rm min}$$a_{\rm aver}$
    汽车桥壳模型3.791.820.8850.965
    下载: 导出CSV

    表  8  钢架模型拓扑修复前后数据对比

    Table  8  Relevant experimental data of automatic topology recovery method for steel frame model

    汽车桥壳模型曲面数量曲线数量顶点数量
    修复前39315471326
    修复后357952769
    下载: 导出CSV
  • [1] Lancaster P, Šalkauskas K. Curve and Surface Fitting:An Introduction. London:Academic Press, 1986.
    [2] Piegl L, Tiller W. The NURBS Book (2nd edition). New York:Springer, 1997.
    [3] Butlin G, Stops C. CAD data repair. In:Proceedings of the 5th International Meshing Roundtable. Pittsburgh, PA, USA, 1996.7-12
    [4] Uva A E, Monno G, Hamann B. A new method for the repair of CAD data with discontinuities. In:Proceedings of the 1998 Italian-Spanish Seminar on Design and Feasibility of Industrial Products. Vico Equense, Italy, 1998.59-73
    [5] Keller J B. Removing small features from computational domains. Journal of Computational Physics, 1994, 113(1):148-150 doi: 10.1006/jcph.1994.1124
    [6] Morvan S M, Fadel G M. IVECS:an interactive correction of STL files in a virtual environment. In:Proceedings of the 1996 Solid Freeform Fabrication Symposium. Austin, Texas, USA, 1996.
    [7] Attene M, Campen M, Kobbelt L. Polygon mesh repairing:an application perspective. ACM Computing Surveys (CSUR), 2013, 45(2):Article No. 15 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230137292/
    [8] Patel P S, Marcum D L. Robust and efficient CAD topology generation using adaptive tolerances. International Journal for Numerical Methods in Engineering, 2008, 75(3):355-378 doi: 10.1002/nme.2263
    [9] Zhang J M, Qin X Y, Han X, Li G Y. A boundary face method for potential problems in three dimensions. International Journal for Numerical Methods in Engineering, 2009, 80(3):320-337 doi: 10.1002/nme.2633
    [10] Center for Complete Solid Analysis Software for Engineering Structures[Online], available:http://www.5acae.com, January 30, 2018
    [11] Sederberg T W, Zheng J M, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM Transactions on Graphics (TOG), 2003, 22(3):477-484 doi: 10.1145/882262.882295
    [12] Mehnert A, Jackway P. An improved seeded region growing algorithm. Pattern Recognition Letters, 1997, 18(10):1065 -1071 doi: 10.1016/S0167-8655(97)00131-1
    [13] Lee D T, Schachter B J. Two algorithms for constructing a Delaunay triangulation. International Journal of Computer and Information Sciences, 1980, 9(3):219-242 doi: 10.1007/BF00977785
    [14] Bentley J L. Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975, 18(9):509-517 doi: 10.1145/361002.361007
    [15] Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics (TOG), 2002, 21(3):362-371 http://www.researchgate.net/publication/220720636_Least_squares_conformal_maps_for_automatic_texture_atlas_generation
    [16] Li W C, Ray N, Lévy B. Automatic and interactive mesh to T-spline conversion. In:Proceedings of the 4th Eurographics Symposium on Geometry Processing-SGP. The Eurographics Association, 2006.
    [17] Sederberg T W, Cardon D L, Finnigan G T, North N S, Zheng J M, Lyche T. T-spline simplification and local refinement. ACM Transactions on Graphics (TOG), 2004, 23(3):276-283 doi: 10.1145/1015706.1015715
    [18] Wang B Y. A local meshless method based on moving least squares and local radial basis functions. Engineering Analysis with Boundary Elements, 2015, 50:395-401 doi: 10.1016/j.enganabound.2014.10.001
    [19] Lee C K, Lo S H. A new scheme for the generation of a graded quadrilateral mesh. Computers and Structures, 1994, 52(5):847-857 doi: 10.1016/0045-7949(94)90070-1
    [20] Park C, Noh J S, Jang I S, Kang J M. A new automated scheme of quadrilateral mesh generation for randomly distributed line constraints. Computer-Aided Design, 2007, 39(4):258-267 doi: 10.1016/j.cad.2006.12.002
    [21] 刘芬, 周华民, 李德群. STL错误的手工修复方法研究.计算机工程与应用, 2006, 42(11):91-93 doi: 10.3321/j.issn:1002-8331.2006.11.029

    Liu Fen, Zhou Hua-Min, Li De-Qun. Research on manual repair methods of STL file errors. Computer Engineering and Applications, 2006, 42(11):91-93 doi: 10.3321/j.issn:1002-8331.2006.11.029
    [22] 赵吉宾, 刘伟军, 王越超. STL文件的错误检测与修复算法研究.计算机应用, 2003, 23(2):32-33, 36 doi: 10.3969/j.issn.1001-3695.2003.02.011

    Zhao Ji-Bin, Liu Wei-Jun, Wang Yue-Chao. Research on algorithm for diagnosis and modification of STL file errors. Computer Applications, 2003, 23(2):32-33, 36 doi: 10.3969/j.issn.1001-3695.2003.02.011
    [23] 张必强, 邢渊, 阮雪榆.面向网格简化的STL拓扑信息快速重建算法.上海交通大学学报, 2004, 38(1):39-42 doi: 10.3321/j.issn:1006-2467.2004.01.010

    Zhang Bi-Qiang, Xing Yuan, Ruan Xue-Yu. Fast generation of the topological information in STL for mesh simplification. Journal of Shanghai Jiaotong University, 2004, 38(1):39-42 doi: 10.3321/j.issn:1006-2467.2004.01.010
    [24] 曹秉万, 陈建军, 郑耀, 黄争舸, 郑建靖.面向混合曲面模型的自动拓扑生成算法.浙江大学学报(工学版), 2014, 48(5):923-933 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201405025

    Cao Bing-Wan, Chen Jian-Jun, Zheng Yao, Huang Zheng-Ge, Zheng Jian-Jing. Automatic topology generation algorithm for hybrid surface models. Journal of Zhejiang University (Engineering Science), 2014, 48(5):923-933 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201405025
  • 加载中
图(28) / 表(8)
计量
  • 文章访问数:  1535
  • HTML全文浏览量:  249
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 录用日期:  2018-01-29
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回