2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有不匹配干扰的二阶多自主体系统有限时间包容控制

李玉玲 杨洪勇 刘凡 杨怡泽

李玉玲, 杨洪勇, 刘凡, 杨怡泽. 带有不匹配干扰的二阶多自主体系统有限时间包容控制. 自动化学报, 2019, 45(9): 1783-1790. doi: 10.16383/j.aas.2018.c170571
引用本文: 李玉玲, 杨洪勇, 刘凡, 杨怡泽. 带有不匹配干扰的二阶多自主体系统有限时间包容控制. 自动化学报, 2019, 45(9): 1783-1790. doi: 10.16383/j.aas.2018.c170571
LI Yu-Ling, YANG Hong-Yong, LIU Fan, YANG Yi-Ze. Finite-time Containment Control of Second-order Multi-agent Systems With Mismatched Disturbances. ACTA AUTOMATICA SINICA, 2019, 45(9): 1783-1790. doi: 10.16383/j.aas.2018.c170571
Citation: LI Yu-Ling, YANG Hong-Yong, LIU Fan, YANG Yi-Ze. Finite-time Containment Control of Second-order Multi-agent Systems With Mismatched Disturbances. ACTA AUTOMATICA SINICA, 2019, 45(9): 1783-1790. doi: 10.16383/j.aas.2018.c170571

带有不匹配干扰的二阶多自主体系统有限时间包容控制

doi: 10.16383/j.aas.2018.c170571
基金项目: 

国家自然科学基金 61472172

国家自然科学基金 61771231

山东省自然科学基金 ZR2018ZC0438

烟台市重点研发项目 2019XDHZ085

山东省自然科学基金 ZR2017PF010

国家自然科学基金 61673200

详细信息
    作者简介:

    李玉玲  鲁东大学信息与电气工程学院硕士研究生.主要研究方向为多智能体编队控制.E-mail:liyuling822@163.com

    刘凡  鲁东大学信息与电气工程学院硕士研究生.主要研究方向为多智能体编队控制.E-mail:jsgyliufan@163.com

    杨怡泽   新南威尔士大学电气工程与信息学院硕士研究生.主要研究方向为多智能体群集运动.E-mail:yangyz1994@126.com

    通讯作者:

    杨洪勇   鲁东大学信息与电气工程学院教授.主要研究方向为复杂网络, 多智能体编队控制, 智能控制, 非线性系统控制.本文通信作者.E-mail:hyyang@yeah.net

Finite-time Containment Control of Second-order Multi-agent Systems With Mismatched Disturbances

Funds: 

National Natural Science Foundation of China 61472172

National Natural Science Foundation of China 61771231

Natural Science Foundation of Shandong Province of China ZR2018ZC0438

the Key Research and Development Program of Yantai City of China 2019XDHZ085

Natural Science Foundation of Shandong Province of China ZR2017PF010

National Natural Science Foundation of China 61673200

More Information
    Author Bio:

       Master student at the School of Information and Electrical Engineering, Ludong University. Her main research interest is the formation control of multi-agent systems

       Master student at the School of Information and Electrical Engineering, Ludong University. His main research interest is the formation control of multi-agent systems

      Master student at the School of Electrical Engineering and Telecommunications, The University of New South Wales. His main research interest is the flocking motion of multi-agent systems

    Corresponding author: YANG Hong-Yong   Professor at the School of Information and Electrical Engineering, Ludong University. His research interest covers complex network, the formation control of multi-agent systems, intelligence control and nonlinear system control. Corresponding author of this paper
  • 摘要: 针对多自主体系统群集运动问题,本文研究了带有不匹配干扰的二阶系统有限时间包容控制.运用现代控制理论,设计了非线性观测器,对系统未知状态和干扰进行估计.在状态估计的基础上,构建了基于干扰观测器的多自主体系统的协同控制算法.应用代数图论和齐次性理论等方法,分析了二阶多自主体系统有限时间包容控制.数据仿真中应用基于观测器的包容控制算法,使得系统的运动状态最终都收敛到由多个领导者所围成的目标区域中,验证了本文结果的有效性.
    1)  本文责任编委 刘艳军
  • 图  1  多智能体系统的通信拓扑图

    Fig.  1  The communication topology of multi-agent systems

    图  2  二阶多自主体系统跟随者的运动轨迹

    Fig.  2  The motion track of followers in the second-order multi-agent systems

    图  3  $w$的估计值

    Fig.  3  The estimated value of $w$

    图  4  速度$\overline{{V}} _F$的估计值

    Fig.  4  The estimated value of velocity $\overline{{V}} _F$

    图  5  干扰$d$的估计值

    Fig.  5  The estimated value of disturbances $d$

    图  6  干扰$d$的观测误差

    Fig.  6  Observation error of the disturbances $d$

  • [1] Yoon M G. Consensus of adaptive multi-agent systems. Systems & Control Letters, 2017, 102:9-44 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1109.3838
    [2] Yang H Y, Zhu X L, Zhang S Y. Consensus of second-order delayed multi-agent systems with leader-following. European Journal of Control, 2010, 16(2):188-199 doi: 10.3166/ejc.16.188-199
    [3] Han F J, Gao L, Yang H Y. Sampling control on collaborative flocking motion of discrete-time system with time-delays. Neurocomputing, 2016, 216:242-249 doi: 10.1016/j.neucom.2016.07.041
    [4] Mu X W, Yang Z. Containment control of discrete-time general linear multi-agent systems under dynamic digraph based on trajectory analysis. Neurocomputing, 2016, 171:1655-1660 doi: 10.1016/j.neucom.2015.07.079
    [5] Miao G Y, Cao J D, Alsaedi A, Alsaedi F E. Event-triggered containment control for multi-agent systems with constant time delays. Journal of the Franklin Institute, 2017, 354(15):6956-6977 doi: 10.1016/j.jfranklin.2017.08.010
    [6] Wang Q, Fu J J, Wang J Z. Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics. Systems & Control Letters, 2017, 99:33-39 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=06e1a4fe9dd39883d60548a372d6df36
    [7] 刘帅, 谢立华, 张焕水.带噪声多自主体的均方包容控制.自动化学报, 2013, 39(11):1787-1795 http://www.aas.net.cn/CN/abstract/abstract18218.shtml

    Liu Shuai, Xie Li-Hua, Zhang Huan-Shui. Mean square containment control of multi-agent systems with transmission noises. Acta Automatica Sinica, 2013, 39(11):1787-1795 http://www.aas.net.cn/CN/abstract/abstract18218.shtml
    [8] Li B, Chen Z Q, Liu Z X, Zhang C Y, Zhang Q. Containment control of multi-agent systems with fixed time-delays in fixed directed networks. Neurocomputing, 2016, 173:2069-2075 doi: 10.1016/j.neucom.2015.09.056
    [9] 杨洪勇, 郭雷, 张玉玲, 姚秀明.复杂分数阶多自主体系统的运动一致性.自动化学报, 2014, 40(3):489-496 http://www.aas.net.cn/CN/abstract/abstract18314.shtml

    Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Movement consensus of complex fractional-order multi-agent systems. Acta Automatica Sinica, 2014, 40(3):489-496 http://www.aas.net.cn/CN/abstract/abstract18314.shtml
    [10] Zhao L, Jia Y M. Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics. Applied Mathematics & Computation, 2015, 270:278-290 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cefa2995a45a4a4093c3ccbf7ea28728
    [11] Fu J J, Wang J Z. Robust finite-time containment control of general linear multi-agent systems under directed communication graphs. Journal of the Franklin Institute, 2016, 353(12):2670-2689 doi: 10.1016/j.jfranklin.2016.05.015
    [12] 朱亚锟, 关新平, 罗小元.线性和非线性动态异构多自主体系统的有限时间一致性.自动化学报, 2014, 40(11):2618-2624 http://www.aas.net.cn/CN/abstract/abstract18539.shtml

    Zhu Ya-Kun, Guan Xin-Ping, Luo Xiao-Yuan. Finite-time consensus of heterogeneous multi-agent systems with linear and nonlinear dynamics. Acta Automatica Sinica, 2014, 40(11):2618-2624 http://www.aas.net.cn/CN/abstract/abstract18539.shtml
    [13] Xu C J, Zheng Y, Su H S, Zeng H B. Containment for linear multi-agent systems with exogenous disturbances. Neurocomputing, 2015, 160:206-212 doi: 10.1016/j.neucom.2015.02.008
    [14] Yang H Y, Zhang Z X, Zhang S Y. Consensus of second-order multi-agent systems with exogenous disturbances. International Journal of Robust & Nonlinear Control, 2011, 21(9):945-956 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201701011
    [15] Cao W J, Zhang J H, Ren W. Leader-follower consensus of linear multi-agent systems with unknown external disturbances. Systems & Control Letters, 2015, 82:64-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8c72268432876460cf59b5011bcd99d
    [16] Yang H Y, Han F J, Zhao M, Zhang S N, Yue J. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays. Open Physics, 2017, 15(1):509-516 doi: 10.1515/phys-2017-0058
    [17] Sun F L, Zhu W, Li Y F, Liu F. Finite-time consensus problem of multi-agent systems with disturbance. Journal of the Franklin Institute, 2016, 353(12):2576-2587 doi: 10.1016/j.jfranklin.2016.04.016
    [18] Li S H, Du H B, Lin X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica, 2011, 47(8):1706-1712 doi: 10.1016/j.automatica.2011.02.045
    [19] Cheng Y Y, Du H B, He Y G, Jia R T. Robust finite-time synchronization of coupled harmonic oscillations with external disturbance. Journal of the Franklin Institute, 2015, 352(10):4366-4381 doi: 10.1016/j.jfranklin.2015.06.006
    [20] Cao Y C, Ren W. Containment control with multiple stationary or dynamic leaders under a directed interaction graph. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 3014-3019
    [21] Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Systems and Control Letters, 1992, 19(4):467-473 doi: 10.1016-0167-6911(92)90078-7/
    [22] Bhat S P, Bernstein D S. Finite-time stability of homogeneous systems. In: Proceedings of the 1997 American Control Conference. Albuquerque, NM: IEEE, 1997. 2513-2514
    [23] Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46(12):2092-2099 doi: 10.1016/j.automatica.2010.09.005
    [24] Chen Y Y, Wang Z Z, Zhang Y, Liu C L, Wang Q. A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields. Nonlinear Dynamics, 2017, 88(2):1173-1186 doi: 10.1007/s11071-016-3303-2
    [25] Chen Y Y, Zhang Y, Wang Z Z. An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield. Journal of the Franklin Institute, 2017, 354(14):6217-6233 doi: 10.1016/j.jfranklin.2017.07.020
  • 加载中
图(6)
计量
  • 文章访问数:  1300
  • HTML全文浏览量:  281
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 录用日期:  2018-01-20
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回